Theory and simulation of granular materials with hard spheres
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Abstract: Granular Materials consist of particles that in-
teract during contact, dissipate energy, and possibly ro-
tate due to friction. Such discrete systems are examined
with numerical simulations and, sometimes, can also be
nicely described by theories like the kinetic theory or hy-
drodynamic continuum models. These days, great effort
is invested to predict experimental observations quantita-
tively with simulations and theories.

One challenge in computational physics is thus to bridge
the gap between the microscopic, “atomistic” simulations,
and the macroscopic length scale of continuum models and
experimental observation. First, an efficient algorithm for
hard sphere molecular dynamics is presented, allowing for
many-particle simulations of, e.g., granular systems. In the
next step, a “micro-macro” transition is introduced which
enables continuum quantities like the stress tensor to be
accessed. The approach is used for dilute and dense dissi-
pative granular gases, either freely cooling or heated with
respect to the translational or rotational degrees of free-
dom.
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1
Introduction

Granular materials are fascinating examples from the rich
world of non-linear, dissipative, non-equilibrium systems
[1-3]. Hard spheres, as a special case, are used also as
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basic model for gases, liquids, and e.g. glasses [4]. Adding
dissipation, friction and thus rotation to hard spheres, one
has the simplest yet realistic model granulate. Disregard-
ing eigenmodes of the grains and, to some extent, plas-
tic deformation or breakage, one has Molecular dynamics
(MD) simulations as an established tool to complement
advanced theoretical approaches and experimental stud-
ies.

1.1
Freely cooling systems

Granular gases are the more dynamic limit of granular
media as opposed to static systems. One of the outstand-
ing effects in granular gases is the so called clustering,
a self-stabilized density instability due to dissipation [5—
7], where large, dense collections of particles co-exist with
almost empty areas. Clustering occurs in initially homo-
geneous systems [5-9] and should not be confused with
the so-called “inelastic collapse” [5], the divergence of the
collision rate, which is inherent to the hard (rigid) sphere
model [5,6,10,11]. Freely cooling systems — mainly exam-
ined numerically and theoretically — are almost impossible
to realize experimentally. Only in the last years, labora-
tory experiments were performed, where clustering could
be examined in driven systems [12-18], where also ki-
netic theory approaches [19-27] complemented by numeri-
cal simulations have proven to be successful [10, 23, 28-33].

1.2
Driven systems

The driving of a granular material can be realized by
moving walls [2,34] which lead to local heating, or the
system can alternatively be driven by a global homoge-
neous, random energy source in different variations [10,
23,27, 31,35-38]. The latter type of energy input does not
exactly resemble the experimental situation, where a two-
dimensional (2D) horizontal layer of spheres is agitated by
vertical vibrations of the bottom surface and the horizon-
tal degrees of freedom are indirectly agitated due to the
different vertical jump heights of the colliding particles
[13,17,18,33]. Translational energy input (due to vibra-
tions) was also applied for other boundary conditions and
a variety of interesting experimental results were obtained
just recently [12-15,17,18, 39].

Generic seems to be that one can obtain a gas and a
liquid state, together with dense, solid-like clusters which
form due to dissipation. Thus, the choice of the driving



term to put into a theory for dissipative systems is an open
problem and we expect that it depends on the nature of
the driving (vibrating wall, airflow, Brownian noise, etc.).
In this paper we present a more detailed and complete
study as in [10,11] and also combine both approaches in
the framework of a mean field theory for the evolution to
the steady state.

We present a series of results from numerical simula-
tions performed for different sizes N of the system, differ-
ent values of r and different types of driving. The results
are compared to an analytical MF approach.

1.3
Micro-Macro Transition

A straightforward approach towards the understanding of
macroscopic material behavior by just modeling and sim-
ulating all atoms in a macroscopic system is not possible
due to the huge number of degrees of freedom. Therefore,
one can reduce the size of the examined system so that a
microscopic simulation of atoms is possible. However, the
possible length of such a “probe” is in general too small
in order to regard it as macroscopic. Therefore, methods
and tools to perform a so-called micro-macro transition
[3,40,41] are discussed in this study. In a first step, micro-
scopic simulations of a small sample lead to macroscopic
laws needed to describe the material within the framework
of a macroscopic theory, in a second step.

For granular materials, as an example, the grain prop-
erties are inserted into a discrete particle molecular dy-
namics (MD) and lead to the collective behavior of the
dissipative many-particle system. From the particle simu-
lation, one can extract, e.g., the pressure of the system as a
function of density. This equation of state allows a macro-
scopic description of the material, which can be viewed as
a compressible, non-Newtonian fluid [42]. Here we focus
on the monodisperse hard sphere model which exhibits a
disorder-order transition at a certain density. For low den-
sities, the system resembles a dilute gas, for intermediate
densities one has a disordered fluid, and for the highest
densities, one obtains an ordered solid (evidenced by a
crystal structure). The elastic hard spheres can be gener-
alized by including inelasticity so that one ends up with
a dissipative system for which, however, the micro-macro
approach still can be applied.

From the algorithmic point of view, the model system
is examined by an event-driven molecular dynamics sim-
ulation. One can compute the stress tensor and thus the
pressure by summation over the momentum transfer per
unit time and volume. In the usual time-driven molecular
dynamics, the procedure is similar, only that forces have
to be measured. The pressure can be derived for a dy-
namic system by means of kinetic-theory arguments [3],
and for a quasi-static system by means of an average over
particles [43] or by a virtual displacement method [40].

Examples are presented, where the above-described
methods can be applied and where large-scale computa-
tion was used. Standard simulations involve 10 - 10° par-
ticles due to the efficiency of the event-driven algorithm
and can be extended to much larger numbers by using
parallelization and supercomputers [?].

1.4
Overview

The paper is organized as follows. Section 2 introduces
and describes the model and the algorithm for numeri-
cal simulations. In section 3, the stress in a dense, elastic
granular gas is examined, while in section 4, the model for
frictional and driven systems is described. Thereafter, in
section 5, mean field evolution equations for homogeneous
driven systems are provided. The final example, freely
cooling inhomogeneous gases are discussed in section 6,
and a micro-macro transition for this system is shown in
section 7. Section 8 contains a brief summary and conclu-
sion.

