Shear flow modeling of cohesive and frictional fine powder
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ABSTRACT: For continuum mechanics based silo design, the measuring and
modelling methods for the shear flow behaviour of cohesive, frictional powders play
a central role. Studies of the particle mechanics can provide a better physical
"microscopic" understanding of the essential constitutive functions of a powder
"continuum". The discrete element method (DEM) is a tool that allows considering
the details of the contact and adhesion forces for each particle contact. During bi-
axial shear, the DEM results show an elastic regime, yielding, and steady-state flow
of a two-dimensional model powder.
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1 INTRODUCTION

The flow behavior of powders under large deformations can be studied, using
the discrete element method (DEM), a convenient tool to gain insight into the
evolution of, e.g., softening, critical state flow or shear bands. Powders are
inhomogeneous, disordered, and anisotropic on a “microscopic” scale [1-3],
where the typical microscopic size is the particle size. Irregular random arrays
respond to deformations via inhomogeneous and anisotropic rearrangements
and stress-response. An isotropic contact network becomes anisotropic well
before the structure of the network reaches its limit of stability, i.e., the yield
stress. Before the peak one has softening and beyond weakening is obtained
[2-5], which is typical for over-consolidated powders. Our work complements
recent studies on shear band formation in frictional-cohesive granular media
[4-8], for micro- and macro-modeling [9,10], and in various systems [11-14]
for different materials.

In the following, only spherical particles are used, but roughness could also
be mimicked by additional torques [15]. The recently developed micro-macro
transition procedures [6-13] aim at a better understanding of the macroscopic
powder flow behavior on microscopic foundations. Besides the experimental
verification of the simulation results [14], the formulation of constitutive
relations in the framework of continuum theory is the great challenge. A
promising material model should allow to predict experimental results after
the material parameters have been determined either experimentally or from
DEM simulations.



2 MODEL

2.1. DEM and the contact laws

The elementary units of granular materials, the “mesoscopic” particles, locally
— at the contact point — deform under stress. The realistic modeling of the
internal deformations is too much effort, so that we relate the interaction
force only to the overlap & of two particles, see Fig. 1 (Left). As a further
simplification, these two particles interact only if they are in contact (short
range forces), and the force between them is decomposed into a normal and
a tangential part.
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Figure 1:  (Left) Two particle contact with overlap 3.
(Right) Force displacement law for the DEM simulations.
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The normal force is, in the simplest case, a linear spring that takes care of
repulsion, and a linear dashpot that accounts for dissipation during contact.
Here, we propose a new model that takes into account plastic contact
deformation and cohesion (attractive forces). The force displacement scheme
is shown in Figure 1 (Right).

For initial loading of the contact, the force increases linearly with stiffness k;,
which takes care of perfect-plastic repulsion [8,9,12]. In addition, a linear
dashpot accounts for dissipation during contact. Elasticity at the contact level
is added by a spring, with a larger stiffness, k,, for un- and re-loading, so that
the stiffness increases due to the irreversible, plastic contact deformation.
Cohesion (or an attractive adhesion force) between the contacts comes into
the model by a “cohesive stiffness” k., which allows for attractive forces (here
negative) up to a minimal (maximal attractive) force f.,. Cast into an
equation, the normal force on particle i is:

k,6 for 1" loading
(1) ]?0" =-y,0,+nk,(6§—-J,) forun-/re-loading
—k o for un-loading

with the normal direction unit vector n pointing from the center of particle j
to particle i, the normal relative velocity o, (as defined below) and the

viscous dissipation parameter y, .

The tangential force involves dissipation due to Coulomb friction, but also
some tangential elasticity that allows for stick-slip behavior on the contact



level [4,9,10,13,14]. The implementation used here is slightly different from
those presented in the literature, in so far that an implementation in two and
three dimensions is equally simple and also static and dynamic friction can be
used with different values for the respective coefficients.

In the static case, the tangential force is coupled to the normal force via
Coulombs law, i.e. f <u f", where for the limit sliding case one has the

dynamic friction with ' =, f".

The dynamic and the static friction coefficients follow, in general, the relation
U, < u, . However, for the following simulations, we will apply u=u,=u..

The static case requires an elastic spring in order to allow for a restoring
force, i.e. a non-zero remaining tangential force in static equilibrium due to
activated Coulomb friction.

If a contact exists with non-zero normal force, the tangential force is active
too, and we project the tangential spring into the actual tangential plane. This
is necessary, since the frame of reference of the contact may have slightly
rotated since the last time-step. & =& —n(i1-&), where & is the old spring
from the last iteration, and 7 is the normal unit vector. This action is relevant
only for an already existing spring; if the spring is new, the tangential spring-
length is zero, but its change is well defined anyway. The tangential velocity
is o, =9, —n(n-7;), with the total relative velocity of the contact surfaces of

the two particles i and ;:

|

U; =0, — 0, +anxX @, +anx o (2)

Next, we calculate the tangential test-force as the sum of the tangential
spring and a tangential viscous force (in analogy to the normal viscous force)

