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1.1 Introduction

A basic question in mechanics and physics is how to bridge the gap between a microscopic
model and a macroscopic (continuum) description. The former involves contact forces
and deformations, whereas the latter concerns tensorial quantities like the stress or the
deformation gradient.

The macroscopic balance equations for mass, momentum and energy can be used for the
continuum modeling of the behavior of granular media. However, in order to close the
system of equations, they rely on constitutive relations between the physical quantities
(expressed in terms of material parameters [8, 13]), since the microscopic details of a gran-
ular material are not directly taken into account on the macro-scale. The aim of this paper
is to present a micro-macro transition from “microscopic” simulations to macroscopic con-
stitutive relations for the material behavior.

The model system, a two-dimensional bi-axial box filled with cohesive, frictionless disks of
different sizes, is examined by means of a “microscopic” discrete element method (DEM).
The microscopic interaction model for cohesion is tested via several stress- or strain-
controlled bi-axial deformation paths.

Using the whole box as representative elementary volume, the stress is examined as a
function of the applied strain, and the yield surface is determined from bi-axial compression
tests. Other measured macroscopic parameters are the Young modulus, the Poisson ratio,
the dilatancy angle, the friction angle, and the cohesion.

1.2 Model System

One possibility to obtain information about the material behavior is to perform elemen-
tary tests in the laboratory. An alternative are simulations with the discrete element
model (DEM) [1-3, 9, 10, 12, 14] and the average over the “microscopic” quantities in some
averaging volume. The experiment chosen is the bi-axial box set-up, see Fig. 1.1, where
the left and bottom walls are fixed, and stress- or strain-controlled deformation is applied.
In the first case both the top and right walls are subject to a predefined pressure, in the
second case, the top wall is subject to a defined strain €,,, and the right wall is subject to
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constant pressure py. In a typical ‘experiment’, the top wall is slowly shifted downwards
while the right wall moves dependent on the force exerted on it by the material in the
box. The strain-controlled position of the top wall as function of time ¢ is

20 zf(l +coswt) with g, =1— z , (1.1)

t) =
z() 2 + 2 P

where the initial and final positions zy and z¢ can be specified together with the rate of
deformation w = 27 f so that after a half-period T'/2 = 1/(2f) the extremal deformation
is reached. With other words, the cosine is active for 0 < wt < 7. For larger times,
the top-wall is fixed and the system can relax. The cosine function is chosen in order to
allow for a smooth start-up and finish of the motion so that shocks and inertia effects are
reduced, however, the shape of the function is arbitrary as long as it is smooth.

The stress-controlled motion of the side-wall is described by
my(t) = Fx(t) — pxz(t) — wi(t) (1.2)

where my is the mass of the wall. Large values of mx lead to slow adaption, small values
allow for a rapid adaption to the actual situation. Three forces are active: (i) the force
F(t) due to the bulk material, (ii) the force —pyxz(t) due to the external pressure, and
(iii) a strong frictional force which damps the motion of the wall so that oscillations are
reduced.

0 T2

Figure 1.1: (Left) Schematic drawing of the model system. (Right) Position of the
top-wall as function of time for the strain-controlled situation.

For small deviations { = z¢ — z from the equilibrium position zf, a first order series
expansion leads to a damped oscillation m&f¢ + 2% ¢ + K, & = 0, with the stiffness K, of
the material in the horizontal direction, and the eigen-frequency

KX ,Yeff 2
¢m NESS 13)

with the effective mass m&f and effective dissipation 7.
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1.3 Discrete Particle Model

The elementary units of granular materials are mesoscopic grains which deform under
stress. Since the realistic modeling of the deformations of the particles is much too com-
plicated, we relate the interaction force to the overlap d of two particles, see Fig. 1.2. Note
that the evaluation of the inter-particle forces based on the overlap may not be sufficient
to account for the inhomogeneous stress distribution inside the particles. Consequently,
our results presented below are of the same quality as the simple assumptions about the
force-overlap relation.

If all forces f; acting on the particle %, either from other particles, from boundaries or
from external forces, are known, the problem is reduced to the integration of Newton’s
equations of motion for the translational degrees of freedom

s CR-
Migati = fi; (1.4)

with the mass m; of particle i, its position 7; and the total force f; = f;c acting on
it due to contacts with other particles or with the walls. For the sake of simplicity, we
neglect tangential forces as well as external forces in the following.

