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Abstract In this document I propose an over-

simplified, qualitative model for the evolution of infec-

tions in a random world. I do not claim this to be a

valid quantitative predictive model – in particular, ne-

glecting geographical, societal and financial facts that

better models will have to consider – rather the model

is quite minimalistic. Nevertheless, in this simple world

one can test the effect of some parameters like (i) in-

fection probabilities, (ii) interaction/travel probabilites,

(iii) community/family sizes, as well as the effect of

serious measures – and their duration – taken agains

the pandemic, such as (1) cutting down on long dis-

tance travels (flights), (2) immobilizing the population,

(3) reducing the infection probability, or combinations

thereof. Note that the results are qualitative and from

an over-simplified model and thus should not be over-

interpreted, but might be taken a source of inspiration

for more quantitative models.

Keywords COVID-19 · corona · Monte-Carlo ·
random walk

1 Introduction

The unprecedented situation in 2020, when the corona

(COVID-19) pandemic started, made me remember (af-

ter a while) what I learned during my master/diploma

thesis about modeling of populations and reaction-

diffusion systems.

While I was still traveling in early 2020, from early

March on I stopped, I reduced my mobility, and joined

everyone in the shock we went. At first, I though that

the best I could do was following the guidelines to stay
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home and reduce contacts and continue online doing

my teaching and research job. Unlike the many people

who do the more serious services to the community, like

nurses, doctors, as well as super-market personnel, to

name only a few, I thought I cannot do more. However,

then I remembered that I can model, and maybe can

help on that end, as this document maybe inspires oth-

ers, or helps further, better research, or even helps us

to understand how to better fight the present problem.

This video 1 I saw just after I had written most of

this document and the model-script. It explains very

nicely what such a model does and how to set it up

– much better than I do in the following. But it also

addresses where the limits of simple models are. The

same caution as described in [1] has to be also consid-

ered here, and in many other articles 2.

I do not claim that the model proposed here is better

than others, but it is maybe simpler than many (more

realistic, more detailed) approaches, out of which I only

want to refer to one paper 3, and references therein.

Remark by the author: I did not have the time (yet)

for a more thorough literature study but rather wanted

to make public the ideas I spent the last days with.

Those ideas were based on my older work during my

MSc/Diploma thesis – and I just was using those meth-

ods – and did not see the point to cite my older papers

here either.

In the following, I first describe the model before

I provide a series of simulation results, varying some

1 [1] https://youtu.be/gxAaO2rsdIs
2 [2] https://medium.com/data-for-science/epidemic-

modeling-101-or-why-your-covid19-exponential-fits-are-
wrong-97aa50c55f8
3 [3] N. Harding, R. Nigmatullin, M. Prokopenko (2018)

Thermodynamic efficiency of contagions: a statistical me-
chanical analysis of the SIS epidemic model. Interface Focus
8: 20180036. http://dx.doi.org/10.1098/rsfs.2018.0036
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of the model parameters, with the goal to understand

their effect on the spreading of an infection. The second

set of simulations simulates the effect of the duration

of special measures taken on how the disease spreads

thereafter.

2 Stochastic Model

The model described in the following is very similar

to traditional Monte-Carlo simulations of population

dynamics or reaction diffusion models. It concerns a

population that randomly take actions like moving, in-

teracting, or getting infected.

2.1 Model description

The population model is realized with a population of

N random walkers in a square model world of area

A = L × L, and periodic boundaries to avoid wall

effects. The population is initially placed completely

randomly throughout the model world, all people are

healthy; then, very few are infected with probability

p0 � 1 and the infections start to transfer to others (as

described below). A few of the infected population will

die, with probability, pm, but the remainder will heal,

and become immune, i.e., not to be infected anymore.