2
Model and Algorithm

In this section, the hard sphere model is introduced to-
gether with the event-driven algorithm. The generalized,
so-called TC model takes into account a finite contact du-
ration and, besides adding this physically relevant paramter
to the model saves computing time.

2.1
Hard Sphere Model

The particles are assumed to be perfectly rigid and follow
an undisturbed motion until a collision occurs as described
below. Due to the rigidity of the interaction, the collisions
occur instantaneously, so that an event-driven simulation
method [44, 45] can be used.

A change in velocity — and thus a change in energy
— can occur only at a collision. The standard interaction
model for instantaneous collisions of particles with radius
a, mass m = (4/3)wpa®, and material density p is used
in the following. The post-collisional velocities v’ of two
collision partners in their center of mass reference frame
are given, in terms of the pre-collisional velocities v, by

Vip=v12F (1+7)vn /2, (1)

with v,, = [(v1 — v2) - 1] R, the normal component of the
relative velocity vy — v2, parallel to 7, the unit vector
pointing along the line connecting the centers of the col-
liding particles. If two particles collide, their velocities are
changed according to Eq. (1), with the change of momen-
tum

AP =—-m(1+7r)v, /2, (2)

and the change of translational energy at a collision AE =
—m(1 — r?)v2 /4, with dissipation for restitution coeffi-
cients r < 1.

2.2
The time driven, soft particle technique

Even without using the soft particle method [43,46,47]
in this study, it is convenient to discuss briefly the stan-
dard approach. Replacing AP in Eq. (2) by f(t)Atmp,
with the molecular dynamics time step Atyp, allows the
integration of the corresponding, discretized equations of
motion with standard numerical methods [47].



Since the modeling of realistic deformations of the par-
ticles would be much too complicated, let us assume that
the overlap of two particles is the only quantity important
for the interaction potential. The interaction of two par-
ticles can be split into (at least) three independent forces,
and is typically short range, i.e. the particles interact only
when they are in contact. The first force, an elastic re-
pulsive force proportional to the overlap, accounts for the
excluded volume which each particle occupies. In the sim-
plest case, a linear spring can be used. The second force, a
viscous damping force, models the dissipation in the nor-
mal direction and is proportional to the relative velocity.
The simplest possible dashpot is again linear. This lin-
ear spring-dashpot model can be solved analytically and
leads to a constant contact duration t, and a constant
restitution coefficient r [48]. The third force, accounting
for friction, acts in the tangential direction, but will not
be discussed here; for more information see Refs. [2].

2.3
The connection between hard- and soft-sphere models

In the ED method, the time during which two particles are
in contact is implicitly zero. The consequence is that exclu-
sively pair contacts occur and the instantaneous momen-
tum change AP in Eq. (2) suffices to describe the collision.
However, ED algorithms with constant r run into difficul-
ties when the time between events, t,,, becomes too small
— typically in systems with strong dissipation — and the
so-called “inelastic collapse” occurs [45,49], i.e. the colli-
sion rate diverges for a few particles in the system. Since
this is an artefact of the hard sphere model, it is unphysi-
cal and has to be avoided. Because a diverging number of
collisions is only possible if the contact duration vanishes,
the physical contact duration ¢, has to be reintroduced in
order to allow for realistic ED simulations. In MD sim-
ulations, on the other hand, one has t. > 0, since every
contact takes some finite time. Therefore, only a limited
amount of kinetic energy (AE o 1 —r2) can be dissipated
per collision. The finite contact duration implies a finite
energy dissipation rate. In contrast, the consequence of a
diverging collision rate would be a diverging energy dissi-
pation rate.

In a dense system of real particles, energy dissipa-
tion becomes ineffective, i.e. the ‘detachment effect’ oc-
curs [50,51]. This effect is not obtained with hard parti-
cles and a constant coefficient of restitution r. Therefore,
in the framework of the so-called TC model, the restitu-

tion becomes elastic in nature, n(l) = 1, if collisions occur

too frequently, i.e. tg) < t., for the collision n of particle

3. The time since the last collision is tgf) and the cut-off
parameter t. for elastic contacts can be identified with the
contact duration. Thus, an additional material parameter
is defined for the hard sphere model, that leads to qualita-
tive agreement between ED and MD simulations and, in
addition, avoids the inelastic collapse artefact. Recently, it
has been shown that the TC model does not affect phys-
ical observables of the system, like the energy, as long as
it is reasonably small [45].

2.4
Event-Driven Algorithm

Since we are interested in the behavior of granular par-
ticles, possibly evolving over several decades in time, we
use an event-driven (ED) method which discretizes the se-
quence of events with a variable time step adapted to the
problem. This is different from classical MD simulations,
where the time step is usually fixed.

In the ED simulations, the particles follow an undis-
turbed translational motion until an event occurs. An event
is either the collision of two particles or the collision of one
particle with a boundary of a cell (in the linked-cell struc-
ture) [47]. The cells have no effect on the particle motion
here; they were solely introduced to accelerate the search
for future collision partners in the algorithm.

Simple ED algorithms update the whole system after
each event, a method which is straightforward, but inef-
ficient for large numbers of particles. In Ref. [44] an ED
algorithm was introduced which updates only those two
particles which were involved in the last collision. For this
a double buffering data structure is implemented, which
contains the ‘old’ status and the ‘new’ status, each con-
sisting of: time of event, positions, velocities, and event
partners. When a collision occurs, the ‘old’ and ‘new’ sta-
tus of the participating particles are exchanged. Thus, the
former ‘new’ status becomes the actual ‘old’ one, while the
former ‘old’ status becomes the ‘new’ one and is then free
for the calculation and storage of possible future events.
This seemingly complicated exchange of information is
carried out extremely simply and fast by only exchang-
ing the pointers to the ‘new’ and ‘old’ status respectively.
Note that the ‘old’ status of particle ¢ has to be kept in
memory, in order to update the time of the next contact,
t;;, of particle ¢ with any other object j if the latter, in-
dependently, changed its status due to a collision with yet
another particle. During the simulation such updates may
be neccessary several times so that the predicted ‘new’
status has to be modified.

