
Collision Detection and Administration Methods

for Many Particles with Different Sizes

B. Muth1, M.-K. Müller2, P. Eberhard1, and S. Luding2,3

1 Institute of Engineering and Computational Mechanics,
University of Stuttgart,

Beate.Muth.76@web.de, eberhard@itm.uni-stuttgart.de

2 Particle Technology, NSM, DelftChemTech, TUDelft,
Julianalaan 136, 2628 BL Delft, Netherlands,
m.k.mueller@tnw.tudelft.nl, s.luding@tudelft.nl

3 MSM, CTW, University of Twente,
Postbus 217, 7500 AE Enschede, Netherlands

Abstract

This paper deals with the calculation of the motion and the adminis-
tration of the contacts for systems with many colliding bodies of round
shape and possibly large size-differences. Both two dimensional (2D) and
three dimensional (3D) cases are investigated, while the efficiency of the
employed algorithms is compared. For the integration of the equations of
motion, standard methods are used, but to reduce the effort for collision
detection, more sophisticated administration algorithms for the neighbor-
hood search are prosented. Especially for large systems with many parti-
cles and a wide, polydisperse size distribution, this is a challenge. Three
methods, the Verlet-Neighbor List (VL), the Linked Cell (LC) method,
and the Linked Linear List (LLL), are discussed and compared for 2D and
3D. Only LLL performs well for strongly different particle sizes.

keywords: contact detection; neighborhood search; molecular dynamics (MD);
discrete element method (DEM); polydisperse size-distribution

1 Introduction

In order to determine the dynamical behavior of systems consisting of many
objects, particles or atoms, several fully developed approaches exist. The main
differences are the assumptions about the particle shapes and their behavior on

collisions. Here we examine spherical particles, that can be treated as (i) perfectly
rigid objects, as (ii) non-deformable objects with (small) overlaps at the contacts,
or (iii) as deformable bodies with a peculiar contact dynamics.

1.1 A Methods overview

Systems consisting of bodies with negligible deformations, i.e., case (i), can be de-
scribed by means of the so-called multibody system method (MBS) [12, 17], where
mass point systems may be regarded as a special case of the MBS. Deformable
bodies, in case (ii), can be represented by a collection of non-deformable particles
connected by springs if they overlap, and not interacting otherwise [14]. Their
motion is computed, using a molecular dynamics (MD) method [1], also called
the discrete element method (DEM) when applied to particle systems. (The dif-
ference between MD and DEM are the interaction forces between the particles,
otherwise both methods are similar in spirit.) For completeness, we remark that
the so-called event-driven (ED) molecular dynamics [4, 8, 15] also assumes hard
(perfectly rigid) spheres and thus can be seen as a special case of MD/DEM
closer to MBS. For truly flexible, deformable bodies, i.e., case (iii), usually
the Finite-Element-Method (FEM) or the Boundary-Element-Method (BEM) are
used, see [2, 13].

Each of the three methods has its own advantages and disadvantages. While
the MBS is, in general, characterized by relatively short computation times due
to a small number of degrees of freedom, deformations cannot be handled. On
the other hand, systems investigated using FEM have a large number of degrees
of freedom that yield a rather extensive number of equations of motion, while
deformations are properly taken into account. The MD/DEM methods can be
seen as a compromise in so far that the number of degrees of freedom is kept
small by assuming simple, overlap dependent contact force laws that rely on
certain assumptions, e.g., neglecting the eigen-modes of a particle.

An expansion of the MBS method for elastic bodies is presented in [9]. Hybrid
MBS/FEM contact calculations are presented in [2], where colliding bodies are
examined by the FEM approach in order to incorporate deformations, while all
the other bodies of the system are regarded as rigid. This hybrid approach makes
use of the advantages of both methods, but also their drawbacks, i.e., the number
of contacting particles is quite limited due to the detailed FEM modeling involved
for each particle.

Alternatively, efficient algorithms were developed for molecular dynamics and
discrete particle systems like granular matter [3, 15, 19] so that molecular (gases,
fluids, solids) and particulate (powder, sand) systems can be investigated [1, 7,
15]. The motion and the contacts of many thousands of particles interacting with
each other and the boundaries of the system, and also involving body forces like
gravity, can be modeled.

2

1.2 The Force Model

The formulation of the interaction forces between the different bodies is based on
models as simple as possible, in order to keep the calculation time feasible. Usu-
ally, very small penetration of otherwise non-deformable particles are accepted,
compare [1, 5, 16, 19], and are used as the basis of the force calculation.