Two particles 7 and j interact only if they are in contact so that their overlap
1 N
6= E(dz +d;) — (73 —7j) - 7t (1.5)

is positive, § > 0, with the unit vector 7@ = #;; = (73 — ;) /|7 — 7| pointing from j to i.
The force on particle %, from particle j can be written as f;j = fijm.

Here we apply a variant of the linear hysteretic spring model [4, 11, 15], as an alternative to
the frequently applied spring-dashpot models. This model is the simplest version of some
more complicated nonlinear-hysteretic force laws [7,15, 16] which reflect the fact that at
the contact point, plastic deformations may take place. The repulsive (hysteretic) force
can be written as

]{,'15 for loading, if k‘g((g — 60) Z ]{115
£¥® =3 ky(6—do) for un/reloading, if k18 > ka(6 — do) > —kcd (1.6)
—k.0 for unloading, if —ked > kao(6 — do)

with k; < ko, see Fig. 1.2.

During the initial loading the force increases linearly with the overlap ¢, until the maximum
overlap dmax is reached (which has to be kept in memory as a history parameter). The line
with slope k1 thus defines the maximum force possible for a given §. During unloading the
force drops from its value at dmax down to zero at overlap dp = (1 — k1 /k2)0max, on the line
with slope ko. Reloading at any instant leads to an increase of the force along this line, until
the maximum force is reached; for still increasing §, the force follows again the line with
slope k1 and dmax has to be adjusted accordingly. Unloading below §y leads to negative,
attractive forces until at the overlap dmin = %(ﬁnw, the minimum force —k.0min, i.€. the
maximum attractive force, is obtained as a function of the model parameters ki, ko, ke,
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///// ko
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Figure 1.2: (Left) Two particle contact with overlap 6. (Right) Force law for two
springs with stiffness k; and k, for initial loading and subsequent un/reloading,
respectively. Attractive forces are possible due to the cohesion strength k..

and the history parameter p,y. Further unloading leads to attractive forces fs = —k.é.
The highest possible attractive force, for given ki and ko, is reached for k. — oo, so that
hys

max = — (k2 — k1)0max- This would lead to a discontinuity at § = 0 what is avoided by
using finite k..

The lines with slope k1 and —k. define the range of possible force values and departure
from these lines takes place in the case of unloading and reloading, respectively. Between
these two extremes, unloading and reloading follow the same line. Possible equilibrium
states are indicated as circles in Fig. 1.2, where the upper and lower circle correspond to
a pre-stressed and stress-free state, respectively. In the case of collisions of particles and
for large deformations, dissipation takes place due to the hysteretic nature of the force-
law. However, for small displacements around some equilibrium state, the model does not
contain dissipation. Therefore, in order to allow for stronger dissipation, also a viscous,
velocity dependent dissipative force

fzgijiss _ ,),0('5 (1.7)

is assumed with some damping coefficient «y. The half-period of a vibration around the
equilibrium position, see Fig. 1.2, can be computed for arbitrary values of k1 and k.,
as long as the overlap fulfills the condition dpi, < & < dmax, and one obtains a typical
response time on the contact level,

2
te=", with w=4/—2> —n2, (1.8)
w mi2

the eigenfrequency of the contact, and the rescaled damping coefficient 79 = vo/(2m12).

Note that the viscous dissipation takes place in a two-particle contact. In the bulk material,
where many particles are in contact with each other, dissipation is very inefficient due to
long-wavelength cooperative modes of motion [5,6]. Therefore, an additional damping
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with the background is introduced, so that the total force on particle ¢ is

Fi =D (0 + £ — wis (1.9)

J

with the damping artificially enhanced in the spirit of a rapid equilibration.

1.4 Simulation Results

The systems examined in the following contain N = 1950 particles with radii a; randomly
drawn from a homogeneous distribution with minimum ap;, = 0.5 1073 m and maximum
@max = 1.51073m. The masses m; = (4/3)pma?, with the density p = 2103kgm™3,
are computed as if the particles were spheres. This is an artificial choice and introduces
some dispersity in mass in addition to the dispersity in size. However, since we are
mainly concerned about slow deformation and equilibrium situations, the choice for the
calculation of mass should not matter. The total mass of the particles in the system
is thus M = 0.02kg with the typical reduced mass of a pair of particles with mean
radius, mis ~ 0.4210 5kg. If not explicitly mentioned, the material parameters are
ko =10° Nm~! and 9 = 0.1kgs~!. The other spring-constants k; and k. will be defined
in units of k9. In order to switch on cohesion, k1 < k2 and k. > 0 is used; in the following,
we have k1 = ko /2.

