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Abstract

The Discrete Element Method (DEM) in the simulation of static packings allows one to
investigate the behavior of granular materials by modeling the forces on the particle level.
No macroscopic parameters like the angle of repose enter the simulation, but they can be
extracted as a result of the particle properties like friction, roughness or shape. One of the
issues of static packings recently discussed is the stress distribution under granular heaps.
This problem is used to highlight the possibilities of modeling at the particle level using
DEM. Phenomena like arching or stress-chains are observed even for spherical particles in a
regular pile in the absence of friction if the bottom is rough. The situation does not change
much if polygonal, frictional particles are used without disturbing the regular piling. For
more realistic situations, when the pile is built by pouring grains from above, the packing
and the stresses are influenced by the creation history. The more eccentric the polygons are,
the more pronounced a dip is observed in the vertical stress under the apex of the sand-pile.
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1 Introduction

Many rather astonishing phenomena occur in flowing granular materials like sand or powders,
as shown in numerous studies, review articles [1-7], books [8-13], and in this special issue
of Powder Technology. The effects observed in granular media originate in the ability of
the material to form a hybrid state between a fluid and a solid: When the density exceeds
a certain value, i.e. the critical dilatancy threshold, it resists shear like a solid. When the
overall density is sufficiently low, the granular medium can be regarded as fluid- or gas-like,
situations which will not be considered in this study.

One of the many interesting features of granulates is the stress distribution in static or
quasi-static arrays. In contrast to a liquid, the pressure in a silo filled with grains, does not
increase linearly with depth, but saturates at a certain value [14]. This is due to internal
friction and due to arching, so that the walls of the silo carry a part of the weight of the
material. In sandpiles no walls are present so that the situation is different because the total
weight of the pile has to be carried by the bottom. On a rather small scale, comparable
to the size of a grain, stress chains are observed, i.e. stresses are mainly transported along
selected paths, and the probability distribution of stress spans orders of magnitude [15-18].
The problem of stress propagation in granular packings has received much attention in the
last years [17,19-24] due to the pressure minimum which was observed experimentally in
granular cones [25-29]. In granular wedges, however, no [30,31] or only small [25] pressure
minima could be observed. For a more detailed review of experimental and theoretical work
see the paper by Savage in [13].

DEM Simulations of granular materials can also be applied to answer questions con-
cerning the micro-mechanics [32-34] or to determine the constitutive behavior of granular
soils [35-39]. Some effects in the mechanics of granular materials cannot be modeled by
using particles of simple spherical geometries. Simulations of ellipses [40] gave already first
promising results concerning the behavior of the maximal shear-stress [41,42]. Apart from
ellipses, super-quadrics [43], continuously connected circular segments [44], and polygons
[45-49] have been used for a more flexible modeling of the particle geometries and the
boundaries. The aim of this paper is to give an insight into the Discrete Element Modeling
of spherical and polygonal particles. The physical system (or boundary condition) chosen as
an example is the sandpile. First, the “microscopic” point of view is introduced — particles
interact via contact forces. The alternative way of describing a granular material is treating
it as a macroscopic continuum, where stress has to be defined. One goal of this paper is to
present a way to obtain such “macroscopic” informations from DEM [36, 50, 51].

Section 2 is dedicated to the microscopic viewpoint, i.e. the introduction of the mod-
eling approaches for spheres and polygons. In particular we will present force laws used for
the “soft-particle” Molecular Dynamics (MD) [52, 53], adjusted for inelastic particles with
frictional forces [54-56]. In section 3, averaging procedures are introduced to obtain macro-
scopic quantities from a micro-description and, in section 4, quasi-static granular assemblies
are modeled using smooth, spherical particles [23]. Finally, in section 5, the influence of the
particle eccentricity and of the building history are examined for frictional, polygonal parti-
cles [24]. The results and consequences of the presented data are summarized and discussed
in section 6.

2 Modeling soft particles

The elementary units of granular materials are mesoscopic grains consisting of many atoms
each (10 — 10%°). In order to account for the excluded volume, one usually assumes that



the grains are impenetrable but deform under stress. (Other models which assume perfect
rigidity are not discussed here.) In order to model realistic granular materials with DEM, the
aims to treat large particle numbers and to model the particle contacts in full detail have to
be weighed against each other. Since the realistic modeling of the deformations of spherical
particles in the framework of a continuum theory [57,58] would be much too complicated,
we relate the interaction force to the overlap of two particles. The results of such a model
have to be validated by comparison with experimental measurements [59-61]. The overlap
0 is used to define a potential like in conventional molecular dynamics simulations, leading
to forces that are material dependent and involve properties such as Young’s modulus of
elasticity. Finally, we neglect attractive forces and the presence of other phases and thus
focus on “dry granular media”.

When all forces acting on a particle 7, either from other particles or from boundaries,
are known, the problem is reduced to the integration of Newton’s equations of motion for
the translational and the rotational degrees of freedom
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mz’%ﬁ' =fi, and Iz'%q’z’ =M; (1)
The mass of particle 4 is denoted as m;, and its moment of inertia is I; = ¢;m;(d;/2)? with
the dimensionless shape factor ¢;. The vectors 7; and 3, give the position and the orientation
in space of particle i, respectively. Interactions are short range and active on contact only,
so that the total force (torque) on particle i is f; = ¥, f¢ (M; = ¥, M?), where the sum
runs over all contacts ¢ of particle 7. The torque Mf = l:c X f;? is related to the force f;c
via the branch vector 13’ from the particle center to the point of contact c¢. Eq. (1) consists
of six scalar equations in three dimensions and reduces to three in two dimensions (2D).
Frequently used force laws accounting for excluded volume, dissipation, and friction will be
introduced in the following.