The minimum of all ¢;; is stored in the ‘new’ status
of particle i, together with the corresponding partner j.
Depending on the implementation, positions and velocities
after the collision can also be calculated. This would be
a waste of computer time, since before the time ¢;;, the
predicted partners ¢ and j might be involved in several
collisions with other particles, so that we apply a delayed
update scheme [44]. The minimum times of event, i.e. the
times which indicate the next event for a certain particle,
are stored in an ordered heap tree, such that the next event
is found at the top of the heap with a computational effort
of O(1); changing the position of one particle in the tree
from the top to a new position needs O(log N) operations.
The search for possible collision partners is accelerated
by the use of a standard linked-cell data structure and
consumes O(1) of numerical resources. In total, this results
in a numerical effort of O(N log N) for N particles. For a
detailed description of the algorithm see Ref. [44]. Using
all these algorithmic tricks, we are able to simulate about
10° particles within reasonable time on a low-end PC [52],
where the particle number is rather limited by memory
than by CPU power.



3
The Stress in dense granular gases

As a first example, the stress in an elastic system of hard
spheres is examined, and the micro-macro transition is
performed in order to obtain the global equation of state of
the system. The simplest contribution to the stress tensor
is caused by the momentum transport due to the particle
motion. This is the standard stress in an ideal gas, where
the atoms (mass points) move with a certain fluctuation
velocity v. The kinetic energy E = Zf;l muv?/2 due to
the fluctuation velocity v; can be used to define the tem-
perature of the gas kgT = 2E/(DN), with the dimension
D and the particle number N. Given a number density
n = N/V, the stress in the ideal gas is then isotropic and
thus quantified by the pressure p = nkpT. Note that kp
is dropped for the sake of simplicity in the following.

The additional contribution to the stress is due to col-
lisions and contacts and will be derived from the principle
of virtual displacement of soft interaction potentials and
then modified for hard sphere systems.

31
Stress from a Virtual Displacement

From the centers of mass r; and 72 of two particles, we
define the so-called branch vector I = r1 — 72, with the
reference distance [ = |l| = 2a and the corresponding unit
vector 1o = 1/1.

The deformation in the normal direction, relative to
a reference configuration, is defined as A =1 — 2an. A
virtual change of the deformation is then
JA=A"—-A=xfl=¢-1, (3)
where the prime denotes the deformation after the virtual
displacement described by the tensor .

The corresponding potential energy density due to the
displacement of one pair of particles is u = kA?/(2V),
expanded to second order in A, leading to the virtual
change

k
(SU—V

k

1 2 n
(A6A+§MD>~VAﬁl, (4)

where k is the spring stiffness (the prefactor of the quadratic
term in the series expansion of the interaction potential),
V is the averaging volume, and 0I" = fu(fv - € - I) is the
normal component of §l. (Note that, in first order, du de-
pends only on the normal component of dA due to the
scalar product with A, which is parallel to 7.)

From the potential energy density, we obtain the stress
from a virtual deformation by differentiation with respect
to the deformation tensor components

ou k 1
_U_Fpagi=Ltrel
pael=yrfel,

"_ae

where f = kA is the force acting at the contact, and the
dyadic product ® of two vectors leads to a tensor of rank
two.

(5)

3.2
Stress in Hard Sphere Systems

Combining the ideal gas contribution (momentum trans-
port through translational motion) and the collisional con-
tributions to the stress tensor [54], one has

1 1
o=y ;mi”i@)’ui_m;;p]‘@h ;

where p; and [; are the momentum change and the center-
contact vector of particle j at collision n, respectively. The
left sum runs over all particles i, the first right sum runs
over all collisions n occurring in the time interval At, and
the second right sum concerns the collision partners of
collision n [45]. The force in Eq. (5) is thus replaced by
the momentum exchange per unit time f = p,/At.

(6)

33
The Equation of State

The mean pressure p = (01 + 02)/D , with the eigenval-
ues o1 and oy of the stress tensor, for D = 2 can now be
obtained from simulations for different volume fractions
[42, 54]. The dimensionless reduced pressure P = pV/E—1
contains only the collisional contribution and the two-
dimensional simulations agree nicely with the theoretical
prediction Py = 2vga,(v) [54], with the pair-correlation
function go,(v) = (1 — 7v/16)/(1 — v)?, and the volume
fraction v = N7a?/V, see Fig. 1. A small correction to
Py, based on a fit to the numerical data, is Py = Py(1 —
ayv*) with a, = 0.1. The dimensionless pressure P is re-

lated to the collision rate t,;! = 4vgy,(v)\/T/(ma?m) =

2P./T/(wa?m) and the temperature. For a system with
homogeneous, constant temperature, the collision rate is
thus proportional to the dimensionless pressure ¢, o P.

100 ¢

10 ¢

Fig. 1. The dashed lines are P4 and Pgense as a function of the
volume fraction v, and the symbols are simulation data, with
standard deviations as given by the error bars in the inset. The
thick solid line is @, the corrected global equation of state from
Eq. (7) with the fit parameters ag = 0.1, aq = 0.340, a, = 1.09,
ve = 0.701, max = 0.9069, and mo = 0.00928. The thin solid
line is QQo without corrections, i.e. ag =0, aq = 0, and mo =
0.0015 and v. = 0.7, so that Qo = Po + m(v)[Pr, — Po).



When plotting P against v with a logarithmic verti-
cal axis, in Fig. 1, the simulation results can not be dis-
tinguished from Py for v < 0.65. Crystallization is evi-
denced at the point of the liquid-solid transition v, ~ 0.7,
and the data clearly deviate from F,. The pressure is
strongly reduced due to increase of free volume caused by
order. The data diverge at the maximum packing fraction
vmono — /(24/3) for a perfect triangular array. For high
densities, one can compute from free-volume models, the
reduced pressure Py, = (\/Vmax/v — 1)7', with the max-
imum volume fraction vmax [54]. Slightly different func-
tional forms do not lead to much better agreement [42].
Based on the numerical data, we propose the corrected
high density pressure Pgense = [1 + ad(Vmax — v)??] Py,
where the term in brackets [...] is a fit function with
aqg = 0.340 and a, = 1.09.