Using the parameters k1 = ko and k. = 0 in Eq. (1.8) leads to a typical contact duration
(half-period): t. ~ 2.03107%s for 7y = 0, . ~ 2.04107%s for 7 = 0.1kgs™!, and t, ~
2.21107%s for 79 = 0.5kgs™" for a collision. Accordingly, an integration time-step of
tup = 51077 s is used, in order to allow for a ‘safe’ integration of contacts involving
smaller particles. Large values of k. lead to strong cohesive forces, so that also more
energy can be dissipated in one collision. The typical response time of the particle pairs,
however, is not affected so that the numerical integration works well.

1.4.1 Initial Configuration

Initially, the particles are randomly distributed in a huge box, with rather low overall
density. Then the box is compressed, either by moving the walls to their desired position,
or by defining an external pressure p = py = p,, in order to achieve an isotropic initial
condition. Starting from a relaxed, isotropic initial configuration, the strain is applied to
the top wall and the response of the system is examined. In Fig. 1.3, the contact network
from a typical simulation is shown before compression, at failure and in the final, relaxed
state. The dark lines indicate strong contact forces so that the contact network appears
denser in the last image due to the deformation and compression. A more quantitative
study of the fabric tensor, however, is far from the scope of this study and will be presented
elsewhere. Before presenting more detailed results, we have to remark that the initial
preparation and set-up of the system is still an open issue to be examined. A possible
alternative to the approach used here is the preparation of the system in a critical flow
state, which should not depend on the history any more.
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Figure 1.3: Contact networks for a typical simulation with ky = 10°Nm™ !, k; /ky =
1/2, ke/ks = 2, 79 = 107 kgs™!, v, = /10, and v, = 193.57,. The grey-scale
codes the strength of the contact force (dark lines correspond to strong forces) and
the strain is (from left to right) ¢,, = 0, €,, = 0.013, and ¢,, = 0.036.

1.4.2 Relaxation

For some cases of isotropic relaxation, the final approach of stress to equilibrium is plotted
in Fig. 1.4 for systems with p = 400 Nm 2 and different parameters as discussed below.
The unit of pressure is obtained by assuming that the system is extended in the third
dimension for a length A = 1m. The pressure p, exerted from the material on the right
wall is then the sum over all forces divided by the wall-area Fy/(hz). In the following, we
present the pressure in these units, implying the h defined above as the system-extension
in the third dimension. For a typical z = 0.12m, and assuming Ny =~ 60 contacts, one
obtains an estimated mean overlap per particle dmean = phz/Nxk; = 1.6 1075 m.

In Fig. 1.4(a), the influence of the wall mass is examined for a system with standard v (see
above) and no other dissipation 7x = v, = 0. Weakly damped oscillations are obtained for
rather large mass my, whereas the final pressure is rapidly approached for smaller mass,
e.g. my < 1073 kg. Therefore, a small wall mass will be used in the following. However,
a closer look at the approach to equilibrium leads to the conclusion that it is very slow.
Therefore, we increase the dissipation in the spirit of faster relaxation.

One possible means of dissipation is the wall dissipation, 7. Small values of v do not
change the response as compared to Fig. 1.4(a). However, for larger values, a more com-
plicated oscillation pattern is evidenced. Only for the largest v« = 19359, one can obtain
sufficiently strong damping of the oscillation — but unfortunately on a rather long time-
scale.
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In order to achieve a more rapid approach to the final steady-state configuration, the
(artificial) dissipation with the background is tuned on. For the combination of paramters,
my = 107%kg, 7« = 193.5y and different 7, a rapid relaxation is obtained only for
b = Y0/10, see Fig. 1.4(b). The time-scale of this exponential relaxation is 7 = 0.0023 s.

Having performed these test-simulations, we choose the parameters my = 107* kg, v, =
193.579, and 71, = 9/10 for the following simulations.

0.2 T T T
, 10
0.1
102
g °f
o g 10
— 01 R J
=10 10"
m=10", kg
02} o m=107kg .
s m=107 kg
********* m,=107 kg (@ 10°
03+ —— Imx=10 kq . -
0 0005 001 0015 002 0005 001 0015 002
t (9 t(s)

Figure 1.4: Approach to equilibrium pressure p; = 400 for stiffness ky = 10° Nm™!,
ki = ko/2, k. = 0, and contact dissipation 79 = 0.1kgs™. (a) No additional
dissipation 7, = 7, = 0, and different wall mass my as given in the inset. (b) Wall
dissipation 7, = 193.57, and different bottom dissipation 7}, as given in the inset for
my = 10~% kg. The solid line indicates an exponential approach to equilibrium with
relaxation time 7 = 0.0023s. as given in the inset.