2.1 Spherical particles

The interaction range for grains is short, i.e. the particles interact only when they are in
contact so that their overlap § = %(dl + dy) — (7} — 73) - 1 is positive. The diameter
and the position of the center of mass are denoted as d; and 7; (i = 1,2), respectively,
and the unit vector that connects the particles’ centers of mass, pointing from 2 to 1, is
n= (1 — ) /|r1 — 7.

The first contribution to the force acting on particle 1 from 2 — accounting for the
excluded volume which each particle occupies — is an elastic repulsive force

for = knbo(8/60)"7 (2)

where k, /0 is Young’s modulus of elasticity and d, is a normalization constant, an effective
particle diameter depending on the non-linearity » and the particle shape. In the simplest
case of a linear spring that follows Hooke’s law, one has ¥ = 1 and can regard k, as the
spring constant with unit [N/m]. In the case of elastic spheres, the Hertz contact law is
obtained with v = 3/2 [62,63], whereas for conical contacts ¥ = 2 could be used. Plastic
and thus hysteretic interaction laws [64,65], which are relevant for large stresses and large
impact velocities are not discussed here, since we are interested in quasi-static-situations.

The second contribution, a viscous dissipation, is given by the damping force in the
normal direction

ﬁiiss = ’Ynd(d/(sO)wﬁ ) (3)



where 7, is a phenomenological viscous dissipation coefficient with units [kg s '] and § =
—9 - i = —(¥) — Us) - 7 is the relative velocity in the normal direction. The exponent
accounts for the non-linear dissipation-overlap relation.

The simple linear spring-dashpot model with ¥ = 1 and 1/ = 0 can be solved analytically
and leads to a contact duration ¢, = 7/w and a coeflicient of restitution r = exp(—nt.),
with w = yJwd —n?, W3 = ky/mia, 1 = V./(2m12), and myy = myms/(my + my) [56].
Consequently, the ratio n/wy determines whether one can regard the collision as the half
of a damped oscillation for n/wy < 1 or as an overdamped situation for n/wy > 1. As a
cautionary note, we remark that it is not appropriate to identify the end of the contact (of
non-cohesive partlcles) strictly with ¢ = tc, since in dynamzcal collisions, the form of Eq. (3)
leads to discontinuities in the total force fn fel + fdlss at the beginning (¢ = ;) and the
ending (t = ty+t.) of the overlap (where f,(t.) is also attractive [56]). This non-smoothness
of the contact force vanishes when 1 > 0 is used in Eq. (3), where v = 3/2 and ¢ = 1/2 are
a reasonable choice for the modeling of viscoelastic spheres [66-68].

The third contribution to the contact force — accounting for tangential friction — can be
chosen in the simplest case as fshear = fytff where 7, is the viscous damping coefficient in
tangentlal direction and € = @, - £ is the tangential component of the relative velocity, with
t = #12/|02|. (This £ is somewhat different from the frequently used tangential unit-vector
that one gets by simply rotating 7 about 90 degrees.) For many applications (arching, heap
formation) it is, however, important to incorporate models which more closely approximate
static friction [32,55,64,65,69,70]: When two particles get into contact at time ty, one
assumes a “virtual” spring between their contact points, where

e= ([ Baiar) - (@

is the total tangential displacement of this spring at time ¢, built up during the contact
duration ¢ — ?5. Note that in our definition of the tangential velocity, the tangential unit
vector points in the direction of the tangential relative velocity so that ¥s -  would be
always positive, if the scalar product would be inside the integral. In Eq. (4), £ can be
either positive or negative so that 5 = &1 can also be anti-parallel to £. The restoring (static)
frictional force, f;tatic = —ktg, with the stiffness of the tangential spring k;, can thus be
oriented parallel or anti-parallel to £. This fact is a necessary ingredient to obtain a positive
tangential restitution as Foerster et al. [59] find from experiments on various materials.

According to Coulomb’s criterion f; < uf,, the tangential force is smaller than (or
equal to) the normal force f, at the contact, with the friction coefficient p. Cast into a
formula this gives the friction force

—

7= —% min(k|€l, ufi) - (5)

We note that the tangential force at a contact (and thus the maximum elongation of the
tangential spring £nax) has to be limited by the relation ki&pnax = p.f, in order to account for
sliding and to lead to reasonable agreement with contact dynamics simulations or theoretical
calculations [70, 71].

The formulation of the interaction laws for spherical particles in this subsection can
be used in two and three dimensions, even when the detailed calculations of the deforma-
tion geometry become much more complicated. In contrast, the following formulation for
polygons is limited to two dimensions.



2.2 Polygonal Particles

The simplest way to model non-spherical particles is to connect several spherical particles
by springs to form a square or a triangle [72,73]. However, we prefer to introduce convex
polygonal particles in 2D and then define the interaction laws used later for the simulations of
sandpiles (for alternative approaches see [43,46,74-76]). The polygons used in the following
are convex with C' edges and are inscribed into an ellipse with axis @ and b of different
length. The number of edges defines the smoothness of the polygon and the eccentricity
a/b of the ellipse its deviation from a circular shape. In the case of round particles, the
direction of the active forces is well defined but, for polygonal particles, one has to choose
an appropriate direction for the interaction force between particles. Due to the particle
shape, the contact force will, in general, not point to the center of mass of a particle, so that
torques are present in the absence of tangential forces. The forces defined below, and the
algorithm introduced for polygonal particles, can be directly adapted for other non-spherical
geometries like ellipses or superquadrics [43, 44].