To our knowledge, no theory exists, which combines
the disordered and the ordered regime. Therefore, we pro-
pose a global equation of state

Q=P4+m(V)[Pdense_P4] ; (7)
with an empirical merging function
m(v) = [1+exp (=(v = vc)/mo)] ™! (8)

which selects Py for v € v, and Pgense for v > v, with
the width of the transition mg. In Fig. 1, the fit param-
eters v, =~ 0.70 and mo ~ 0.009 lead to qualitative and
quantitative agreement between ) (thick line) and the
simulation results (symbols). However, a simpler version
Qo (thin line) without empirical corrections also leads to
reasonable agreement when mg = 0.015 is used. In the
transition region, the function )y has no negative slope
but is continuous and differentiable, so that it allows for
an easy and compact numerical integration of P. We se-
lected the parameters for Q¢ as a compromise between the
quality of the fit on the one hand and the treatability of
the function on the other hand.

As an application of the global equation of state, the
density profile of a dense granular gas in the gravitational
field has been computed for monodisperse [54] and bidis-
perse situations [42]. In the latter case, however, segrega-
tion was observed and the mixture theory could not be
applied.

4
The model for frictional and heated systems

In this section the numerical model for driven systems is
introduced, with a few typical examples of the simulation
presented in Fig. 2.

A system of N three-dimensional spheres with radius a
and mass m is considered, interacting via a hard-core po-
tential and confined to a 2D plane of linear extension L,
with periodic boundary conditions. The degrees of free-
dom are the positions 7;(¢), the translational velocities
v;(t), and the rotational velocities w;(t) for each sphere
numbered by i = 1,...,N.

4.1
Dissipation on collisions

The dissipation at a collision (in normal direction) is quan-
tified by a constant normal restitution r. From the mo-

Fig. 2. Snapshots of the particle distribution in the steady
state for a system of N = 11025 smooth (r; = —1) particles,
§=1,v=0.34,and Hyq, = 1.0s™", with r = 0.999 (a), r = 0.97
(b), and r = 0.6 (c). In panel (d), a snapshot of the particle
distribution in the steady state for a rotationally driven system
of N = 11025 particles, v = 0.34, r; = 1, and r = 0.1 is shown
for J =1.0s"1.

mentum conservation law and the rule 'v’gn) = —r'vgn),

where the prime denotes the value after the collision, one
can derive the change of linear momentum —(m/2)(1 +

ryo™
normal relative velocity is v{" = [(vi —v;) -n]n, and the
unit vector in normal direction is n = (r; —r;)/|r; —r;|.

of particle 4, which collides with particle j. The



In a similar way, the dissipation in tangential direction
is quantified by the tangential restitution r;, such that
'U'gt) = —Tt’Ugt)-

The magnitude of dissipation is proportional to 1 — 2
(normal) and 1 — r? (tangential), while the strength of
the coupling between rotational and translational motion
is connected to 1 + 7, where the normal restitution r
varies between 1 (elastic) and 0 (inelastic) and the tan-
gential restitution r; varies between —1 (smooth) and +1
(rough), corresponding to zero and maximum coupling,
respectively [6,9, 20, 55].

4.2
Translational, multiplicative driving

The system is agitated each time interval At = fgrl, with
a driving rate fg, (in the experiment this is according to
the frequency of the vibrating bottom). For homogeneous
driving, it is costumary to assume fg, > t; !, where ¢!
is the collision frequency of the granular gas. This, how-
ever, does not correspond to the experiments, were fq, can
be rather small [13,17,18]. In our simulations we will use
driving frequencies around 100s! comparable to those
used experimentally [13,17]. We did numerical checks with
strongly different values of fgr and found a similar behav-
ior of the system even for driving frequencies lower than,
but of the same order as ¢!, provided that a stationary
state is reached.

Every time interval At, the velocity of particle 7 is
changed:

v (t) = of (1) + rf loi(®) 0,7
v (1) = v} (t) + rf |wi ()P0~ (9)

where the driving occurs at time ¢ and the prime on the
left hand side indicates the value after the driving event. v,
is a reference velocity (in this study we use v, = Ims~!)
which allows to define the dimensionless translational par-
ticle temperature T = E/(NT,), with E = (m/2) Y, v?
and the reference temperature 7, = muv?2. The variance
of the uncorrelated Gaussian random numbers r¥ and r}
(with zero mean) can now be interpreted as a dimension-
less driving temperature T4,. The stochastic driving rule
in Eq. (9) leads thus to an average rate of change of tem-
perature

AT /At = Hg,T® with Hyr = fa:Tyr - (10)

In the next section we introduce this driving rate in the
MF equation for the evolution of T' [6], but first the case
of rotational driving is discussed.

4.3

Rotational driving

In the case of a rotational driving event, with frequency
far, see above, the translational velocity remains unchanged,
but the angular velocity w; of particle ¢ is modified at each
time of agitation ¢ so that

wi(t) = w;(t) + r¢ wo, (11)

where the prime on the left hand side indicates the value
after the driving event. Due to the two-dimensionality

of the system, we apply the driving force only to the z-
direction, so that the scalar w is to be understood as the
z-component of w.

Fig. 3. Snapshot of the particle distribution in the steady state
for a system of N = 11025 smooth particles, with v = 0.34,
re=1,and r = 0.1 for J =1.0s7".