1.4.3 Rate-dependency

In Fig. 1.5, simulations with the same material parameters are presented, when a different
rate of change of the position of the vertical wall is used, according to Eq. (1.1). The
quantities examined are the volumetric strain, ey, the vertical stress o,,, the horizontal
stress oxx = px, and the ratio of these stresses. The simulations show qualitatively similar
behavior, only the strain and the stresses are higher for faster movement of the vertical
wall. This is due to the artificial, velocity-dependent dissipation, see Eq. (1.9). With
decreasing f, the simulation results almost coincide, only a tiny viscous stress remains
in both directions. Note that the ratio of stresses o ,,/0 is not affected by the rate of
deformation.

Since the error introduced by the artificial damping and the dynamic, strain-controlled set-
up is well below 5 per-cent already for f = 10s™!, we use this frequency in the following,
in order to save computing time. The strain of 3.5 per-cent is thus reached after ¢ =~ 0.05s,
corresponding to several computing hours on a typical PC.

In the next subsection, we will use the fact that the stress ratio is not affected by the rate of

deformation. From the horizontal stress we obtain the viscous over-stress oy>° = oxx — px,
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and thus can obtain the corrected vertical stress using

corr

(o ¥ [ Oz

= , sothat o7 =px . (1.10)
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Figure 1.5: Simulation results from runs with k; = ky/2, k. = 2k, and different
rate of compression f, as given in the inset. After initial compression, one obtains
a smooth transition to a dilatant state with maximum, yield stress.

1.4.4 Measurement of the material parameters

The first series of simulations with varying cohesion strength k. is performed at an initial
pressure p = 500, see Fig. 1.6, the second series is performed at p = 100, see Fig. 1.7.
For small strain €,;, the material is compressed, the change in density ey /e,, being larger
for stronger cohesion k. and smaller external pressure p. The inital negative slope can be
identified with a function of the Poisson-ratio v, from the relation —ey/e,, = 1 — v, so
that the simulations indicate v = 0.69.

When the upper wall moves further, dilatancy is evidenced at ¢,,-values between one and
two per-cent for large external stress, but already for much smaller strain if the external
pressure is smaller. The positive slope can be identified with the dilatancy function d =
atanlz_s;inn’fb [13], with the dilatancy angle ¢ ~ 5° for p = 500 and 9 =~ 11° for p = 100.
The onset of dilatancy takes place before the maximum vertical stress is achieved and
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thus before the failure of the material. The transition from the comressive to the dilatant
regime is delayed to larger strain by stronger cohesion and stronger external pressure.

From the stress strain curves, one can extract the Young modulus E of the material
from the slope of the initial increase of the vertical stress. From the simulation data, we
evidence E =~ k; = ko/2 at very small strain after the onset of the wall motion. For
larger deformation, the slope and thus E decreases. After failure (see figures), softening is
obtained for large p and weak cohesion, however, after further deformation, the material
seems to reach a steady state. The maximum stress from each experiment is indicated by
an arrow in the figures. Note that we use the maximum including fluctuations and not
the maximum of the mean, fact which may lead to some overestimation.

T T T
0003 | k=0 1000 | — ]
=k2|/(2 777777777 =
0002 k=K 900 - \
kC=2k2 ,,,,,,,,,,
ooo1 | Ke4ke AN AT |
800 : L
N g [
@& 0 o SR
0,001 700 b4 - \ a
0001 - &=,
7 :2k2 ,,,,,,,,,,
-0.002 + 4 600 F =k§ i
kC:kCZ_IO ,,,,,,,,,
-0.003 . : \\1\ | | ] 500 | | |
0 0.01 0.02 0.03 0 0.01 0.02 0.03
8ZZ 8ZZ

Figure 1.6: Simulation results from runs with k; = k9/2, and different cohesion
strength k., as given in the inset for p, = 500. (Left) Volume change is plotted
against €,,, and the straight lines indicate the slopes —0.32 and +0.19. (Right)
Vertical stress o,, plotted against ¢,,; the arrows indicate the peak-stress.