- : . 3
Ji=ké-73, ©)
with the tangential spring stiffness k; and a tangential dissipation parameter
7,. Typically a contact starts with \5\:0 and a finite tangential velocity. As

long as ‘f;‘ < f&, with fi=pu f", one has the static case (1) and, on the other
fo

case (2), with the (lower) Coulomb limit £?=u,f". Then, sliding is active as

hand, if the tangential test force becomes larger, > f¢, one has the s/iding

long as

]‘Ot‘ > f4, and the sticking case is reached only if \f(;\ < f.
In the static case (1), the tangential spring is incremented & =& +5,At,,,,

with the time step At,,, of the DEM simulation. The new value of & is to be

used in the next iteration and the tangential force as defined above is used.
In the latter, s/iding case (2), the tangential spring is adjusted to a length,
which is consistent with Coulombs condition

&=—(Yk)(fit+73,) , (4)
fi

tangential test force above. Inserting the new spring length into the test force

with the tangential unit vector, f:fg / , defined by the direction of the




definition leads to f(j:‘—kf’—y@ ~f%. Note that f/ and %, are not

necessarily parallel in three dimensions. This procedure works anyway,
rotating the new spring such that the direction of the frictional force is
unchanged and limiting the spring in length according to Coulombs law.

In short notation the tangential force on particle i reads f* zmin[ fe

7,
where f. = f! for sliding and f. = £ for sticking contacts, as defined above.

Note that the tangential force described above is identical to the classical
Cundall-Strack spring only in the limits x=u,=x and y, =0. The sequence

of computations and the definitions and mappings into the tangential
direction, however, is new to our knowledge in so far that it can be easily
generalized to three dimensions.

If all forces acting on a selected spherical particle (either from other particles,
from boundaries or from external forces) are known, the problem is reduced
to the integration of Newton's equations of motion for the translational and
rotational degrees of freileidom:_ 4

(5) mi@ri = ftmg and Iiaa_)i =t

with the gravitational acceleration g, mass m, of the particle, its position 7,
the total force f =3 £, acting on it due to contacts with other particles or

with the walls, its moment of inertia I,, its angular velocity &, and the total
torque 7, =3 I*x f, with the center-contact “branch” vector [¢.

2.2. Model System

The shear simulations with the discrete element model [4-10] use a two-
dimensional bi-axial box, see Fig. 2, where the left and bottom walls are
fixed. Stress- or strain-controlled deformation is applied to the side- and top-
walls, respectively. In a typical simulation, the top wall is slowly shifted
downwards, while the right wall moves, controlled by a constant stress p;,
responding on the forces exerted on it by the material in the box. The motion
of the top-wall follows a cosine function, in order to allow for a smooth start-
up and finish of the motion so that shocks and inertia effects are reduced,
however, the shape of the function is arbitrary as long as it is smooth.
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Figure 2: (Left) Schematic drawing of the model system. (Right) Position of the top-wall as
function of time for the strain-controlled situation.



2.3 Initial conditions

Initially, the particles are randomly distributed in a huge box, with rather low
overall density. Then the box is compressed by defining an external pressure
p, in order to achieve an isotropic initial condition with kinetic energy much
smaller than the potential energy stored in the contacts. For this preparation
the particles are frictionless, so that rather large solids-fractions (area-
fractions) between 0.849 and 0.864 are reached for pressures between p=20
and 500, respectively. Starting from this relaxed, isotropic configuration, the
strain e is applied to the top wall and the response of the system (now with
cohesive and frictional particles) is examined.

3 RESULTS

The system examined in the following contains A=1950 particles with radii
randomly drawn from a homogeneous distribution with minimum 0.5 mm and
maximum 1.5 mm. The friction coefficient used in the two-dimensional
simulations is #=0.5. The total mass of the particles in the system is about
0.02 kg. If not explicitly mentioned, the material stiffness parameters are
k=10 N/m, ki/k,=1/2, and the contact-viscosity is 0.1 kg/s. The eigen-
frequency of the particle contact is hence typically 10® s so that an
integration time-step of 2.107 s is used, in order to allow for a “safe”
integration [1,12].

3.1 Bi-axial test without friction and varying cohesion

In Figs. 3 and 4 (Left), the volume change of a typical simulation with
cohesion, but without friction, #=0, shows first compression, then dilatancy.
The side pressure in Fig. 4 is five times higher than in Fig. 3. The stronger the
cohesion, the more the material can be compressed, while the dilatancy is
almost un-affected by cohesion. At the same time, the stress response (Right;
the index zz denotes the vertical stress) becomes more and more anisotropic,
i.e., the vertical stress increases until it reaches a maximum, indicated by an
arrow, while the horizontal stress remains (almost) constant.
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Figure 3: Volumetric strain (Left) and stresses (Right) for a bi-axial box simulation with side
pressure p=100.
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Figure 4: Volumetric strain (Left) and stresses (Right) for a bi-axial box simulation with side
pressure p=500.