The reference angular velocity, wp, allows to define the
dimensionless translational and rotational particle tem-
peratures

Tt = Ew/(NTo) , (12)
and
Trot = 2Erot/(NT0) 3 (13)

with the translational energy Ei, = (m/2) Ziil v?, the
rotational energy Fro, = (gma®/2) YN, w? (with the mo-
ment of inertia prefactor ¢ = 2/5 for 3D spheres), and
the reference temperature Tp = mvZ, with vgp = awp. The
variance of the uncorrelated Gaussian random numbers r{’
(with zero mean) can now be interpreted as a dimension-
less driving temperature T§. [11]. The stochastic driving
leads thus to an average rate of change of temperature

ATyt /AL = Jgr , with Jgr = fa T4 - (14)

In the case of driving of the translational degrees of free-
dom, the reference temperature T, will be used, whereas
in the case of rotational driving, the reference T will be
used for scaling.

5
Mean field evolution equations

The starting point for our mean-field analysis is the the-
ory of Huthmann and Zippelius [9], for a freely cooling gas
of infinitely rough particles, which was complemented by
event driven (ED) simulations in 2D and 3D [6] and by
studies of driven systems as well [10,11]. The main out-
come of this approach is a set of coupled evolution equa-
tions for the translational and rotational MF temperatures
Tty and Tyt [6, 9], which can be extended to describe arbi-
trary energy input (driving) [10,11]. In the present study,
given the random driving temperatures Ty, or 1§, and an
energy input rate fq,, as defined above, one just has to add



the positive rate of change of translational energy Hy, and
rotational energy Jy, to the system of equations:

%Ttr (t) =G I:_ATt3r/2 + BTt11r/2Tr0t] + I'IdrT(s ’ (15)
d
T (t) = 26 BT = CT/ T + Jax (16)
with
8vgaq (V)
G = 22920\ 7 17
a/mm (a7)

and the pair correlation function at contact g2,(v) = (1 —
7v/16)/(1 — v)? in the approximation proposed by Hen-
derson and Verlet&Levesque [56,57], dependent only on
the volume fraction of the granular gas v = 7a®? N/V. The
constant coefficients in Egs. (15) and (16) are

A=1-r")/4+n(1-n)/2,
B =1n"/(2q) , and
C=n(l-n/q /29,

with the abbreviation n = n(ry) = ¢(1+7¢)/(2¢ + 2), as
derived and used in Refs. [6,9].

Typical steady-state configurations for translational
driving for different r values are shown in Fig. 2, and a
snapshot for rotational driving is shown in Fig. 3.

5.1
Smooth particles — no rotation

The time evolution equation of T' = Ti, was derived for
the case of a freely cooling granular gas by means of a
pseudo-Liouville operator formalism [6,9]. We adopt the
nomenclature and account for the driving by adding Eq.
(10) to the mean field (MF) equation for the translational
degree of freedom

d

—T(t) = -G, AT?/? + Hy, T? .

o (20)

For our case of a homogeneous monolayer of smooth spheres,

one has G, = 8an+/7T,/mg(v), and A = (1 —r?)/4, with
the number density n = N/V, the pair correlation func-
tion at contact g(v) = g¢2.(v), and the area fraction v
covered by particles [6,9,10]. For § = 0 the driving is ho-
mogeneous and independent of the local granular temper-
ature (or velocity), and one can identify our energy input
rate with the term m&Z in Ref. [58]. In the case § # 0 the
driving is a function of T. Imposing 4T(t) = 0 one gets
from Eq. (20) the MF temperature in the steady state

Hdr 3_%
Tmf —
(@)

the generalization of the Enskog equilibrium solution for
a homogeneously driven granular gas [58]. The scaling ex-
ponent of T™f in Eq. (21) is 2/3 for § = 0, while it is 2
for 6 = 1. For 6 > 3/2 the MF theory does not admit a
stable equilibrium state. If § > 3/2 the driving rate grows
faster than the dissipation rate. § = 3/2 is a limiting case
for which the equilibrium state is unstable against den-
sity fluctuations. A more detailed stability analysis is far
from the scope of this paper, since the typical perturbation

(21)

around the steady state often also relies on a Maxwellian
velocity distribution, which we do not find numerically.

The final approach to the steady state can be obtained
by linearizing Eq. (20) around 7™, what leads to an ex-
ponentially fast approach to equilibrium

T™ _T(t+to) = T(to) exp{—[3At; 1+ Ha(T™)0 1]t} ,(22)

where ;! = G,/T™f /2 is the Enskog collision frequency
for elastic particles with temperature 7™, and T(t,) is the
initial temperature at time to. By inserting Eq. (21) in the
expression for ¢!, one can express the characteristic re-
laxation time treax = [--.]7! as a function of the model
parameters, which reduces for § = 1 to t., = (5/2)Hq-
Thus, for § = 1 the characteristic time trelax = [3At; ! +
SH g (T™F)3=1]~1 for the evolution of T towards its equi-
librium value does not depend on A which contains all the
information about the inelasticity. This characteristics is
confirmed by numerical simulations (see below).

5.2

Rough particles with translational driving

Setting to zero the temporal derivatives in Eqgs. (15) and
(16), one obtains the steady state properties of the driven
system with Jg, = 0 and, for the sake of simplicity, § = 0:

G.Ft rot (23)

2/3

ma = (Gr) o and TR - TR,

with I}, = (C/B%)'/* (CA - B?), and R = B/C.
Starting from this mean field result for both transla-

tional and rotational degrees of freedom, an analysis simi-

lar to the one in the previous subsection is possible. Since

this did not lead to dramatically new insights, we do not

discuss it further. Note, however, that the relaxation times

for the translational and rotational degrees of freedom can

be strongly different from each other [6].

5.3

Rough particles with rotational driving

Setting to zero the temporal derivatives in Egs. (15) and
(16), one obtains the steady state properties of the rota-
tionally driven system with Hg, = 0:

2/3
ot — (_Jar / and T =T=f/R (24)
rot GFrot ’ tr rot )

with Ty = 2 (B/A%)"/* (CA— B?), and R = A/B. A
more detailed analysis of this quasi steady state mean
field solution, the approach to the steady state, the pa-
rameter dependencies, and the velocity distributions is to
be published elsewhere.