0012 F . * = 450 — —
001 f :';2{(2 ”””””” 400 |
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0.008 ECC= 22 7 ) W
0.006 | S ] 300 |
& 0004 | 1 &m0t i
0.002 | 1 200 ~
0 150 |/ ko2 |
= =k,
0002 N i 100 - ]
s \ . ) ) k=4k,
0 0.01 0.02 003 0 001 0.02 0.03
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Figure 1.7: The same as in Fig. 1.6, only here p, = 100, and the straight lines
indicate the slopes —0.30 and +0.44.
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1.4.5 Failure and Yield-Stress

Comparing the simulations with different densities, one obtains similar material param-
eters F and v for different external stress. The different p, however, leads to stronger
dilation for weak external stress and to stronger peak-stress at failure for larger external
stress. Furthermore, the relative increase of the stress, i.e. 0, /px, is stronger for weak
p, and, after failure, the cohesive material does not show clear softening behavior, only
strong fluctuations can be observed for strong cohesion.

The yield-stresses from Figs. 1.6 and 1.7 are combined in Fig. 1.8 as Mohr-circles (where
the corrected stresses, see Eq. (1.10), are used). Each set of Mohr circles corresponds to
a fixed external pressure p and different circles correspond to different k./ke =0, 1/2, 1,
2, and 4 from the smallest to the largest circle. The tangent to a pair of circles with the
same cohesion strength is plotted as a dotted line for all pairs. The slope of the lines is
tan ¢ ~ 0.23 corresponding to an internal friction angle ¢ = 13°. Due to the absence of
any friction in the model, ¢ has to be caused by the geometry of the packing which causes
a shear resistance due to inter-locked particles.

The macroscopic cohesion ¢ of the material can be obtained as the point of intersection of
the dashed line and the zero vertical axis, as summarized in Table 1.1.

Figure 1.8: Mohr circles at failure, for the simulations in Figs. 1.6 and 1.7. The left
end of the circle corresponds to the fixed pressure py, the right end to the corrected
vertical pressure oo™ at failure. The angle indicates a slope of about 0.23.

Z7Z

1.5 Summary and Conclusion

Using discrete element simulations of frictionless, cohesive granular material in a bi-axial
box, the macroscopic material behavior was examined for different microscopic model
parameters. The parameters under investigation were the Young modulus, the Poisson
ratio, the dilatancy angle, the internal friction angle and the cohesion.
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corr

[ke/ko [px o2 [px oo [c ]
0 100 183 [500 798 |11
1/2 100 234 | 500 853 |32
100 264 | 500 915 |40 ©
100 310 | 500 941 |60
100 336 | 500 972 |71

IS N

Table 1.1: Summary of the corrected peak-stress values and the corresponding co-
hesion ¢. The error for the stresses is about +3, the error for ¢ is about +10. Note
the artificially large ¢ for k. = 0, which we attribute also to the systematic error
introduced by choosing the peak-stress as the maximum of the fluctuating data and
not of some mean. The figure to the right shows the c-values as function of the
cohesion strength, with the maximum attractive force ¢ o< (ko — k1)/(ko + kc) given
as solid line.

The interaction model can be seen as appropriate for rather small particles, where plastic
deformations lead to the hysteretic response — for loading, the material behaves rather
soft, whereas for unloading/reloading, the compressed contact area behaves more stiff.
Due to its nature, the cohesive force depends on the maximum compression and is always
recovered, i.e. the cohesive forces are reversible. Thus, the model seems appropriate for
restorable cohesive forces, but not for damageable attraction like in e. g. concrete. For the
latter, some damage parameter can be introduced in order to make the cohesion history
dependent and unrecoverable.

During the strain controlled bi-axial test with fixed horizontal pressure, the material is
first compressed, then starts to dilate and eventually yields at some peak-stress value.
For strong external pressure, one obtains softening and, for weaker pressure, the vertical
stress remains constant in a steady state, besides fluctuations. The material parameters
from elasticity theory do not depend on the external pressure, but the dilatancy angle
increases with decreasing external pressure. Even without microscopic friction, one obtains
a macroscopic friction angle of the order of 13°. The macroscopic cohesion is proportional
to the maximum attractive force in the microscopic model.

Future studies will involve microscopic friction and its effect on the material behavior.
Furthermore, the preparation of the specimen before loading is started has to be defined
in a more reproducible and history independent manner as in the present situation.
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