Unless specified otherwise, the reference case parame-

ters in table 1 are used, for a simulation of t = 100 days,

with time-step ∆t = 1/5 days.

no. parameter symbol unit value
0.1 population N 10k 500000
0.2 interaction cell size c km 20
1.1 system size L km 2000
1.2 av. step size xs/4 km 5
1.3 av. flight-distance xf = L

8
- 250

2.1 time-step ∆t days 1/5
2.2 probability for flight pf 1/day 0.002
3.1 initial infections prob. p0 - 2 × 10−5

3.2 infection rate ri - 0.004
3.3 days of sickness ts days 20
3.4 infectious period ηi - 0.6
3.5 reduced mobility xq/xs − 0.2
3.6 mortality (during ts) pm 1/ts 0.1

Table 1 Summary of the parameters and their values as used
for the refernce numerical solutions, sorted in groups of (0.)
population, (1.) geometrical, motion, (2.) probabilities, and
(3.) infection-related.

2.1.1 Motion model – diffusion and flights

Normal motion of the population is realized in both

directions by a random walk with steps x ∈ [−1/2 :

1/2]xs, with xs = 20, and thus average step-size ∆x =

〈|x|〉 = xs/4 = 5, every time-step ∆t, ignoring so-

cial, geographical and topological details of travel in

the real world. Theory: This leads to short distance dif-

fusive behavior, 〈r2(t)〉 = 2Dt, with coefficient of dif-

fusion, D = ∆x2

2∆t , so that the typical diffusive spread

distance is, after 100 days, rd(100) =
√
〈r2(100)〉 =√

125× 100 ≈ 110. 4

On top of the normal motion, long-distance travel

is implemented with a probability pf = 0.002, as-

suming that 0.2% of the population are traveling far-

ther than others, per day, with typical travel distance,

∆xf = xf/4 = (L/5)/4 = 100, which allows the infec-

tion to create new infection centra beyond the diffusive

spreading.

In addition, the infected population, after an incu-

bation period (see next subsection), is assumed to move

five times slower, with step size, xq, whereas dead are

not moving anyway.

2.1.2 Infection model

Given a person is infected, each infection is assumed

to last for a time ts (think of 20 days), with mortal-

ity probability, pm, during the full period, 1/ts, for

which fatalities are tested every time-step with a ran-

dom number r < pm∆t/ts. Next, we split the sick

time, ts = t0 + ti, into an infectious/dangerous pe-

riod of duration ti = ηitf , after the incubation time

t0 = (1−ηi)tf , with the infectuous period, ηi. Here, the

fact that not every infection is taking the same course,

or is equally heavy, is only indirectly taken into account

by the stochastic nature of the Monte-Carlo model used
here, in particular, some people will infect others, some

will not, as described next.

During the infectious period, ti, every healthy per-

son that gets into contact with an infected one can also

become infected with probability pi, per day, tested ev-

ery time step as random infection, r < pi∆t.

But how to define a contact? In this multi-scale

model for infection spreading, I propose to distribute

all the population in areas with a given cell-size c/L,

and area a = (c/L)2, populated by Nc = aN , in aver-

age. The rate of infection is now increased due to mul-

tiple infected, Ni, within one cell, so that r < Nipi∆t

is tested every time-step, for every healthy in the cell.

In this simple version of the model, there is only

one cell-size representing communities (like families or

companies), or social events or centres; in future there

should be a hierarchy of cell-sizes, as well as overlap-

ping cells. For the sake of simplicity, only one cell level,

4 [TODO: Not verified, but looking at the plots it seems
plausible.]
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without any overlaps is considered – but note that the

population can easily move from one cell to another,

diffusively, as described above.

2.2 Simulation results

The infection model is realized with a population of

N = 500, 000 random walkers in a square world of area

A = L× L, with L = 2000, and periodic boundaries to

avoid wall effects. Unless specified otherwise, the ref-

erence case parameters are used, for a simulation of

t = 100 days, with time-step ∆t = 1/5 days.

The initial infection probability is p0 = 2 × 10−5,

which results in Ni = p0N ≈ 10 centres, in the cases

shown, from which the infection spreads.