For a given pair of particles, a normal contact force acts in the direction
of the center-to-center connection line – opposite to the penetration and thus
repulsive. The usual model is a spring-dashpot element that combines elastic
and viscous response on the contact level. The spring force is proportional to the
penetration/overlap of the particles, see [5, 11], also called a “penalty” force.

Besides the simplest linear model, also various non-linear models are available
[5]. Apart from the repulsive, and viscous contact forces, also attractive forces
may occur due to adhesion/cohesion, or electro-static interactions. The latter are
typically long-ranged and are not subject of this study, where we focus on short
range, contact interactions only. For realistic materials, particle deformation can
also involve plastic deformation and friction as alternative sources for dissipation;
we refer to [6] for more details and restrict ourselves to the most simple, linear
contact forces in the following.

For a system consisting of n particles with arbitrary interactions, the required
calculation operations for the force computation will be of the order O(n2), caus-
ing huge computational effort. However, for the systems with short-range con-
tact forces, only particles in their respective neighborhood can interact, so that
a tremendous reduction of computational effort down to the order O(n) can be
achieved [1]. In this study, we consider n spherical bodies with radii ri, consec-
utively numbered from i = 1, . . . , n. The used contact force model is based on
linear spring-dashpot elements, so that the equations of motion are

mi

d2

dt2
ri =

∑

j

(kδij + dδ̇ij)nij
︸ ︷︷ ︸

fij

, (1)

with the masses of the bodies mi, the positions ri, and the forces fij acting
between i and j, while the sum runs over all particles j in the neighborhood of
particle i. Here, k is a spring constant, while d is the damping coefficient for the
dissipative force. The overlap between two particles i and j is

δij = ri + rj − (ri − rj) · nij , (2)

with the normal vector between both particles, nij , parallel to the line connecting
their centers, pointing from j to i. The contact forces are applied only for the case
δij > 0. Frictional forces as well as adhesive contact forces are not considered here.
The equations of motion are solved by means of the explicit Verlet integration
scheme. The new positions of the particles are computed based on the information
about the actual positions and the positions during the previous time step, that

3

means without knowledge of the velocities of the particles. The velocities can be
approximated from the positions at two different time-steps. The algorithm is
second order in accuray, if no velocity dependent forces are involved.

1.3 Overview

In section 2, different approaches to save computational effort are introduced and
discussed. In section 3 these methods are compared using several test examples
and finally, in section 4, the results are summarized and discussed with respect
to possible applications.

2 Neighbor Search Methods

Three methods, as mentioned in the abstract, to find neighboring bodies of a par-
ticle efficiently are presented in this section. Two of them, VL and LC, identify
the neighboring particles of a body by regarding special regions of the system and
considering all particles within the same region as neighbors. As both methods
operate with similar ideas, they are also sometimes used simultaneously [16]. The
third method, LLL, is based on a different approach. Around each body a bound-
ing box is placed, which is proportional to the particle size; every body whose
bounding box is colliding with the bounding box of another particle is considered
to be a neighbor of this particle and thus a potential contact partner [18].

For each method the neighboring particles are stored in a neighbor data-struc-
ture (NDS) after some pre-sorting. The collision detection needs to be done only
for neighboring and potentially colliding bodies. Hence, the necessary calculation
operations for collision detection can be reduced down to an order proportional
to the number of particles in the system, i.e. O(n), because the update of the
NDS can be optimized. In the following we will examine whether this expected
performance also holds for LLL – but first the three methods are introduced.

2.1 Verlet-Neighbor List (VL)

The first method presented, the Verlet-Neighbor List (VL), is quite similar to
Verlet’s originally proposed method. As shown in Fig. 1 an imaginary sphere is
drawn around each particle, here with a radius of five times the maximum radius,
compare [1]. Particles within these enclosing spheres are considered as neighbors
of the body in the center of the sphere. The optimal size of the zone around the
bodies depends on the velocity of the particles and on the density of the system.

For each particle a list is generated, where all neighboring bodies are stored [20].
In order to compile these neighbor lists, for each body all particles of higher num-
bers than the body itself have to be tested, whether they lie inside the test sphere

4

or not. Particles of lower numbers are not tested since no pair needs has to be
checked twice.