5.4
Numerical simulations

Most of our event driven (ED) molecular dynamics simu-
lations, see [6,9-11] for details, with the driving specified
above, are first equilibrated without driving and with elas-
tic interactions (r = 1, and r; = —1), until the velocity



distribution is close to a Maxwellian. Then, dissipation
and driving are switched on. However, we checked that
the steady state does not depend on the initial condi-
tions. The simulations are performed at a volume frac-
tion v = 0.34 with N = 1089 (fq = 133s71) or N =
11025 (fqr = 67s71), and different values of r and r;. (In
our simulations with translational driving, we have cho-
sen @ = 107°m and Hy, = 1.0s7! so that, for example,
G, = 8vv,//mag(v) = 3.1 x 1071, T™f = 0.0358 and
thus t,;1 = 2.9 x 102571, if 7 = 0.90 is used.) With these
typical values and a homogeneous driving (6 = 0), the
model of a driven granular gas is very close to a homoge-
neous state; no clusters are observed and the velocity dis-
tribution is almost Maxwellian. This is in contradiction to
the experimental findings [13,17], and suggests that the
correct representation of the driving in those experiments
is mot the homogeneous white noise usually implemented.

54.1
Approach to steady state

In Fig. 4 we compare the solution of the MF equation (21)
for a multiplicative driving with § = 1 to numerical sim-
ulations with N = 11025, v = 0.34, and r = 0.99. As one
can see, the transient dynamics is quite well reproduced
by the MF theory, in the limit of low dissipation (quasi-
elastic) considered in the simulations. In the steady state,
intermittent behavior is evidenced, however, we do not
present a more detailed statistical analysis here.

4e-08 -
=
2e-08 - —— simulation, r=0.99 -
————— MF theory
0e+00 - .
10 30

Fig. 4. Comparison between the solution of the MF equation
(21) and numerical simulations for N = 11025, » =0.34, 6 =1
and r = 0.99.

5.4.2
Relaxation time

To check the prediction of the MF theory that the char-
acteristic time #e1a, is independent on A = (1 — r?)/4,
during the near-to-equilibrium relaxation to the steady
state, different simulations with different r can be scaled.
Because of noise and fluctuations in the initial conditions
and dynamics with respect to the MF steady state, the
simulation time ¢ has to be translated by an offset time %
in order to collapse the data from other realizations (data
not shown here). The fact that the numerical data collapse

onto the MF curve, supports the MF prediction of the in-
dependence of the characteristic time from inelasticity in
the case 6 = 1.

5.4.3

Steady state temperature

In Fig. 5 we plot the ratio between the numerical results
for long times 7"°? and the theoretical equilibrium temper-
atures T™f as function of r for different §. The agreement
of the simulations with the MF prediction is optimal for
r — 1. For § < 0, the range of agreement extends to
much smaller r values, i.e. to stronger dissipation, as in
the case of § = 1 and even in the case § = 0. One could
naively think that the more negative is § the more fa-
vorized should be the homogeneous state. In fact, this is
not true. We have performed simulations with § = —1,
and found that the driving is very singular in the low ve-
locity limit, since an excessive amount of energy is given
to slow particles.
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Fig. 5. Rescaled translational temperature T°/T™f plotted
against the restitution coefficient r for N = 11025 and different
values of § as given in the insets. Note the different axis scaling
in (a) and (b).



5.4.4
System size dependence

If the ratio between equilibrium temperature from simu-
lations and MF temperature from the theory, T¢/T™f,
is plotted against r for two system sizes N = 11025 and
5476, the data appear slightly different, indicating some
size dependence. The deviation from unity, i.e. the discrep-
ancy between theoretical prediction and numerical simu-
lation of the model, is somewhat larger for the smaller
system. For both system sizes, the quality of the theory is
perfect in the limit r — 1, within the statistical fluctua-
tions.

5.4.5
Steady state clustering

In Fig. 2 snapshots of the system’s steady state were shown
for r = 0.999 (a) r = 0.97 (b) and r = 0.6 (c), for the more
interesting case § = 1, rather than for the classical 6 = 0.
Different regimes are observed: A homogeneous state ex-
ists for very weak dissipation (r = 0.999, Fig. 3, whereas
dense, persistent clusters with a crystalline structure, do-
main boundaries, and vacancies are found for higher dis-
sipation (r = 0.97). The region between these clusters
appears rather homogeneous and dilute (gas-like), very
similar to the structures observed in experiments [13,17].
For higher dissipation (r = 0.6) the clusters appear less
symmetric, are smaller, and evolve more dynamically.

Note that the clustering in the case § = 1 is qualita-
tively different from the case of homogeneous driving, and
it appears already for quite high values of r (see Fig. 2).
Homogeneous driving, in fact, leads to transient clusters,
i.e. they appear and disappear continuously, while in the
experiments [13,17] and in the case of multiplicative driv-
ing, the individual clusters are in equilibrium with a gas
phase and are stable for rather long times. Simulations
with negative d, (we used § = —0.5 and § = —0.25) give a
behavior qualitatively similar to the case of homogeneous
driving (§ = 0). For § = 1, the particles inside the cluster,
with rather small relative velocities, are much less agitated
than the particles in the surrounding gas phase, so that
a cluster is stable. For § < 0, the particles in the cluster
are driven comparatively strong, what leads to less stable,
dynamic clusters.

5.4.6
Simulations with rotation

In Fig. 6 we present the stationary (steady-state) values of
Trot, normalized by the MF value T2 (r = 0), and of the
ratios R = T, /T,,, as obtained from numerical simula-
tions and theory for a system of N = 11025 particles, with
volume fraction v = 0.34, r, = 1, and r ranging from 0.99
to 10~*. Surprisingly, the agreement with the MF predic-
tion is very good, even for the lowest value r = 10~* of
the normal restitution, which corresponds to very strong
dissipation, where the deviation from MF theory is of the
order of only 10%.