2.2.1 Parameter studies

In Fig. 1, different infection rates, ri, are compared. In

the top panels, the red curves display the fraction of

infected, while in the bottom panels, the numbers are

shown in two different zoom-in versions. The magenta

curve represents the infectious (infected after the incu-

bation period of ηts = 8 days, with (1 − η) = 0.4 and

ts = 20 days), just delayed relative to the total infec-

tions. The green lines represent the healed (and immu-

nized) population, while the black lines represent the fa-

talities, with assumed mortality probability, pm = 0.1.

For the smallest ri = 0.001, the initial infections re-

duce and vanish after about 60 days, while twice this

rate, ri = 0.002, results in a steady, small fraction of

infections. For the ri = 0.004 (reference) case, the in-

fections grow exponentially until the end of the obser-

vation period, day 100, while for ri = 0.008, the double

exponential growth rate starts to flatten, since the local

population was already completely infected.

In Fig. 2, different flight probabilities, pf , are com-

pared, showing the wider and faster spreading, and the

creation of new infection centres due to long distance

travel.

In Fig. 3, different step sizes, xs, are compared,

showing the increased spreading with increasing step-

sizes, i.e., with increased mobility. In different words,

the infection can be kept local quite well by seriously

reducing the mobility.

In Fig. 4, different cell sizes, c, are compared, show-

ing the effect of the size of the local communities, or

compartments, on the spreading of infections. Smaller

cells clearly reduce the spreading of the infections se-

riously, due to the lower probability to encounter an

infected person, i.e., compartmentalizing and avoiding

bigger crowds surely helps.

2.2.2 Taking actions – different duration of action

In this subsection we compare the effect of different

actions: (1) reducing the long-distance flights, (2) re-

ducing short distance mobility, (3) reducing the infec-

tion probability, or applying combinations of those mea-

sures.

In Fig. 5, the consequences of a reduction of prob-

ability for flights, pf , by a factor 1/100, are shown, or

starting at day 30, and ending 15, 30, or 45 days later,

together with the reference case (run1), where no action

is taken. Reducing the flight-distance has rather little

effect on the overall infections, only a few new centres

are avoided after day 30, while the existing ones are not

much affected by reduction of travel distance, neither

has the duration a big effect.

In Fig. 6, the consequences of a reduction of the mo-

bility, step-size, xs, by a factor 1/10, are shown, starting

at day 30, and ending 15, 30, or 45 days later, together

with the reference case, where no action is taken. Also

here there is rather little effect on the overall popula-

tion, but the centres of infection are a bit more local-

ized.

In Fig. 7, the consequences of a reduction of the

infection propbability, pi, by a factor 1/2, are shown,

starting at day 30, and ending 15, 30, or 45 days later,

together with the reference case, where no action is

taken. This has a strong effect on the overall infections,

but not much on the growth after the action is stopped

and the probabilities go back to the original value at

the end of action. The action just delays the trend, but

has no effect after giving up the action.

Actions 2 and 3 combined, i.e., reducing travel-

distances and infection probability, see Fig. 9, shows

a visible reduction in infections only for the longest ap-

plication period of 45 days, even leading to a dip (which

action 3 alone did hardly achieve) and thus also a con-

siderable further delay of future growth.

Combining all actions 1, 2, and 3, see Fig. 9, almost

shows the same effect as actions 2 and 3, but again

only for the duration of the action, with the major in-

fluence of action 3, the reduction of infection probabil-

ity, while the others have a comparatively lesser effect,

when taken as late as day 30.

The effect of taking actions earlier is dicussed next.