After the peak, softening behavior and large fluctuations are evidenced. The
peak stress value increases with the microscopic cohesion or adhesion force
fmin- From the macroscopic point of view, the flow behavior of the system can
be examined by plotting Mohr-circles for different confining pressures (left-
most point on the circle) and for the maximum stress (right-most point), see
Fig. 5. The tangent to these circles can be seen as the flow function for the
peak stress, which corresponds to a yield locus of an overconsolidated
packing. The flow function is linear for the examined parameters with a slope
slightly larger than expected from the microscopic friction at the contacts
alone. (The observation that the flow function is linear stems from sets of
typically five Mohr circles, which are not shown here to keep this figure clear.)
If no microscopic friction is active, a friction angle of about 13° is obtained (0°
expected).
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Figure 5: (Left) Mohr circle representation of the flow function at maximum stress for
cohesion and no friction. (Right) Macroscopic cohesion as function of the
microscopic cohesive strength. The points are taken from the flow functions, the
line corresponds to the analytical expression for the maximal attractive force as
function of k./k,.



3.2 Bi-axial test without cohesion, with friction and varying pressure

In Fig. 6 (Left), the volume change of a typical simulation shows first
compression, then dilatancy, and eventually a very weak change at very large
deformations, up to 20 per-cent. At the same time, the stress response, in
Fig. 6 (Right) (where the indices xx and zz denote horizontal and vertical
stresses, respectively), shows elastic, softening, and critical state flow
behavior.
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Figure 6: Volumetric strain (Left) and stresses (Right) during large deformations, both
plotted against vertical strain, for different side pressures, as indicated in the inset.
The peak yield stress is marked by arrows.

First, the vertical stress increases linearly; then the slope gradually decreases
(softening), until the stress reaches its maximum (peak yield stress). After the
peak, further softening/weakening behavior (with negative slope) is followed
by a constant, strongly fluctuating stress for larger deformations.

It is possible to also examine the flow behavior of the system by plotting
Mohr-circles for the maximum stress (right-most point on the circle) for
different confining pressures (left-most point), see Fig. 7. The eigen-directions
of the system are parallel to the walls, because there is no friction active
between particles and walls, so that the left- and right-most points on the
circles are indeed corresponding to the wall stresses; note that in an arbitrary
geometry, it is not necessarily that simple.

Figure 7: Mohr circle representation of the
flow function at peak stress, see
the arrows in Fig. 6 (Right).




The tangent to the circles (slope 0.588) can be seen as the flow function for
peak stress. The corresponding friction angle (inverse tan) is about 30.5°
(26.6° expected from micro-friction). It is linear for the examined parameters,
with its slope only slightly larger than expected from the microscopic friction
at the contacts alone. Since we have not used cohesive forces, the
macroscopic cohesion ¢ is non-existent, i.e., the flow function hits the origin.
In Fig. 8 (Left), the volume change from simulations with different friction
coefficients shows first compression (magnitude increasing with w), then
dilatancy (slope increasing with ), and eventually saturation (magnitude
increasing with x) with a very weak change at large deformations. The stress
response, shown in Fig. 8 (Right), shows again elastic, softening, and critical
state flow behavior. With increasing friction, the peak stress and the softening
magnitude increase systematically. The critical state stress is increasing less
strong as a function of .
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Figure 8: Volumetric strain (Left) and stresses (Right) during large deformations, both
plotted against vertical strain, for different friction coefficients, as indicated in the
inset, and side pressure p=200.

3.3 Macroscopic material parameters

From the simulation data presented in Figs. 3-8, it is possible to obtain the
following material parameters, as based on an isotropy assumption:
(i) The initial slope (-0.59) of the volumetric strain allows to determine the
Poisson ratio as almost independent on the side stress p and friction .
(if) The slope of the volumetric strain in the dilatancy regime (about +0.4
without friction and p=100, about +0.2 without friction and p=500, and
up to about +0.8 with strong friction, but without cohesion) is related to
the dilatancy angle. Dilatancy is hindered by large side stresses, but
much stronger dilatancy is evidenced in the presence of strong friction.
(iii) The initial slope of the stress is related to the bulk modulus (results not
discussed here).
(iv) The peak (yield) stress is related to the flow function of the material.
Interestingly, the macroscopic friction angle is systematically larger than



the microscopic friction angle on the contact level: There is always a
macroscopic friction due to geometric structural effects, also in the
absence of friction.

4 SUMMARY AND CONCLUSIONS

In summary, a set of DEM simulations was presented, and several
macroscopic material parameters like, e.g., the friction angle, were extracted
from the simulation data with cohesion (no friction) and with friction (no
cohesion). This is a first step of a micro-modeling approach for cohesive
frictional powders. Further material parameters have to be identified, and also
the dependence of cohesion has to be examined more closely, not only for
frictionless [11-13], but also for frictional materials.

Also the role of particle rotations is an open issue, as related to micro-polar
constitutive models. In both simulation and experiment, rotations are active in
the shear band where the rotational degree of freedom is activated. The
corresponding parameter identification and the micro-macro-transition for
anisotropic micro-polar continuum models is a challenge for the future, like
the implementation and simulation of experimentally determined force-laws
[16] in three-dimensional systems.
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