To give an example, if the system is driven on the
translational degrees of freedom, the stationary tempera-
tures show deviations of 30 — 40% from MF predictions

5
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Fig. 6. Simulation (points) and theory (lines) for the param-
eters v = 0.34, N = 11025, and r; = 1, plotted against r. (a)
Stationary rotational temperature Trot, normalized by the MF
value TZ (r = 0) at 7 = 0. (b) Ratio of stationary rotational

and translational temperature R = Trot/Tt:-

already for » = 0.6, see [10] and the previous section.
The snapshot in Fig. 3 shows the particle distribution for
r = 0.1 and appears spatially homogeneous — apart from
small density fluctuations not quantified here. Thus, rota-
tional velocities are characterized by good homogenization
at low r; however, also the translational velocity distribu-
tion shows strong deviations from a Maxwellian as will
be quantified in the next section. This deviation is due to
the rather high dissipation. Numerical simulations with
r = 0.99 give a Maxwellian distribution for both rota-
tional and translational velocities.

In order to check the role of the tangential restitution,
we show in Fig. 7 the stationary values of R with r = 0.1
and r; € [—1,1]. While for positive r; there is still good
agreement with MF theory, strong deviations appear as
ry — —1. Note that many realistic materials obey the re-
lation 7 & 0.4 [59], what renders our mean field approach
still acceptable.

Our conclusions are that the driving on the rotational
degrees of freedom is able to keep the spatial homogeneity
of the system up to very high dissipation rates, for positive
values of r;. This leads to a very good agreement of the
stationary temperatures with the MF predictions. There
are two possible reasons for this. First, the driving acts on
rotations. Then, it cannot favorize collisions, since it does
not increase the normal component of the relative velocity
of the colliding particles. Second, the increase of rotational
energy triggered by the driving leads to a shearing force
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Fig. 7. Simulation (points) and theory (lines) results for R =
Trot/Ter, with parameters v = 0.34, N = 11025, and r = 0.1,
plotted against r:.

between particles, which reduces density fluctuations and
should destroy the translational velocity correlations - but
astonishingly does not. When r, — —1, i.e. in the smooth
limit, the agreement with the MF is lost. To explain this
result one has to remember that 1 + r; is a measure for
the strength of the coupling. Not enough rotational en-
ergy is transferred to the translational degree, so that the
randomization on collisions does not take place. Thus, it
is not surprising that MF is no more valid in this very
singular limit. Snapshots of the particle distribution for
r = 0.1 and 7, near to —1 (not displayed here) show indeed
stronger density fluctuations in the system as reported in
Fig. 3.

5.5
Summary and Conclusions

The subject of this section was a granular gas subject to
both translational driving proportional to a power § of the
local velocity and to rotational driving (independent of the
angular velocity). Numerical simulations and a theoreti-
cal analysis of this model for positive values of ¢ repro-
duce qualitatively some experimental findings of [13,17],
which could not be accounted for by homogeneous driving
(6 = 0). Furthermore, numerical simulations and theory
for negative values of § and for rotational driving show
good homogeneization of the system up to very low values
of the restitution coefficient, r, i.e. very strong dissipation.

A microscopic justification for the multiplicative driv-
ing is still lacking and requires more detailed experiments
or three-dimensional simulation [33] studies. However, as
suggested in [10], there is a possible experimental check
of our ideas. From MF theory the scaling of the equilib-
rium temperature of the vertically vibrated gas with the
area fraction v is given by T™ « [vg(v)] 57 . Exper-
imental measurement of the equilibrium temperature of
the vertically vibrated monolayer for different values of v
could allow to estimate the value of § and to verify the
hypothesis of a multiplicative effective driving.

Another result of the present study is that both the
driving of the rotational degrees of freedom and a mul-
tiplicative driving with negative § are able to keep the
spatial homogeneity of the system up to very high dissi-

pation rates — at least for positive values of ry, i.e. strong
coupling between rotational and translational degrees of
freedom. This leads to a very good agreement of the sta-
tionary temperatures with the MF predictions.

6

Freely cooling granular media

The simulations presented in the following involve N =
99856 = 3162 dissipative particles with the restitution co-
efficients » = 0.8, in a periodic, quadratic system with
volume fraction v = 0.25. The system size is | = Ld
with dimensionless size L = 560 and particle diameter
2a = 1mm. In order to reach an equilibrated initial condi-
tion, the system is first allowed to equilibrate with r =1
for several hundreds of collisions per particle, so that a
Maxwellian velocity distribution and a homogeneous den-
sity can be found. Then, at ¢t = 0's, dissipation is activated
and the quantities of interest are examined. Snapshots of
the simulation with r = 0.8 are presented in Fig. 8 at
different, rescaled times 7 (see below).

The first picture in Fig. 8 is taken in the initally ho-
mogeneous cooling regime, whereas the next pictures show
the different stages of the cluster growth regime. The final
snapshot is taken in the limiting state, where the clus-
ter has reached the system size. The particles are colored
spots, where the green/red areas in the cluster centers
correspond to particles with collision rate ;1 > 50s 1.
This is much smaller than the critical collision rate t;! =
103571, so that only a very small number of particles will
be affected by the TC model.

6.1

Homogeneous and inhomogeneous cooling

In the homogeneous cooling state [6, 8,49], one can expect
that the kinetic energy E = K(t)/K(0) of the system
decays with time and follows the master-curve

1
E(T) - (].+T)2 ’
with the dimensionless time 7 = (1 — 7?)t/(4tg), the col-
lision rate t;' = 8vg(v)d/(v/7d), the mean velocity o =
VK (t)/Nm , and the increased contact probability g(v) =
(1-7v/16)/(1—v)? due to excluded volume effects at finite
volume fractions v. Inserting the parameters from the sim-
ulation, 1—r2 = 0.36, g(v) ~ 1.5833,and ¥ = 0.02883m/s,
one obtains an initial collision rate t3'(0) = 51.5s7!.

In Fig. 9, the normalized kinetic energy FE is presented
as a function of the normalized time 7. At the beginning
of the simulation we observe a perfect agreement between
the theory for homogeneous cooling and the simulations.
At 7 =~ 1—40 substantial deviations from the homogeneous
cooling behavior become evident, i.e. the decay of energy is
slowed down earlier for stronger dissipation. The deviation
from the analytical form increases until the clusters reach
system size, when the behavior of E changes again to a
slightly more rapid decrease.