€Y (b)

Figure 1: (a) Schematic drawing of a particle-particle contact for two polygons. (b) Sketch
of an ambiguous contact direction for the collision of sharp corners.

We characterize the orientation of the overlap area (with surface A) of two polygons,
see Fig. 1(a), by the intersection line (dashed line) that connects the two crossing points
of the two polygon outlines (solid lines). Relative to this line the force is decomposed into
its normal and its tangential direction, both characterized by the unit vectors 7™ and 7,
respectively. These directions are unique as long as there is no intersection between two
“spikes” (triangles with very small angle), as shown in Fig. 1(b). Algorithms which treat
ambiguities of this type have been given in Refs. [77-80].

The force point S;j, see Fig. 1(a), is defined as the center of the intersection line of the
two overlapping polygons ¢ and j; however, the center of the overlap polygon could be used
as well. The vector from a particle’s center of mass 7; to the force point is denoted as I;.
The forces which the two particles in contact exert on each other act at the force point with
opposite direction, respectively.

2.2.1 The Normal Force

As in the case of spheres, the normal force consists of two components f* = fi + fii, 2
repulsive part fj}, and a dissipative part fj;.. (Here the superscript " indicates that polygons
are used.) The formulation of the force laws is different from that in the previous subsection,
since the particle shape has to be taken into account. Two overlapping particles are assumed



to deform in such a way, that the overlap area is a measure of the deformation and is thus
proportional to the force between the two particles, in analogy to the argument used in
subsection 2.1 for spherical particles. We use the force law

o = k"(A/l) (6)

with the distance between the centers of mass and the force points [; = |lﬂz | giving the typical
length [ = 1/(1/1;+1/l;) for two particles ¢ and j at their common contact point. This choice
is arbitrary; it is based on the assumption that a stack of solid bricks should behave similar
to a large brick of the same height. Note that £™ corresponds to k, with units [N/m], and
A/l corresponds to the length d¢(6/dp)” in Eq. (2). In general, the choice of the contact force
proportional to the overlap area leads to a dependence of the collision time on the contact
geometries. The damping force A
d(A/l

féliss:ryn (dt/) ) (7)
is modeled like the dissipative force in Eq. (3), with the dimensionless damping constant
" = v*/v/my2k", a measure for the strength of dissipation. If n® < 1, the dissipation is
rather weak and if n* > 1 the oscillator made up by fj and fj, and the two masses is
overdamped.

2.2.2 The Tangential Force

The tangential force f* is modeled as a harmonic oscillator, similar to Eq. (5). The elongation
of the tangential spring is incremented proportional to the relative tangential velocity, see Eq.
(4), and ft is proportional to the tangential stiffness &' = %k“. The value of 2/7 causes the
normal and the tangential springs to react in similar time scales, so that the eigen-frequencies
of the normal and tangential oscillator are comparable, at least in the case of spheres [56]. It
is also necessary to include a damping in the tangential direction, in order to avoid undesired
long-lasting tangential oscillations. A tangential viscous term —'ytf is added to the elastic
tangential repulsive force and the sum is truncated if it is larger in magnitude than uf",
according to Coulomb’s law, similar to Eq. (5). For the dimensionless tangential dissipation
we use 1° = +*/v/mi2kt = 0.01 throughout this paper. A more extensive discussion on the
implementation of tangential forces can be found in [55,70]. Alternative formulations for
force laws of polygonal particles have been given in [46,48, 79, 81].

3 From the micro- to a macro-description

In the previous section, the microscopic point of view was introduced, as used in the discrete
element method. Particles are viewed as independent entities which interact when they come
in contact. In this framework, the knowledge of the forces at each contact is sufficient to
model the dynamics and the statics of the system. Tensorial quantities like the stress or the
deformation gradient are not necessary for a discrete modeling, but the subject of current
research is to establish a correspondence to continuum theories by computing from DEM
tensorial quantities such as the stress o [33,51,82]. In the static case the stress tensor is
usually defined as the dyadic product of the force fc and the branch vector [¢ (from the
particle center to contact point ¢), so that its components are

Oap = (1/V) Z f;:lg ) (8)

where the indices o and f indicate the cartesian coordinates, i.e. the horizontal z and the
vertical z in 2D. This stress tensor is an average over all contacts of the particles within the



volume V. In order to carry out the averaging in Eq. (8) one can sum over the contacts
of only one particle [23]. In this case V has to be chosen so that all average volumes
cover the whole system, a rather difficult task in the case of moving, polydisperse, possibly
polygonal particles. The one-particle averaging will thus be applied in the situation of
almost monodisperse spherical particles only. The alternative is to put a grid with cell-size
V over the system and to use all contacts, related to particles with their center of mass in
the respective cell, for the sum in Eq. (8). In order to suppress the fluctuations, we either
average over many realizations, or we use the so-called “moving averages”. In the latter
case, the cells of the grid are about ten particle diameters large and can overlap each other
in horizontal direction.

From a static configuration of “soft” particles one may now calculate the components of
the stress tensor oyy, 044, 0xz, and o, and also define 0 = (03 +04,)/2, 07 = (0xx — 02z) /2,
and 0* = (0y, + 04x)/2. If tangential forces are neglected, the particles are torque-free and
we observe only symmetric stress tensors, i.e. 0,x = 0y, [23]. The eigenvalues of o are thus

Omax,min = 01T £ 1/(07)2 + (0*)?, and the major eigenvalue is inclined at an angle

max ~— Yxx 1 2 X7
¢ = arctan (%) = g +3 arctan (ﬁ) 9)
to the horizontal in the counterclockwise direction.