4
5

1

3
2

2 −

−

−

−1

4

3

5

−

−

3

54

Figure 1: Verlet circles (2D) or spheres (3D) and particle storage in lists.

Creating the neighbor lists requires n(n− 1)/2 calculations, which means the
number of necessary operations is still of order O(n2). However, the lists do not
have to be updated for every time step. The update frequency depends on the
density of the system, the velocity of the particles, and on the size of the spheres.
For relatively dense systems, an update of only each 100th time step can be
enough. Like the value for the radius of the spheres around the particles, also the
update frequency is a parameter that can be tuned and, in principle, has to be
checked for every new simulation. Both parameters are interdependent, because
the value for the radius is inversely related to the rate at which the list must be
rebuilt, see [16]. The smaller the zone around the particles, the more often the
reconstruction of the lists needs to be done. The larger it is, the more particles
belong to the neighborhood requiring more contact calculation time.

The real collision detection and force calculation, that requires additional
effort, especially for more advance interaction models, now only has to be done
for the particle pairs which are stored in the lists. That leads for the example
of Fig. 1 to just four pairs (and force calculations) instead of 10, as originally
required.

2.2 Linked Cell Method (LC)

An alternative approach that is often used to indentify the neighbors of a body is
the Linked Cell (LC) method, where the system is divided into a lattice; for cubic
systems, this can be m × m × m cells (3D) [1]. The optimal size of the cells, as
before the size of the Verlet spheres in the VL method, depends on the velocity
of the particles and on the density of the system. As a rule, the cell sizes all need
to exceed at least the size of the largest particle. The major difference between

5

LC and VL is, that for LC the cells are not attached to particles and thus are not
moving. The size of the cells can be selected such that one cell contains about
three particles, see Fig. 2. Then, if particles are temporarily assigned to a certain
cell on the basis of their current positions, it is obvious that interactions are only
possible between those in the same or in directly adjacent cells [16]. This means
for a 2D system, that only particles within nine different cells for 2D and 27 cells
for 3D may contain neighbors. Since particle pairs have to be checked only once,
not all cells have to be tested, but only the center cell plus half of the neighbor
cells. That means 1+4=5 cells in 2D, Fig. 3, or 1+13=14 cells in 3D, see Fig. 3.
Cast into a formula, one has (3d + 1)/2 cells to examine for possible neighbors.

3 4

5 6 8

9 10

14 15 16

21

7

13

11 12

6 11

5

2
1

9

15
14

12

13

3

10

8
7
4

Figure 2: Linked cells numbering and particle numbering of a 2D system.

Figure 3: (Left) Cells that need to be investigated (grey) for the neighbor list of
bodies in cell 6 (dark grey) for the example in Fig. 2. (Right) Neighboring cells
to be investigated for a particle in the dark grey cell in 3D.

For a 2D system, see Fig. 2, the neighbor data-structure (NDS) for body
1 contains the particles from 2 up to 15. For particle 2 all particles of the
neighboring cells except number 1 are neighbors and for particle 6 only particles
of the four neighboring cells are neighbors. This is due to the fact that also within
a cell the same strategy is applied in order to avoid multiple checks of the same
particle pair.

In a d-dimensional system, on average, one has nc = n/md particles in each
cell, with n, the number of bodies in the whole system and m, the number of

6

cells in each direction. Therefore, as an estimate, only

p ≈

[
(

3d
− 1

) nc
2

2
+

nc(nc − 1)

2

]

md =

[

3dnc
2

2
−

nc

2

]

md (3)

distances (contact conditions) need to be examined (for the majority of cells that
are not situated along the edge of the system). The first term takes neighbors
outside into account, while the second those inside the cell of the particle of
interest. The factors 1/2 are due to the fact that every pair shall be checked only
once. Since the bracket in Eq. (3) equals the approximate number of necessary
operations for one cell, it has to be multiplied by the number of cells in the
system, md. An estimate for the average number of pair checks was given already
in [1] as: p ≈ 4.5nnc , for 2D, almost identical to Eq. (3) for large nc. For each
particle, in half of the nine cells approximately nc particles will be neighbors.
This contrasts with p = 1

2
n(n − 1) , which is of order O(n2) if no neighborhood

search method is used. For systems with m ≤ 3, there is no benefit in using any
NDS, but usually the systems with many particles possess much more cells.

