Flow behavior of cohesive and frictional fine powders
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ABSTRACT: Continuum mechanical models and appropriate measuring methods are applied to describe the
flow behaviour of cohesive powders and, for example, for practical design of process apparatus as silos. Stud-
ies of the particle mechanics can provide a better physical "microscopic" understanding of the essential consti-
tutive functions of a powder "continuum". With the discrete element method (DEM), a tool is available that al-
lows to consider the details of the contact and adhesion forces for each particle contact. Based on both
experimental and empirical observations, a general law is introduced, involving an irreversible (plastic), contact
flattening (that leads to an increase of adhesion force for increasing flattening). The DEM results show an elas-

tic regime, yielding and steady-state flow of a two-dimensional model powder

1 INTRODUCTION

Given the particle geometry and their interaction
forces, the flow behavior of powders under large de-
formations can be studied, using the discrete element
method (DEM), a convenient tool to gain insight into
the evolution of] e.g., shear bands. Powders are typi-
cally inhomogeneous, disordered, and anisotropic on
a “microscopic” scale [1-3], where the typical micro-
scopic size is the particle size. Irregular random ar-
rays respond to deformations via inhomogeneous and
anisotropic rearrangements and stress-response. An
initially isotropic contact network becomes anisot-
ropic before the structure of the network reaches its
limit of stability, i.e., the yield stress. Before the
peak, one has softening, and beyond weakening is
obtained [2-5], which is typical for over-consolidated
powders. Our work complements recent studies on
shear band formation in frictional-cohesive granular
media [4-8], for micro- and macro-modeling [9,10],
and in various systems [11-14] for different materi-
als.

Here, only spherical particles are used, as opposed
to non-spherical objects like polygons [10], where
roughness can also be mimicked by additional
torques [15]. The recently developed micro-macro
transition procedures [6-13] aim at a better under-
stand of the macroscopic powder flow behavior on
microscopic foundations. Besides the experimental
verification of the simulation results [14], the formu-
lation of constitutive relations in the framework of
continuum theory is the great challenge. One promis-
ing material model, especially for sand is the hy-
poplastic theory [16-20], for which the material pa-

rameters can be determined experimentally, or from
DEM simulations, as shown in this study for some
cases.

2 MODEL
2.1 DEM and the contact laws

The elementary units of granular materials, the
“mesoscopic” particles, locally — at the contact point
— deform under stress. The realistic modeling of the
deformations inside is too much effort, so that we re-
late the interaction force only to the overlap 6 of two
particles, see Fig. 1. As a further simplification, these
two particles interact only if they are in contact
(short range forces), and the force between them is
decomposed into a normal and a tangential part.

Figure 1: Two particle contact with overlap .
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The normal force is, in the simplest case, a linear
spring that takes care of repulsion, and a linear dash-
pot that accounts for dissipation during contact.
Here, we propose a new model that takes into ac-
count plastic contact deformation and cohesion (at-
tractive forces). The force displacement scheme is
shown in Figure 2.
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Figure 2: Force displacement law for the DEM simulations.

For initial loading of the contact, the force in-
creases linearly with stiffhess &;, which takes care of
perfect-plastic repulsion [8,9,12]. In addition, a linear
dashpot accounts for dissipation during contact.
Elasticity at the contact level is added by a spring,
with a larger stiffness, 4, for un- and re-loading, so
that the stiffness increases due to the irreversible,
plastic contact deformation. Cohesion (or an attrac-
tive adhesion force) between the contacts comes into
the model by a “cohesive stiffness” k., which allows
for attractive forces (here negative) up to a minimal
(maximal attractive) force fmin. Cast into an equation,
the normal force on particle i is:

k,6 for 1*loading
fo ==y, +ii{k,(6 -6,) for un-/re-loading
k.0 for un-loading

with the normal direction unit vector 71 pointing
from the center of particle ; to particle i, the normal
relative velocity o, (as defined below) and the vis-
cous dissipation parameter y, .