Since we are interested in 2D sand-piles, the horizontal coordinate x can be scaled by
the width [ of the pile, i.e. X = z/I, so that X = 0 and X = 1 correspond to the lower
left and right ends of the pile, respectively. In order to find a reasonable scaling for the
stresses, we assume [20,83], as a simplified example, a rigid triangle with the density p, the
width [, the height h, and the mass m = phl/2. Due to the rigidity, we find a constant
force at the supporting flat surface, so that the pressure is also constant p = mg/l = pgh/2.
Thus we will scale the stress by the pressure p and then use the dimensionless stress tensor
S =20/(pgh) = ol/(mg). Apart from the components of S we will plot the stress tensor in
its principal axis representation in the next sections, i.e. for each particle the scaled major
principal axis is oriented along ¢ while the minor axis is oriented perpendicular to it, where
the length of the axis is proportional to the magnitude of the eigenvalues.

In contrast to dynamic situations, the central problem in static simulations is to reach
a force equilibrium, when the particles come to a halt. A totally static situation is not easily
achieved with DEM, however, one has the criterion that the kinetic energy has to be orders
of magnitude smaller than the elastic energy stored in the contacts. The DEM method is
not necessarily the best choice to achieve statics, for a faster relaxation, implicit schemes
can be more efficient [36,84]. Since we are interested in static arrangements of particles
in the gravitational field, we use rather strong dissipation, in order to reach the steady
state as quickly as possible. However, even when the DEM method is not the best choice
for a fast relaxation, the closing and opening of contacts is implemented straightforwardly.
First, smooth, spherical particles with different force laws are used to explore how far such
a simplified model can explain, for example, the pressure dip. Then, polygonal, frictional
particles are used to better approximate real systems.

4 Results for spherical particles

In the simulations presented in this section, N spherical particles with diameters d; (i =
1,...,N) are used. If not explicitly mentioned, monodisperse spheres of diameter d; = dy =
1.5 mm are employed. The N particles are placed into a container with different boundary
conditions at the bottom and also different system sizes. Starting from a regular, closely



packed triangular arrangement with L particles in the lowermost layer M = 0 at the bottom,
heaps of slope 60° or 30° can be modeled by forming layer M with Ly, = L — M or Ly, =
L — 3M nparticles, respectively, as displayed in Fig. 2. The number of particles is thus
N6 = HOO(L, 4+ 1)/2 or NOCO = HFOO([, — 3(HBY —1)/2) with the number of layers
H® = [ or HOY =int[(L — 1)/3] + 1. The largest simulated pile has L = 100 and thus
NGO = 1717 particles.

slope 30 d ope 60" slope 30 d ope 60°
g M=3
z M=2
M=1
X M=0
smooth, flat bottom bumpy bottom

Figure 2: Schematic drawing of a pile in a box with smooth, flat bottom (left), and on a
bumpy bottom (right), with Ly = 7. The solid bar at the right indicates that the particles
in row M = 0 are fixed, so that the first relevant row with mobile particles is M = 1 with
here L; = 5.

The initial velocities and overlaps of the particles are zero, gravity is slowly increased
from zero to the selected magnitude and the system is simulated until the kinetic energy is
several orders of magnitude smaller than the potential energy, and the stresses no longer vary
with time. The particles at the bottom layer M = 0 are either fixed, or may slide horizontally
and penetrate the bottom vertically. When sliding is allowed only the outermost particles
are horizontally fixed by the sidewalls.

Here, we focus on properties of granular systems in the absence of friction. By neglect-
ing solid friction, we will examine to what extent phenomena like stress chains and arching
depend on friction. However, we are confronted here with what could be called “geometrical
friction” or “arching”, as the particles restrict the motion of their neighbors due to excluded
volume effects; this makes it possible to create a stable pile [23,85]. The parameters are
chosen so that the maximum overlap is much smaller than the particle radius. Besides this
requirement, the data presented in the following are scaled so that different sets of parameters
lead to similar pictures.

4.1 A Small Variation of the Width of the System

Here, a 30° pile, with L; = 19, on a bumpy bottom, see Fig. 2, is simulated, and the
separation do(1 + ¢) of the fixed particles in the lowermost row M = 0 is varied. The values
of ¢ are ¢ = 1/15, 0, -1/750, and -1/150. In Fig. 3(a) and (c) the vertical and horizontal
components of the stress tensor are plotted and, in Fig. 3(b) and (d), the contact network
and the principal axis of the stress tensor are displayed respectively. The interesting result
is that the vertical stress in Fig. 3(a) has a dip for negative ¢, the depth of which increases
with increasing magnitude of ¢ [20,23]. The horizontal stress in Fig. 3(c) is much larger for
negative c¢ than for positive c.

From Fig. 3(b) one finds a translation invariant diamond lattice for the contacts only
for ¢ = 1/15, i.e. a wide spacing between the particles. In this case, the vertical stress S,,(1)
has a zig-zag structure that is related to the steps at the surface of the 30° pile. For a spacing
with ¢ = 0 and ¢ = —1/750 we have a contact network with regions of coordination number
4 and 6, corresponding to the diamond or the triangular contact network. For strongly
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Figure 3: (a) Dimensionless vertical stress S,,(1), in row M = 1, vs. dimensionless horizontal
coordinate X = z/l for a 30° pile with bumpy bottom and L; = 19. The particles in
row M = 0 are fixed at a distance dy(1 + ¢), i.e. they are squeezed together for negative
¢ or separated for positive c¢. (b) The contact networks for the corresponding systems.
(c) Horizontal stress Syx(1), vs. X. (d) The principal axis of the stress tensor for the
corresponding systems, from [23].

squeezed bottom particles, i.e. ¢ = —1/150, the contact network is again a diamond lattice,
but the longer axis of the diamond is tilted away from the vertical. From Fig. 3(d) we obtain
arching for negative ¢ and no arching for positive c. Evidently, a tilted diamond lattice is
correlated to an arch in this situation. If also the angle ¢ is calculated, we observe a fixed
value only for ¢ < 0, in the outer part — consistent with the fixed principal axis (FPA) theory
by Wittmer et al. [22, 86].