2.3 Linked Linear List (LLL)

The third possibility (quite different from the other approaches) to keep track
of neighbors for large systems, is the Linked Linear List (LLL) [18]. In a first
step, bounding boxes are arranged around each particle, see Fig. 4, sized such
that each particle fits exactly in its box, and the edges are aligned parallel to the
system axes.

1

3

2

4

Figure 4: Bounding boxes around each particle.

Linear List Generation

In a second step, the bounding boxes are projected separately onto the system
axes. Such a projection onto the x-axis for the situation in Fig. 4 is shown in

7

Fig. 5. In the following, only the order of the beginnings ‘b’ and endings ‘e’ of the
projections of the bounding boxes along the axes are of interest. For this reason
the sequences are stored in linear lists.

e1

3

b3 e3

e4

3 4

b4e3b2b1 e1

1

b1

1

e4

4

b4b2 e2

b3 e2

x

2

x

2

Time t+∆ t

Time t

Figure 5: Particles projected on the x-axis for two different times, [18].

For a 3D system, three different projections are necessary and, therefore, three
lists will be generated. Each of them has length 2n, corresponding to twice the
number of particles in the system. If there is either beginning, ending, or both,
of another particle in between the beginning and ending of a certain body, then
there will be an overlap of the projections of their bounding boxes along this axis.
A collision of two bounding boxes exists for an overlap of these projections along
all three axes.

Update of the Linear Lists

Checking whether there is some part of a projection in between the beginning
and ending of another projection for each particle along each axis still takes a
lot of time. But, although these lists have to be updated for each time step,
the necessary calculation times can be reduced to an amount proportional to the
total number of particles in the system, as there has to be done only an update
of the old list for each new time step. This corresponds to sorting an already
nearly sorted list: The update can simply be done by going through the lists
sequentially and checking for changes in the order that are usually permutations,
compare for example Fig. 5, where e3 and b4 are exchanged. If the order of the
beginnings and endings does not have to be changed, the collision status of the
particles also will remain unchanged. While seeking for new colliding bounding

8

boxes by looking for permutations in the lists, four different cases have to be
considered, compare [18].

1. Two beginnings are changed, which means the bounding boxes have been
overlapping and continue to overlap.

2. Two endings are changed, which also means the bounding boxes have been
overlapping and continue to overlap.

3. A beginning and a proximate ending are changed, which means a so far
occurring overlap has to be removed.

4. Both ending and following beginning of another particle are exchanged,
which means a previously non-existing overlap has to be taken into account.

For the first two cases, except for the exchange, nothing has to be done in the lists,
as the collision status between any particle will not change. If a collision along
an axis has to be removed, or if there is a new collision between two particles
along an axis, the collision information along the other axes is essential: One has
to know whether there is a new or an old collision along all axes. If there is no
overlap any more between two so far colliding bounding boxes in at least one
direction, the collision has to be removed. Therefore, two (three) more columns
in 2D (3D) are added to the lists that store the information of the positions of
beginnings and endings along the axes, see Fig. 6.

b1 e1 b2 b3 b4 e3 e2 e4 x
b

b

e

e

b

b

e

e

4

3

4

3

1

2

1

2

4 7

3 5

4 7

3 5

0 1

2 6

0 1

2 6

y

3rd pos.
5th pos.

Figure 6: Lists containing also the position information along the other axes.

For our 2D example going through the list along the y-axis, see Fig. 6, leads
to the potential collision between particles (3/4), and (1/2). As the location of
particle 3 along the x-axis is from position three to five, whereas the beginning
of particle 4 has the position four, there is also an overlap of bounding boxes 3
and 4 along the x-axis and, therefore, a real collision of the bounding boxes of
particles 3 and 4.

9

Particles 3 and 4 are now considered to be neighbors, that have to be checked
for overlap. Therefore, a linked list is created in the form of a sparse matrix
where the colliding bounding boxes are stored. Collision pair (3/4) is stored at
position 3, 4 of the matrix, see Fig. 7.

1

2

3

4

1 2 3 4

3/4

1/2 1/3

Figure 7: Storage of colliding bounding box pairs, if e.g. boxes (1/2), (1/3) and
(3/4) collide.

Figure 8: System consisting of 300 particles for two different points of time.
In the initial situation (Left) all particles float with zero velocity, while the later
situation (Right), after a simulation time of 2 sec, the particles are accelerated by
gravity and have collided and interacted. This simulation is without dissipation
and friction.