The tangential force involves dissipation due to
Coulomb friction, but also some tangential elasticity
that allows for stick-slip behavior on the contact level
[4,9,10,13,14]. The implementation used here is
slightly different from those presented in the litera-
ture, in so far that an implementation in two and
three dimensions is equally simple and also static and
dynamic friction can be used with different values for
the respective coefficients.

In the static case, the tangential force is coupled
to the normal force via Coulombs law, i.e.

f' <y f", where for the limit sliding case one has
the dynamic friction with f* = u, f".

The dynamic and the static friction coefficients
follow, in general, the relation u, <pu . However,
for the following simulations, we will apply
pu=upu,=pu . The static case requires an elastic
spring in order to allow for a restoring force, ie. a
non-zero remaining tangential force in static equilib-
rium due to activated Coulomb friction.

If a contact exists with non-zero normal force, the
tangential force is active too, and we project the tan-
gential spring into the actual tangential plane. This is
necessary, since the frame of reference of the contact
may have slightly rotated since the last time-step.
&=¢&-n(n-&", where &' is the old spring from the
last iteration, and 71 is the normal unit vector. This
action is relevant only for an already existing spring;
if the spring is new, the tangential spring-length is
zero, but its change is well defined anyway. The tan-
gent1a1 velocity is @, =, —(ii-7;), with the total
relative velocity of the contact surfaces of the two
particles i and ;:

—

U; =0, =0, +anxa, +anxa; (1)

Next, we calculate the tangential test-force as the
sum of the tangential spring and a tangential viscous
force (in analogy to the normal viscous force)

]_Eot =_ktg_7t5t5 (2)

with the tangential spring stiffness 4, and a tangen-
tial dissipation parameter y,. As long as Ifotls 1,
with fi=u f", one has static friction and, on the
other hand, if f0|> fZ, sliding, dynami ﬁ'1ct10n is
active, with f'=pu,f". As soon as Tf0| <fid
reached again, statlc friction is activated.

In the former, static case, the tangential spring is
incremented &'=£ +7,At,,,, with the time step
At,,, of the DEM simulation. The new value of &’
is to be used in the next iteration and the tangential
force as defined above is used.

In the latter, sliding case, the tangential spring is
adjusted to a length, which is consistent with Cou-
lombs condition

_(1/kt)(fg;+7t6t)5 (3)

with the tangential unit vector, f = f; i fot|, de-
fined by the direction of the tangential test force
above, and thus the magnjtude of the Coulomb force
is used Inserting the new spring length into the test
force definition leads to f, = |—kt§ —7,0,|~ fe

Note that fo and 7, are not necessarily parallel in
three dimensions. However the mapping works al-
ways, rotating the new spring such that the direction
of the frictional force is unchanged and, at the same
time, limiting the spring in length according to Cou-
lombs law.



In short notaton rhe fngentlal force on particle i
0

reads f =min| f., t, where f.=f! for slid-
ing and f.=fo for sticking contacts, as defined
above.

Note that the tangential force described above is
identical to the classical Cundall-Strack spring only in
the limits g =, = and y, =0. The sequence of
computations and the definitions and mappings into
the tangential direction, however, is new to our
knowledge in so far that it can be easily generalized
to three dimensions.

If all forces acting on a selected spherical particle
(either from other particles, from boundaries or from
external forces) are known, the problem is reduced to
the integration of Newton's equations of motion for
the translational and rotational degrees of freedom:

2

d2

d. -

r—f m,g and Id—a) t, 4)

with the gravitational acceleration g, mass m, of
the particle, its position 7, the total force f = ; fe,
acting on it due to contacts with other particles or
with the walls, its moment of inertia [, its angular
velocity &, and the total torque 7, =[x f, with
the center-contact “branch” vector Ic.