From a detailed comparison of the contact network to the stress tensor we may con-
jecture two facts. First, the ratio of the principal axis § = Smin/Smax seems to determine
whether the contact network is of triangular or diamond structure [87]. For ¢ = 0 and for
¢ = —1/750 the triangular contact network is formed if s is large (the larger s, the more
isotropic is the stress). Second, the orientation of the diamonds is correlated to the orienta-
tion of the stress tensor, i.e. the longer axis of the diamond lattice (for negative c) is more
or less parallel to the direction of the eigenvector related to the major eigenvalue.

One main result is that arching and the dip in the vertical stress at the bottom are
not necessarily due to solid friction [20,87,88]. When the contact network is tilted away
from the vertical, stresses are preferentially propagated outwards; this may be regarded as
a reason for arching and for the dip, but only due to the anisotropy of the contact network,
and neither due to friction nor due to non-spherical particle shapes. The contact network
varies within the pile, i.e. if the material properties are inhomogeneous, stresses different
from theoretical predictions based on the assumption of a regular network are observed.



4.2 An exact solution

Instead of a numerical integration of Newton’s equations of motion, one can also use a
symbolic calculation software to get eract results after assuming a static situation with all
velocities vanishing [85,89]. The interaction used is equivalent to Eq. (2) with v = 1. Here,
different from Eq. (2), the discs are supposed to be stiff, i.e. k, > m/dy, so that the overlap
0 of discs is always infinitesimal, and the limit k£, — oo is implied for the solution.

For the comparison of the DEM results with the exact solution we use a pile of base
width Ly = 16, a slope of 30°, and put it on a smooth surface fixing only the corner-
stones. Comparing the exact solution with the numerical simulations, we obtain a very good
agreement in Fig. 4. The principal axis representation (left, the scaling is different at top and
bottom) and the contact network (right), with the line-width proportional to the force, show
almost perfect agreement, except for one detail. Since the particles used for the numerical
simulation are less stiff than those used for the analytical solution, two more contacts at
the bottom, symmetric and next to the center, are open. Varying the width of the system
the numerical simulations from the previous subsection are confirmed. An accentuation of
the dip is obtained when applying a compressive force on the corner stones. A discussion of
these results can be found in [85].
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Figure 4: Comparison of the exact results (top) to the numerical simulation (bottom) for a
heap with 30° slope, Ly = 16, on a smooth, flat bottom. The two outermost particles are
skipped for the exact calculations.

4.3 Nonlinear force-laws

The situation addressed here is a homogeneous 30° pile, in which Ly = 100 particles in
row M = 0 are used. The particles in the lowermost row are fixed with ¢ = 0 so that
the horizontal separation is dy. We compare the contact networks for linear (v = 1) and
nonlinear (v = 3/2) normal interactions of Eq. (2) in the left and right half of the symmetric
piles in Fig. 5 respectively. We observe a region with a diamond-lattice in the center of the
pile and a triangular contact network at the shoulders, as in Fig. 3 for ¢ = 0. Only in a
thin layer close to the surface we find a diamond-lattice tilted outwards from the center.
The contact network, is the same for both interaction laws, except for some weak deviations
along the line where the two different networks meet each other and along the surface of the
pile.

In Fig. 6(a) we plot the components of the dimensionless stress tensor S(1) against
X for the lowermost row of mobile particles, M = 1. Ignoring small deviations (the curves
are more rounded for the linear interaction law), the stress tensor is the same in all cases
v =1,v =3/2, and v = 2. Note that the data for v = 2 are obtained from simulations
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Figure 5: Half views of the contact network for simulations with linear (left) and nonlinear
(right) interaction laws.

(1)

Figure 6: Components of the dimensionless stress tensor S(1) at row M = 1 vs. dimensionless
horizontal coordinate X = z/I, for a pile with immobile particles at the bottom, M = 0.
The slope of the pile is 30° and Ly = 100. We use linear » = 1, and nonlinear interactions
v = 3/2, see the inset. The data with ¥ = 2 correspond to simulations with polygonal
particles, as discussed in more detail in subsection 5.2.

of polygons with C' = 12 sides, as described in the following section. If the stress ratio
Szz/ S, is plotted, one observes a value of 1/3 inside the pile, independent of v. The value
of 1/3 is consistent with the predictions in Ref. [22] for a diamond contact network and can
also be understood from geometrical arguments. Since the horizontal contact is open, the
stiffness of the material is smaller in the horizontal direction than in the vertical direction.
In the horizontal direction, there is a contribution of k,, cos 60° to the stiffness over a vertical
distance dysin60°. On the other hand, in the vertical direction there is a contribution of
ky cos 30° to the stiffness over a horizontal distance djsin30°. Assuming a homogeneous
deformation we arrive at S,,/S,, = tan?30° = 1/3.