Figure 8 shows an example of a 2D system and Fig. 9 the matrix structure that
is obtained. Since the particle numbers are initially sequential, the entries in the
matrix of Fig. 9 (Left) are close to the diagonal, showing that only neighboring
bodies have colliding bounding boxes. Note that this is only true for the special

10

numbering, that we use at the beginning of our simulations. Nevertheless, the
matrix is quite sparse always, see Fig. 9 (Right).

Figure 9: Matrix structure for the two snapshots from Fig. 8, where the dots are
the potential contacts, i.e., box-collisions.

As collisions between the bounding boxes of two particles are only treated
once, in Fig. 9, an upper triangular matrix is shown, where the diagonal of the
matrix is empty.

2.4 Discussion

The two techniques VL and LC, described in secs. 2.1 and 2.2, have in common
that both identify neighboring particles by considering bodies inside certain vol-
umes as neighbors. For both methods these zones have to be at least somewhat
larger than the particles themselves. From this, two problems can arise. Firstly,
if the particles within the system are polydisperse, i.e., their sizes differ, the size
of the grid (LC) or circles (VL) has to conform to the largest particle existing in
the system. Hence, for highly polydisperse mixtures, the smaller particles may
increase the number nc of particles within one cell, which might even be close to
n in the worst case [18].

As the neighborhood zones around a particle are larger than the particles, the
NDS does not have to be updated in each time step. The size of the zones and
the necessary update frequency are interdependent and not quite easy to guess.
Therefore, another problem of both methods is the ascertainment of optimal val-
ues for both, the update frequency for the lists and the size of the zones. If the
cells are either very small or very large, the contact detection is inefficient because
updates are too frequently necessary or too many particles are in the neighbor-
hood, respectively. Therefore, the choice of these values is very important, and it
may take a lot of personal time getting experience with the investigated system.

11

3 Results

The three techniques introduced shall in the following be compared with respect
to the simulation times needed as function of n. Differnt tests are used and the
results are scaled, in order to keep the influence of different computers, of dif-
ferent programming languages and compilers, and from different programming
styles, as small as possible. (The program for the LC was programmed in C++
while the VL and LLL were programmed in C and different hardware and op-
eratinig systems were used.) The goal is not an absolute comparison, but the
understanding of the n-dependence of the three algorithms.

3.1 Comparison of a Planar Polydisperse Example

In the first 2D test series, examples with different numbers of particles are stud-
ied. The system is polydisperse, i.e. the diameters of all particles are different.
The sizes were randomly drawn from a homogeneous distribution in the interval
[R0(1 − w0), R0(1 + w0)], with mean radius R0 = 10−3 m and width w0 = 0.5.
Other system parameters are the stiffness for the calculation of the (penalty)
repulsive force k = 107 N/m, the dissipative constant d = 0 Ns/m, the density of
the particles ρ = 7000 kg/m2, and the time step for the integration of dt = 10−7s.
The attempt was to keep the density of the system constant, while simultaneously
the number of particles was duplicated stepwise and the system size was enlarged
accordingly, see Fig. 10. The simulation consisted of the particles falling under
gravity and spreading homogeneously over the system.

Figure 10: Example of a dense system with 7800 particles. The lines show the
arrangement of the particles for all six system sizes.

Keeping the system density for each example exactly constant was not possi-
ble, since the container size divided by the linked cell size always has to be integer
and the linked cell size for the whole series was kept constant in order to allow

12

for a comparison, i.e., lc = 7.0 × 10−3 m. The first series consists of 244, 488,
975, 1950, 3900, and 7800 particles. The computation times with respect to the
increasing number of particles are shown in Fig. 11.

0

10000

20000

30000

40000

50000

60000

70000

0 1000 2000 3000 4000 5000 6000 7000 8000

tim
e

[s
]

n

VL
LLL
LC

Figure 11: Comparison of the results for the 2D example.

From this picture it is quite clear, that the curve for the Verlet method is the
steepest, increasing non-linearly with n, whereas both other curves display very
similar, almost linear behavior. All three curves show a jump between 1950 and
3900 particles. However, the reason for this are changes in the density of the
system, which varies from νcont ≈ 0.670 to 0.678.