This change in behavior is evident from the collision
rate t;! (data not shown here), see [7, 52]. At first, in the
homogeneous cooling regime, the collision rate decays with

(25)



T =0.047

Fig. 8. ED simulation with NV = 99856 particles in a system of
size L = 560, volume fraction v = 0.25, restitution coefficient
r = 0.8, and critical collision frequency t;! = 10°s™!. The
collision frequency is grey-scaled, dark and light correspond to
collision rates t,' ~ 505!, and 25!, respectively. The first
image is homogeneous with the given density, however, due to
the too large pixel size, the area appears covered.
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Fig. 9. (Left) Kinetic energy E plotted against 7 for different
values of r. The dotted line represents Eq. (25).

t-1 o« VE. Then the collision rate is almost constant or
even increases, until it becomes very noisy, indicating an-
other change in the collective behavior, when the clusters
reach system size. The long-time power law for the decay
of energy with time is close to —2 in the homogeneous
cooling case. In the cluster growth regime, however, we
obtain slopes slightly smaller than —1 (the best fit leads
to —0.920, —0.927, and —0.941 for » = 0.9, 0.8, and 0.6,
respectively, with errors £0.002).

6.2
Cluster growth

The cluster growth can be studied quantitatively in the
spirit of reference [52]. All particle pairs with a distance
smaller than some cut-off distance § < (1 + S)d, with
an arbitrary cut-off parameter S = 0.1, are assumed to
belong to the same cluster. After all particle pairs are
examined, one obtains a cluster-size distribution and its
moments. The first moment, the mean cluster size (M),
and the size of the largest cluster M,,,, are plotted in Fig.
10 against the time 7.

Both values are almost constant in the initial, homo-
geneous cooling regime. In the cluster growth regime a
rapid increase of both (M) and M, is evidenced until, at
larger 7, the values reach a maximum and seemingly satu-
rate or even decrease in the final regime where the clusters
have reached system size. The cluster growth starts earlier
for stronger dissipation, but the largest cluster seems to
grow more rapidly for weaker dissipation, however, at a
later time.

6.3
Discussion

With a rather simple description of a granular material
as an ensemble of inelastic hard disks (spheres), we have
investigated the interesting effect of clustering in freely
cooling systems. For short times the system is disordered
and gas-like, whereas the structures at larger times are
dense, crystalline clusters. The clusters grow until they
reach the system size. Simulations at very long times were



12

10°
o
g 10°
10?

1;)1 1lo2 1lo3 10*

1 1
10t 1

T

Fig. 10. (Left) Mean cluster size and (Right) maximum cluster
size as functions of 7 for different coefficients of restitution r.

possible with the TC model, which reduces dissipation
when contacts become too frequent.

Further investigations concerning the transport param-
eters pressure, viscosity and heat conductivity in similar
systems are in progress in two dimensional model systems
and are to be applied to a successful hydrodynamic theory
of granular flow, as discussed in the following section.

7
Micro-Macro Transition for a freely cooling system

In this section, from the ED simulations of a freely cool-
ing dissipative gas [52] of hard spheres, field data are ex-
tracted. A rather large number of particles is necessary in
order to allow for either good statistics or high resolution
of patterns and structures for the micro-macro transition.

In order to obtain the fields from the simulation data,
the system is arranged on a 50 x 50 grid and the field quan-
tities are computed for every cell. The density v(z,y) =
newa?/V. and the fluctuation kinetic energy e(z,y) =
(m/2) Y c.[vi — v(z,y)]?/nc, are plotted in Fig. 11. The
symbols are the number of particles per cell n., the cell-
volume V_, the particle radius a, mass m, and the mean
velocity v(z,y) = ,c. vi/n. in the cell. The iso-lines of
the density are chosen such that the dilute area (v < 0.1)
is visible as well as the coexistence area between fluid and
solid regions (0.6 < v < 0.8). The islands (v > 0.8) are
solid clusters with triangular arrangement, whereas the is-

lands (v < 0.1) are almost empty regions. Between pink
and blue, the fluid phase exists at almost all densities.

0.1

0.1

Fig. 11. Contour-plots of the density, temperature, and pres-
sure fields on a 50 x 50 grid. The values of the iso-lines are
given in arbitrary units, for the latter two plots.

The iso-lines for the fluctuation kinetic energy are cho-
sen in arbitrary units. However, it is evident, that the
temperature and the density fields are not correlated in
a simple fashion. Dense regions are not neccessarily cold
neither are dilute regions neccessarily hot. The structure
of the e-field appears more detailed than the structure of
the density field.

Finally, the velocity vector field is plotted as momen-
tum flux field in Fig. 12 and shows the mass-flux in the
system. A closer examination leads to the conclusion that
the clusters are not stable, but have remaining internal
motion due to shear- or compressive modes. Note that
also the velocity field (energy due to flux motion) is not
directly correlated to the fluctuation kinetic energy.
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Fig. 12. Snapshot (top) of a system with N = 99856 particles,
r = 0.9, and v = 0.25 together with the flux field (bottom) on
a 50 x 50 grid. The dimensionless time 7 roughly corresponds
to the number of collisions per particle.

8

Summary and Conclusion

As an example for granular media, hard sphere granular
gases were examined by numerical simulations and theory
in the spirit of a continuum theory, mainly for homoge-
neous systems. The systems studied involved freely cooling
and driven two-dimensional granular gases with rotational
degrees of freedom. The evolution of energy with time is
nicely predicted by the theory for all cases examined so far,
as long as the system remains homogeneous. When dissi-
pation is strong enough, density variations build up and
lead to clusters of particles. The deviation from the homo-
geneous theory goes ahead with the growth of these forma-
tions. Finally, a micro-macro approach was performed in
order to obtain the density-, momentum-flux- and energ-
fields in the framework of a continuum theoretical descrip-
tion — the latter is, however, not available yet.

In conclusion, theory and simulations show promising
agreement in homogeneous systems, even for high den-
sities or friction and rotations involved. The next step
of current research is to understand also inhomogeneous,
dynamic, non-equilibrium systems on the same level, also
involving larger three-dimensional systems and more com-
plicated boundary conditions.
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