From the stress tensor S in Cartesian coordinates we move to the principal axis system,
where S is defined by the minor and major eigenvalues Sy, and Sy and the angle of
orientation ¢ as defined in Eq. (9). We plot the ratio of the eigenvalues Syin/Smax in Fig.
7(a), the angle ¢(1) in Fig. 7(b), and the minor and major eigenvalues in Fig. 7(c). Except
for boundary effects close to X = 0 and X = 1 we have three regions which may be identified
with the contact network regions in Fig. 5. In the center the stresses are almost constant
and decrease in the outer part of the pile until they vanish at the boundary. Except for the
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Figure 7: (a) Ratio of the eigenvalues of the stress tensor at row M = 1 vs. X, for the
piles from Fig. 6. (b) The angle ¢ about which the major principal axis is tilted from the
horizontal in counterclockwise direction. (c¢) The minor and major eigenvalues Sp;, and
Smax-

center, the stress tensor is always oriented outwards from the center. The orientation angle
¢ is almost constant in the outer regions and a transition takes place in the inner region.

In summary, we do not find essential qualitative differences when using frictionless
particles with linear or non-linear force laws, and even for frictionless polygonal particles,
not much difference is obtained.

4.4 Polydisperse Particles

Starting from a monodisperse 30° pile with a bumpy bottom and Ly = 100, we change the
particle size of each particle slightly to the diameter d; = dy(1 + r%), where r is a random
number homogeneously distributed in the interval [—r;/2,74/2]. The vertical stress at the
bottom is plotted in Fig. 8 for simulations with r;, = 2/3000 (a) and 1/30 (b) for one run
(solid line) and compared with the monodisperse case (dashed line) and the average over 100
runs (symbols). The fluctuations of the stresses increase with growing r4. In fact we observe
fluctuations much larger than the total stress for the monodisperse pile. With increasing r,4
the shape of the averaged vertical stress changes in the center from a hump [see r4 = 2/3000]
to a dip [see r4 = 1/30]. The averaged stress in Fig. 8(b) is similar to the stress obtained
(after many averages) from a cellular automaton model for the stress propagation in the
presence of randomly opened contacts [90].

In Fig. 9 the contact network of one representative run from Fig. 8(b) is displayed.
The lines correspond to the branch vectors [ and their thickness indicates the magnitude
of forces active at the corresponding contact. Each particle center is thus located at the
meeting point of several lines. When counting the number of contacts from one run for
all layers M > 1, we obtain a coordination number of 3.9616; when disregarding also the
particles at the surface, one comes closer to the value of 4 that could be expected for an
isostatic situation. We attribute the discrepancy to those particles with few contacts, e.g. on
the surface and inside the material but screened by an arch. Also, the heap could be not
completely relaxed, so that a few (weak) contacts are either missing, or active whereas they
would be active or missing, respectively, when relaxation would be total.

Already tiny polydispersity destroys the regular, periodic contact network. Due to the
small fluctuations in particle size the particles are still positioned on a triangular lattice even
when the contacts are randomly open. In such a random network the so called stress chains,
i.e. selected paths of large stresses, are found and the stress fluctuations can become much
larger than the average stress. Averaging over disordered systems and many realizations
leads to a dip in the vertical stress at the bottom if the size fluctuations are sufficiently
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Figure 8: Dimensionless vertical stress S,,(1), in row M = 1, vs. X for a 30° pile with
bumpy bottom and L; = 97, from [23]. The particle diameter is uniformly distributed in
the interval [do(1 —74/2), do(1+74/2)], with r4 = 2/3000 (a) and 74 = 1/30 (b). The dashed
line gives the result with no disorder r4 = 0 and L; = 97. The solid line gives the result of
one representative run and the symbols correspond to an average over 100 runs and three
particles.
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Figure 9: Contact network of one pile from Fig. 8(b). The line thickness indicates the
magnitude of the contact force, from [23].

large [23]. Note that the transition from a homogeneous network to the stress chains is
controlled by the ratio of the size fluctuations r4 d and the particle overlap §, but not by the
size fluctuations alone. Since the particle overlap is a function of the particle stiffness and
of the local stress, § &< 0d?/k,, the dimensionless parameter that measures the strength and
the effect of the fluctuations is p = rqk,/(od). If p < 1 the fluctuations in particle size are
negligible, if p > 1 one can expect essential disorder in the system, even if r;, < 1.

Measuring the probability distribution of the forces, one observes results in agreement
with theoretical predictions [15], and numerical findings [16]. The probability to find large
stresses decreases exponentially with the magnitude of the stress and is greater for smaller
rq, i.e. for stronger fluctuations [23]. The important result is, however, that disorder in
the system changes the qualitative outcome, i.e. a dip is found in the polydisperse case,
even when no dip is present in the ordered situation. Since we were able to find most
of the phenomenology expected in a sandpile in an oversimplified regular model system
without friction, we conclude that the role of the contact network (or the fabric) is eminent.
Nevertheless, friction and polydispersity in size and shape will play a role in more general
situations with physical sandpiles made of realistic, non-spherical particles.



5 Results with polygonal particles

In the previous section, the particles were spherical, and almost mono-disperse, resembling a
“cannon-ball” piling, a stack of smooth, wooden rods, or a model granulate like glass beads.
Since granular materials can be by far more complicated, concerning their size distribution
and their shape as well, convex polygons are used in the following as a model for, e.g. sand-
grains or crushed glass.

5.1 A brief review of some experiments

From experiments on large piles, Brockbank et al. [29] found no dip, i.e. no pressure minimum
under the apex of the pile, for large (non-cohesive) monodisperse particles poured on a flat
surface from a point-source. With the same construction mode, but using polydisperse
material Smid and Novosad [28] found a pronounced dip under the apex of the pile. The
only data from cones for which the minimum pressure was less than 15 % smaller than the
maximum pressure was obtained for monodisperse rape seed [28].