3.2 Monodisperse Example in 3D

A series of 3D systems with an increasing number of particles of equal size,
R = 5.0 × 10−4 m, and a proportionally growing space around the particles is
investigated in this subsection. The stiffness of the particles was chosen as k = 105

N/m, the damping coefficient again was neglected, the density of the particles was
ρ = 1010 kg/m3 (the units are arbitrary here, the choice was to deal with masses
of order unity), and the time step for the integration was chosen as dt = 10−5 s.
Here, systems with 512, 2197, 5832, 12167, 21952, 35937, and 59320 particles are
investigated, where again the linked cell size was kept constant, lc = 2.0×10−3 m.
The behavior of the computation time with respect to the number of particles
within the particular system is shown in Fig. 12 as log-log plot.

With increasing number of particles (and with it the number of contacts
during the simulation), the worse VL performs in comparison to LLL and LC.
Here, LC has the best performance: the gradient is lower than for LLL. The

13

1000

10000

100000

1e+06

1000 10000 100000

tim
e

[s
]

N

VL
LLL
LC

Figure 12: Comparison results for an increasing 3D example.

curves can be fitted by power-laws: for VL one has y ≈ (0.027 x)1.8, for LLL one
has y ≈ (0.12 x)1.36 and for LC one obtains y ≈ (0.2 x)1.15. The dependency
of LLL and LC on n is close to linear in contrast to the behavior of VL, which
behaves almost quadratic with n.

3.3 Polydisperse Example in 3D

In the last 3D comparison the system size is kept constant, but the number
of particles is increased. Here, no change of either the system or cell-size is
applied, keeping lc = 0.033 m fixed. Chosen parameters for this system are
the stiffness k = 4.0 × 106 N/m, damping coefficient d = 0 Ns/m, density of the
bodies ρ = 7000 kg/m3, and the time step for the integration dt = 4 × 10−7 s.
The systems can be seen as a series of fracture of some of the particles, where
neither the volume enclosed in the system nor its mass content are changed.
Thus, the volume fraction and the density of the system are unchanged, while the
number of particles is increased. In the first system, 1000 particles are situated,
with equal radii R = 0.01 m. Approximately half of these particles are now
successively fractured: There are then about 500 “old” particles of radius R, but
approximately 8×500 particles of radius R/2, each with one eighth of the original
particle volume. The systems therefore contain

1000 particles (see Fig. 13 on the left),

4451 particles, about 4000 smaller bodies of r = R/2,

14676 particles, about 14000 particles of r = R/3,

14

32374 particles, about 31000 particles of r = R/4, and

65480 particles, about 65000 particles of r = R/5 (see Fig. 13 on the right).

Figure 13: A monodisperse system and a very polydisperse system with r = R/5
of exactly the same volume and density (volume-fraction ν = 0.12).

Here, R and r are the original radius of all particles and the size of the
fractured particles, respectively. In Fig. 13 there are no overlaps between the
bodies: an apparent overlap is due to the positions at different depths. For this
system the computation time needed per particle is presented in Fig. 14 over the
ratio of the radii that is equivalent to the polydispersity of the system.

1

10

100

1 1.5 2 2.5 3 3.5 4 4.5 5

tim
e/

pa
rt

ic
le

 [s
]

R/r

LC
LLL

Figure 14: Computation time for a polydisperse system of constant density.

It can be seen that the gradient of the curve over the polydispersity of the
LC calculation is a lot higher than for LLL. Before scaling, so that both curves

15

have the same starting reference point, LC was faster than LLL, and the curves
were intersecting at about R/r = 2.5. This means that the LC method has
advantages for quite monodisperse systems, while the LLL shows its advantages
for polydisperse systems.

4 Conclusions

In this paper three different methods have been introduced in order to reduce the
calculation times for collision detection for systems consisting of many particles
with contact interactions only. The basic idea of these techniques is the fact,
that usually there are lots of particles in a system, which cannot be in touch, as
they are too distant. The presented methods save a lot of time by excluding such
particles from a detailed and time consuming contact examination and evaluation.

For rather small systems, the traditional and simple VL is a quite good tech-
nique, its efficiency being reasonable as it is very easy to implement.

For larger systems the LC and LLL methods become more and more efficient.
The LC method shows very good performance with a lower increase of computing
time for monodisperse systems, as compared to the LLL method. A problem using
LC might be the optimal choice of the linked cell size. For too small sizes and
for too large sizes the results become inefficient. An optimal cell size has to be
found for each different system, since there is no general rule to our knowledge.

As the linked cell size is dependent on the largest particle in the system and
as the calculation time is dependent on the linked cell size due to increasing nc

with increasing cell size, LC becomes very inefficient for wide size distributions.
The time spent using LLL behaves much better, as compared to the LC, for
polydisperse (partial fracturing) systems of constant volume and density but
increasing numbers of particles.