2.2.3 Effect of actions – time of action

The effect of taking actions 1,2,3 not only at day 30,

but earlier (or later), for the same duration of 30 days,

is displayed in Fig. 10. Clearly, the earlier an action is

taken, the better – on the short term, but it can be
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Fig. 1 Effect of different infection probabilities, pi = 0.001 (+), 0.002 (x), 0.004 (o), 0.008 (�). (Top) Logarithmic and linear
plots of infected (red), healed/immunized (green) and dead (black) fractions of the population, as well as numbers (to be read
as k=1000). (Bottom) Day 100 population plots of infected (red), healed/immunized (green) and dead (black).
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Fig. 2 Effect of different flight probabilities, pf = 0.00025 (+), 0.0005 (x), 0.001 (o), 0.002 (�). (Top) Logarithmic and linear
plots of infected (red), healed/immunized (green) and dead (black) fractions of the population, as well as numbers (to be read
as k=1000). (Bottom) Day 100 population plots of infected (red), healed/immunized (green) and dead (black).
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Fig. 3 Effect of different step sizes, xs = 5 (+), 10 (x), 20 (o), 40 (�). (Top) Logarithmic and linear plots of infected (red),
healed/immunized (green) and dead (black) fractions of the population, as well as numbers (to be read as k=1000). (Bottom)
Day 100 population plots of infected (red), healed/immunized (green) and dead (black).
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Fig. 4 Effect of different cell sizes, c = 10 (+), 15 (x), 20 (o), 25 (�). (Top) Logarithmic and linear plots of infected (red),
healed/immunized (green) and dead (black) fractions of the population, as well as numbers (to be read as k=1000). (Bottom)
Day 100 population plots of infected (red), healed/immunized (green) and dead (black).
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Fig. 5 Effect of action 1: reducing the frequency of flights to 1/100, for zero (+), 15 (x), 30 (o), 45 (�) days, starting
from day 30. (Top) Logarithmic and linear plots of infected (red), healed/immunized (green) and dead (black) fractions of the
population, as well as numbers (to be read as k=1000). (Bottom) Day 100 population plots of infected (red), healed/immunized
(green) and dead (black).
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Fig. 6 Effect of action 2: reducing the mobility to 1/10, for zero (+), 15 (x), 30 (o), 45 (�) days, starting from day 30. (Top)
Logarithmic and linear plots of infected (red), healed/immunized (green) and dead (black) fractions of the population, as well
as numbers (to be read as k=1000). (Bottom) Day 100 population plots of infected (red), healed/immunized (green) and dead
(black).
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Fig. 7 Effect of action 3: reducing the infection rate to 1/2, for zero (+), 15 (x), 30 (o), 45 (�) days, starting from day 30.
(Top) Logarithmic and linear plots of infected (red), healed/immunized (green) and dead (black) fractions of the population,
as well as numbers (to be read as k=1000). (Bottom) Day 100 population plots of infected (red), healed/immunized (green)
and dead (black).
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Fig. 8 (Top) Logarithmic and linear plots of infected (red), healed/immunized (green) and dead (black) fractions of the
population, as well as numbers (to be read as k=1000). (Bottom) Day 100 population plots of infected (red), healed/immunized
(green) and dead (black).
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Fig. 9 (Top) Logarithmic and linear plots of infected (red), healed/immunized (green) and dead (black) fractions of the
population, as well as numbers (to be read as k=1000). (Bottom) Day 100 population plots of infected (red), healed/immunized
(green) and dead (black).
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worse on the long-term, if the action is stopped too

early, since not sustainable for longer.

3 Summary and Conclusion

An over-simplified, qualitative model for the evolution

of infections in a random world was proposed, neglect-

ing geographical, societal and financial facts that bet-

ter models will have to consider. Nevertheless, in this

simple world one can study and understand the effect

of some of the parameters like: (i) infection probabil-

ities, (ii) interaction/travel probabilites, (iii) commu-

nity/family sizes, from which one learns that the infec-

tion probability has a most direct effect on the growth

rate.

The model is multi-scale in several aspects, one of

which being short- or long-distance mobility. Reduc-

ing either of those mobilities (by reducing the random

step-sizes) has the expected influence on the spreading,

keeping the centers of infection smaller or avoiding too

many far distant new centers from which infections in

so far unaffected areas spread. Reducing long-distance

mobility, like flights, however, has to be done as early

as possible, since the effect is weaker if the action is

applied too late.