Jotaki et al. [26] examined a variety of materials with different properties, sizes and
shapes as summarized in table 1. One of the most striking results of these experiments is
that for polydisperse materials the pressure under the apex of the pile (also created from
a point-source) is about 20% to 30% smaller than the maximum pressure. This occurs in
granular materials with very different internal friction and angles of repose, see table 1. It

Material Pressure | Angle of Particle Coeff. of
Dip [%] | repose [deg] | size [mm] | int. friction
GB 708 81 22.5 0.3-0.7 0.41
GB 733 60 22.7 0.044-0.088 0.27
Sea Sand 7 33.6 0.17-0.71 0.60
Rape Seed 87 24.9 1.4 0.40

Table 1: Parameters for the grains in the heaps used by Jotaki et al. [26]

should be noted that the angles of repose range from 22.5° to 33.6°, whereas the coefficients
of internal friction span a wider range from 0.27 to 0.61. The angle of repose and the internal
friction are not necessarily proportional, as can be seen from table 1, but there appears to
be a correlation between large angles of internal friction and a wide variation in particle size.

Concerning the grain size 1.4 mm, given for rape seed, and the base diameter of the
largest heaps being 120mm to 320 mm, there were about 100 to 140 particles in the base
of the smaller systems [26]. Smid and Novosad [28] examined piles of fertilizer with base
lengths from 600 mm up to 1700 mm. Fertilizer has a grain size of 3 to 5mm, which also
leads to a system size of 100 to several hundreds of particles. The simulations presented in
the following use 100 to 140 particles in the horizontal direction, so that the base length is
comparable to the one in the experimental heaps, measured in units of the particle diameter.

5.2 Polygonal particles on an ordered grid

First, monodisperse regular polygons with C' = 12 sides (or corners), initially ordered on a
hexagonal lattice, are used. The results, with ;= 0, were already displayed in Fig. 6 and are
denoted by (h1l). The data for larger coefficients of friction y = 0.3 and p = 0.6 are denoted
by (h2) and (h3) respectively. The angle of repose of the heaps is by construction 30°. The
base of the heap is Ly = 100 particle diameters in the lowermost layer, where the particles
are fixed. The heaps are built layer by layer and then relaxed until most of the energy is



dissipated. The stress distribution for the heap on the hexagonal lattice for p = 0.0, 0.3,
0.6 did not change noticeably with the friction coefficient u, see Fig. 10. The fluctuations
for the situations with friction (h2, h3) are much stronger than in the frictionless case (h1).
However, the stresses are similar in magnitude and shape.

S(1)

Figure 10: Stress distribution S,, and S,, for the different heaps with the coefficients of
friction p = 0 (h1), £ = 0.3 (h2) and p = 0.6 (h3).

No clear relative minimum of the normal stress in the center of the heaps can be
observed for the parameters and configurations presented here. Mounting the lowermost layer
on springs (no figures shown) and permitting vertical motion did not change the qualitative
outcome of the simulations, for some more information on this issue see chapter 1 in [13].
Since the monodisperse polygons with many corners are very close to spheres, polygons with
less corners and also of more elongated shape will be used in the following and also the
construction

5.3 A typical microscopic configuration

For comparison with Fig. 9, we present a contact network of one simulation with flat frictional
bottom and N = 3333 particles of different shapes, which were obtained by inscribing
polygons with C' = 7 corners into ellipses with uniformly distributed axes a = 9.5 + 1.5 mm
and b = 9.5 + 1.5 mm. The particles were simulated as rods of 1m length with a material
density of pma; = 5000kg/m?, and a stiffness &* = 107 N/m. The coefficient of friction was
p = 0.6, and the dimensionless damping constant in Eq. (7) was n* = 0.8. The timestep for
the simulation was At = 2.5 x 107°s and a fifth order Gear predictor-corrector method was
used. A new particle was added from a point-source to the system every 0.075s, up to time
t = 250s. The snapshot corresponds to the relaxed situation taken at ¢ = 260s.

Figure 11: Force network of a heap constructed from a point source on a flat bottom.
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Figure 12: Stresses in the principal axis representation, inside the heap from Fig. 11, averaged
over volumes containing 40-50 particles.

The force-network of the simulation is displayed in Fig. 11. Both the outline and the structure
of the network are different from the ordered situation displayed in Fig. 9. The outline and
the stress chains indicate the disorder of the heap, and also the principal axes of the stress
tensor are strongly fluctuating, see Fig. 12. The principal axes of the stress tensor are
obtained by moving averages in horizontal direction, where an averaging volume covers 40
to 50 particles. The pressure dip can be seen in the principal stresses plot. In the outer
part of the pile, the orientation of the stress tensor is almost constant (especially in the right
half), in agreement with the FPA assumption by Wittmer et al. [86].

5.4 The construction history

To model experiments as realistically as possible, one can construct a pile in two ways, both
of technical relevance: Pouring the sand from an outlet, say a point-source, is the variant
which will be used in chemical engineering, e.g. in the filling of silos, or when building a heap
of material that is transported on a conveyor belt. On the other hand, in civil engineering,
dams are constructed layerwise. This leads to a different “history” of the particles in the
heap, which can be seen by the different strata of the heaps in Fig. 13. Particles of different
grey are poured on the pile at different times. In these simulations, irregular heptagons
with C' = 7 corners are used, which were inscribed to an ellipse with different axes. The
irregularity was introduced by changing the starting point on the ellipse, whereas the length
of the two axis of the ellipses were changed to get polydisperse particles (rods of length
1m). The material density was pma; = 5000 kg/m3, the contact stiffness was k* = 10" N/m,
and the dimensionless damping coefficient was n* = 0.5. The friction coefficient was set
to u = 0.6 for the particle-particle and for the particle-wall interaction as well in order to
resemble the friction of sea sand, see table 1. The time-steps are varied between At = 107°s
and At = 2.5-107°s depending on the minimum particle radius.