Therefore, there is no unique “winner” of our comparison and for computa-
tions it is required to know the methods with their strengths and weaknesses in
order to choose the most appropriate one.

In the future, it might be interesting to use LLL for polydisperse systems
with even wider size distributions, [10]. Another interesting task will be the
contact detection and force calculation of polygonal/polyhedral particles and the
neighborhood search for strongly anisotropic particles. Finally, since the collision
detection for concave particles is even more complicated and time consuming,
the choice of the most appropriate neighborhood search algorithm will remain an
issue of interest and requires further research.

16

References

[1] M. P. Allen and D. J. Tildesley. Computer Simulations of Liquids (Clarendon
Press, Oxford, 1989).

[2] P. Eberhard. Kontaktuntersuchungen durch hybride Mehrkörpersysteme /
Finite Elemente Simulationen, in German (Shaker, Aachen, 2000).

[3] Y. Kishino, Editor. Powders & Grains (Balkema, Rotterdam, 2001).

[4] B. Lubachevsky. How to Simulate Billiards and Similar Systems, Journal of
Computational Physics 94 (1991) 255–283.

[5] S. Luding. Collisions & Contacts Between Two Particles, in: H. J. Herrmann,
J.-P. Hovi, and S. Luding, Editors, Physics of Dry Granular Media - NATO
ASI Series E350 (Kluwer Academic Publishers, Dordrecht, 1998) 285.

[6] S. Luding. Cohesive Frictional Powders: Contact Models for Tension. Gran-
ular Matter, (2007), in press.

[7] S. Luding. Die Physik trockener granularer Medien, in German (Logos
Verlag, Berlin, 1998).

[8] S. Luding, M. Huthmann, S. McNamara, and A. Zippelius. Homogeneous
Cooling of Rough Dissipative Particles: Theory and Simulations. Physical
Review E 58 (1998) 3416–3425.

[9] F. Melzer. Symbolisch-numerische Modellierung elastischer
Mehrkörpersysteme mit Anwendung auf rechnerische Lebensdauer-
vorhersagen, Fortschritt-Berichte VDI, Reihe 20, Nr. 139 (VDI Verlag,
Düsseldorf, 1994).

[10] B. Muth, G. Of, P. Eberhard, and O. Steinbach. Collision Detection for
Complicated Polyhedra Using the Fast Multipole Method or Ray Crossing,
Archive of Applied Mechanics 77(7) (2007) 503–521.

[11] B. Peters and A. Džiugys. Numerical Simulation of the Motion of Granular
Material Using Object-Oriented Techniques, Computational Methods in
Applied Mechanics and Engineering 191 (2002) 1983–2007.

[12] F. Pfeiffer. Multibody Dynamics with Unilateral Contacts (Wiley, New
York, 1996).

[13] J. Pfister and P. Eberhard. Frictional Contact of Flexible and Rigid Bodies,
Granular Matter 4(1) (2002) 25–36.

17

[14] T. Pöschel and V. Buchholtz. Static Friction Phenomena in Granular Mate-
rials: Coulomb Law vs. Particle Geometry, Physical Review Letters 71(24)
(1993) 3963.

[15] T. Pöschel and S. Luding, Editors. Granular Gases, Lecture Notes in Physics
564 (Springer, Berlin, 2001).

[16] D. C. Rapaport. The Art of Molecular Dynamics Simulation (Cambridge
University Press, Cambridge, 1995).

[17] W. Schiehlen, and P. Eberhard. Technische Dynamik, in German (B.G.
Teubner, Wiesbaden, 2004).

[18] A. Schinner. Fast Algorithms for the Simulations of Polygonal Particles,
Granular Matter 2(1) (1999) 35–43.

[19] P. A. Vermeer, S. Diebels, W. Ehlers, H. J. Herrmann, S. Luding, and
E. Ramm, Editors. Continuous and Discontinuous Modelling of Cohesive
Frictional Materials, Lecture Notes in Physics 568 (Springer, Berlin, 2001).

[20] L. Vu-Quoc, X. Zhang, and O.R. Walton. A 3-D Discrete-Elemente Method
for Dry Granular Flows of Ellipsoidal Particles, Computational Methods in
Applied Mechanics and Engineering 187 (2000) 483–528.

18