2.2 Model System

The simulations with the discrete element model
[4-10] use a two-dimensional bi-axial box, see Fig. 3,
where the left and bottom walls are fixed. Stress- or
strain-controlled deformation is applied to the side-
and top-walls, respectively. In a typical simulation,
the top wall is slowly shifted downwards, while the
right wall moves, controlled by a constant stress p,,
responding on the forces exerted on it by the material
in the box. The motion of the top-wall follows a co-
sine function, in order to allow for a smooth start-up
and finish of the motion so that shocks and inertia ef-
fects are reduced, however, the shape of the function
is arbitrary as long as it is smooth.
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Figure 3: (Left) Schematic drawing of the model system. (Right) Po-
sition of the top-wall as function of time for the strain-controlled
situation.

2.3 Initial conditions

Initially, the particles are randomly distributed in a
huge box, with rather low overall density. Then the
box is compressed by defining an external pressure p,
in order to achieve an isotropic initial condition with
kinetic energy much smaller than the potential energy
stored in the contacts. Starting from this relaxed, iso-
tropic configuration, the strain g, is applied to the
top wall and the response of the system is examined.

3 RESULTS

The system examined in the following contains
N=1950 particles with radii randomly drawn from a
homogeneous distribution with minimum 0.5 mm and
maximum 1.5 mm. The friction coefficient used in the
two-dimensional simulations is £~=0.5. The total mass
of the particles in the system is about 0.02 kg. If not
explicitly mentloned the material stiffness parameters
are k,=10° N/m, ki/k,=1/2, and the contact-viscosity
is 0.1 kg/s. The elgen-ﬁ'equency of the particle con-
tact is hence typlcally 10° s so that an integration
time-step of 2.107 s is used, in order to allow for a

“safe” integration [1,12].

3.1 Bi-axial test with varying cohesion

In Fig. 4 (top), the volume change of a typical
simulation with cohesion, but without friction, =0,
shows first compression, then dilatancy. The stronger
the cohesion, the more the material can be com-
pressed, while the dilatancy is almost un-affected by
cohesion. At the same time, the stress response (the
index zz denotes the vertical stress) becomes more
and more anisotropic, i.e., the vertical stress in-
creases until it reaches a maximum, while the hori-
zontal stress remains constant. After the peak, sof-
tening behavior and large fluctuations are evidenced.
The peak stress value increases with the microscopic
cohesion or adhesion force fiin.

From the macroscopic point of view, the flow be-
havior of the system can be examined by plotting
Mohr-circles for different confining pressures (lefi-
most point on the circle) and for the maximum stress
(right-most point), see Fig. 5. The tangent to these
circles can be seen as the flow function for the peak
stress, which corresponds to a yield locus of an over-
consolidated packing. It is linear for the examined
parameters with a slope slightly larger than expected
from the microscopic friction at the contacts alone. If
no microscopic friction is active, a friction angle of
about 13° is obtained (0° expected).
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Figure 4: Volumetric strain (top) and stresses (bottom) for a
bi-axial box simulation with side pressure p=500.
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Figure 5: (top) Mohr circle representation of the flow function
at maximum stress for cohesion and no friction (bottom). Mac-
roscopic cohesion as function of the microscopic cohesive
strength. The points are taken from the flow functions, the line
corresponds to the analytical expression for the maximal at-
tractive force as function of k/k.

3.2 Bi-axial test with varying pressure

In Fig. 6 (top), the volume change of a typical
simulation shows first compression, then dilatancy,
and eventually a very weak change at very large de-
formations, up to 20 per-cent. At the same time, the
stress response, in Fig. 6 (bottom) (where the indices
xx and zz denote horizontal and vertical stresses, re-
spectively), shows elastic, softening, and critical state
flow behavior.
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Figure 6: Volumetric strain (top) and stresses (bottom) during
large deformations, both plotted against vertical strain, for dif-
ferent side pressure, as indicated in the inset. The peak yield
stress is marked by arrows.

First, the vertical stress increases linearly; then the
slope gradually decreases (softening), until the stress
reaches its maximum (peak yield stress). After the
peak, further softening/weakening behavior (with
negative slope) is followed by a constant, strongly
fluctuating stress for larger deformations.