The second multi-scale aspect is the interaction

range. In contrast to more detailed models, there is no

interaction between single people, i.e., nothing like a

repulsive or attractive force in the present model. How-

ever, some type of social interaction is taken into ac-

count in form of compartments or cells, whithin which

people do interact directly, while they interact with

other cells only interact if they move there. A single of

this cell-sizes was used, but one might think of multi-

ple levels like, families, neighborhoods, social/cultural

events, sport-events, or even cities, or countries, with

different scales and/or patterns, on which regular,

or isolated high-frequency interaction could be imple-

mented in the model.

The present model has no quarantine mechanism,

however, the infected are assumed to be infectious and

less mobile after a certain incubation time.

Short distance mo as well as the effect of seri-

ous measures – and their duration – taken agains

the pandemic, such as (1) cutting down on long dis-

tance travels (flights), (2) immobilizing the population,

(3) reducing the infection probability, or combinations

thereof. Note that the results are qualitative and from

an over-simplified model and thus should not be over-

interpreted, but might be taken a source of inspiration

for more quantitative models.

A more careful size- and ensemble-analysis of the

model has not been performed by the author to date,

due to lack of time, but this is work in progress. Also

more theoretical treatment, going beyond the trivial

diffusion equation shown above, with the goal to pro-

vide better continuum/deterministic models for infec-

tion evolutions might be a goal of future research, be-

sides adding more realistic features, or dding complex-

ities of the real world like topology and/or network-

connectivities, however this goes beyond the scope of

the present simple study.

Even though endless improvements of the model can

be thought of – only few are mentioned – I think there

is some value in simplicity also. Getting faster predic-

tions of future trends, increasing the size of populations

and samples, as well as using a simple model for ma-

chine learning approaches could all help to better un-

derstand and fight infections. The present model is so

simple and fast that everyone can run a decent popu-

lation on a decent computer, and play with parameters

and improvements themselves. I have just started using

the ideas that led to this model also for education of

students and hope that many of them will profit from

such an example. The dangers of simplicity must not

be ignored, however; therefore, the results of a simple,

minimalist model also should not be over-interpreted.
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Igor Sokolov. Also thanks to those colleagues who sent me
the links and references I give here, while I did not have the
time for a more ccareful literature study.

Appendix

This pdf is available at:

www2.msm.ctw.utwente.nl/sluding/PAPERS/cor1 010420.pdf
as well as the matlab script that creates the figures:

www2.msm.ctw.utwente.nl/sluding/PAPERS/cor1 010420.m

both in the version of 01.04.2020.

My apologies that I did this in matlab without thinking

it through beforehand, an open script language would

have been a better choice.

Technical remark: using the cell-interaction model

speeds up the code a lot as compared to more ad-

vanced molecular dynamics like, or even social/traffic

inspired interaction models, so that quite big numbers

N can be done easily.

Statistics remark: In the figures plotted below, for

every run, the random number generator was using

always the same random seed s = 101, as an arbitrary

choice, to keep the simulations comparable against

each other in cases where one parameter is changed, or

an action is taken. A more detailed analysis with many

different ensembles, different seeds, different system

sizes, etc., has to be added.



14 S. Luding

0 500 1000 1500 2000
0

500

1000

1500

2000
 run=27

0 500 1000 1500 2000
0

500

1000

1500

2000
 run=27

0 500 1000 1500 2000
0

500

1000

1500

2000
 run=27

0 500 1000 1500 2000
0

500

1000

1500

2000
 run=27

Fig. 10 (Top) Logarithmic and linear plots of infected (red), healed/immunized (green) and dead (black) fractions of the
population, as well as numbers (to be read as k=1000). (Bottom) Day 100 population plots of infected (red), healed/immunized
(green) and dead (black).
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