It is possible to also examine the flow behavior of the
system by plotting Mohr-circles for the maximum
stress (right-most point on the circle) for different
confining pressures (left-most point), see Fig. 7. The
eigen-directions of the system are parallel to the
walls, because there is no friction active between par-
ticles and walls, so that the left- and right-most
points on the circles are indeed corresponding to the
wall stresses; note that in an arbitrary geometry, it is
not necessarily that simple. The tangent to the circles



(slope 0.588) can be seen as the flow function for
peak stress. The corresponding friction angle is about
30.5° (26.6" expected from micro-friction). It is lin-
ear for the examined parameters, with its slope only
slightly larger than expected from the microscopic
friction at the contacts alone. Since we have not used
cohesive forces, the macroscopic cohesion ¢ is non-
existent, i.e., the flow function hits the origin.

Figure 7: Mohr circle representation of the flow function at
peak stress, see the arrows in Fig. 6 (bottom).

3.3 Macroscopic material parameters

From the simulation data presented in Figs. 4-7, it
is possible to obtain the following material parame-
ters, as based on an isotropy assumption:

(1) The initial slope (-0.59) of the volumetric strain
allows to determine the Poisson ratio.

(i) The slope of the volumetric strain in the dila-
tancy regime (+0.19 without friction, +0.80
with friction) is related to the dilatancy angle.

(iii) The initial slope of the stress is related to the
bulk modulus (results not discussed further).

(iv) The peak (yield) stress is related to the flow
function of the material. Interesting is a macro-
scopic friction angle that is always larger than
the microscopic one.

3.4 Some material parameters for hypoplasticity

Some of the material parameters involved in a hy-
poplastic material theory [16-20] can also be ex-
tracted from the simulation data. An essential ingre-
dient of the theory is the functional behavior of the
pore number:

e =e} exp(—[P/hs ]n) (5)

as a function of the pressure. The empirical model
parameters for this function (based on experimental
findings) involve the pore number at vanishing stress,
ey, the so-called granular hardness, / , and an em-
pirical power n.

The function in Eq. (5) is astonishingly close to
the fit-function (6) for the initial and the critical state
pore-number envelope, see Fig. 8:

e(epn)=e,—[p/h.]' (6)

where the parameters ¢, and n can be read off
from the inset, and the granular hardness was set
equal to the spring stiffness 1, =k, =10° in the DEM
contact model. Egs. (5) and (6) can be related to
each other via a series expansion in the small variable
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Figure 8: Pore number plotted against side stress (top), and
deviatoric stress ratio plotted against pore number (bottom) —
for different confining pressures.

The representation of the deviatoric stress ratio:

c,,—0,. (7)
o,t+to,.,

in Fig. 8 (bottom) is another way to extract the
macroscopic friction angle. For peak stress, the simu-
lations are almost in agreement with the microscopic
friction coefficient £=0.5, whereas for the critical
state flow stress-value (besides strong scatter due to
fluctuations), the macroscopic friction angle de-
creases with increasing pressure. For the largest
pressure used here, the friction coefficient is smaller
than £.~0.4.
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4 SUMMARY AND CONCLUSIONS

In summary, a set of DEM simulations was pre-
sented, and several macroscopic material parameters
like, e.g., the friction angle, were extracted from the
simulation data with cohesion (no friction) and with
friction (no cohesion). Also the behavior of density
(pore-number) and friction angle as function of the
confining pressure were discussed and related to a
hypoplastic material law [16-20].

The present results are a first step of a micro
modeling approach for cohesive frictional powders.
Further material parameters have to be identified, and
also the dependence of cohesion has to be examined
more closely, not only for frictionless [11-13], but
also for frictional materials.

Also the role of particle rotations is an open issue,
as related to micro-polar constitutive models. In both
simulation and experiment, rotations are active in the
shear band — like in micro-polar hypoplastic material
models, where the rotational degree of freedom is ac-
tivated in the shear band too. The corresponding pa-
rameter identification and the micro-macro-transition
is another task for the future, like the implementation
and simulation of experimentally determined force-
laws [21] in three-dimensional systems.
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