5.4.1 The wedge sequence

Here we examine the stress under piles on a flat bottom, built from a point source — this
procedure is named wedge sequence in the following — and compare material of different
polydispersity. The particles were dropped from 40 cm height with 0.2m/s initial velocity.
Due to the large impact velocity, the top of the pile at height A is usually flat, the angle of
repose, see table 2, was measured in that part of the pile where the slope is straight. In order
to suppress the fluctuations, we used “moving averages” as described in section 3. In Fig.
14(a), data are shown for different polydispersities. Additional runs with different random
number seeds gave equivalent results within the fluctuations. The pressure dip is qualitatively



Sequence | Slope | Particle size | Particles | h 1 M
[deg] | a X b [mm] [m] | [m] | [10° kg]
Wedge 23 4 x5 2600 0.13 | 0.61 1.5
Wedge 24 4 x 4-5.5 4000 0.17 | 0.88 3.2
Wedge 28 2-5.5 x 2-5.5 2000 0.11 | 0.46 1.2
Layered | 32 4 x 4-5.5 3400 0.18 | 0.69 2.7

Table 2: Parameters for the presented simulations of heaps built either in the layered or in
the wedge sequence. The data points were obtained by a moving average procedure with a
bin-width of about 14 particle diameters. The layered sequence is explained in the following
subsection.

comparable to the pressure dip obtained from experiments only for the simulations with
polydisperse particles: there is no evidence of a dip in the case of monodisperse particles.

Figure 13: Configuration for a wedge sequence with polydisperse particles, where the pile is
constructed from a point source (top), and a layered sequence with monodisperse particles
(bottom). Different shading indicates the different age of the particles. The insets are zooms
into the lower left part of the corresponding pile.

5.4.2 The layered sequence

When the pile is constructed in a layered sequence, it is build by dropping particles smoothly
from a height of less than one particle diameter onto the already present layers. Each new
layer is less wide than the previous one to arrive at the desired outline of the pile. Settling
effects in the strata of the system are visible in Fig. 13, and the pressure data are shown in
Fig. 14(b), indicating no dip. Another important result is that the angle of repose of a pile
constructed in the layered sequence, see table 2, is larger than for the wedge sequence with
the same size distribution. One reason for the smaller angle of repose of the piles build in
wedge sequence can be the rather large impact velocity of the particles. Another effect, that
is also likely to affect strongly the internal structure of the pile and its slope, is avalanching
at the surface which occurs several times when a pile is constructed in the wedge sequence.
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Figure 14: (a) Scaled vertical stress S* = 20/(pmatgh) under two dimensional heaps built
from a point source (wedge sequence). The data do not scale, since the packing density
(is smaller than the material density) and different from one simulation to the other. The
lowermost data (crosses) correspond to the monodisperse case, while the solid line and the
circles correspond to medium and strong polydispersity, respectively, see table 2 for details.
(b) Scaled vertical stress at the bottom of a two dimensional heap built in the layered
sequence with medium polydispersity, see table 2.

Our data indicate that the presence of the dip depends on the construction history of the
pile. Seemingly, the construction from a point-source leads to avalanches and reorganizations
that enhance arching whereas a careful build-up layer by layer hinders arching and leads to
a more homogeneous stress inside the pile. Since the ground was flat and non-deformable,
for all simulations presented here, the different magnitude of the dip shows that the bending
of the bottom due to the elasticity of its material cannot be the only reason for the dip. For
understanding, why this is important and controversal, see the paper by Savage in [13]. The
dip is more likely to occur for more polydisperse material and for the construction from a
point source.

6 Summary and Discussion

From the systems with smooth, spherical particles, several interesting facts could be ex-
tracted. First, the structure of the contact network and its orientation is correlated to the
stress state. Isotropic stress corresponds to an isotropic, triangular contact network, whereas
anisotropic stress is connected to a diamond network with inhomogeneous stiffness of the
material. Second, already small variations of either boundary conditions or particle sizes
leads to arching and sometimes a dip can be found. Third, these results do not depend
much on details of the interaction law or on the particle shape as long as the surfaces are
smooth. Therefore we modeled in addition polygons with friction. When the polygons are
almost spherical, with C' = 12 corners, the stress in the pile is similar to the case of a pile
of spherical particles. Only, when the particles are set up with more size and shape polydis-
persity more interesting results are obtained. The piles can be constructed either layerwise
or from a point source in a so-called wedge sequence. The layered sequence resembles a slow
and careful construction, whereas the wedge sequence is usually applied to deposit granulates
from a conveyor belt. Measuring the angle of repose and the forces at the bottom of the
piles, one observes: (i) The angle of repose depends on the construction history. If the pile is
constructed slowly and layerwise, it has a larger angle of repose than a pile constructed in a
wedge sequence. (ii) The angle of repose also depends on the polydispersity of the material.



The more spherical the particles are, the smaller is the measured angle of repose, given that
the construction histories are identical. (iii) We find evidence of a dip in the vertical stress
under the apex of the heap when the pile is constructed in a wedge sequence, but only if (iv)
the particles are eccentric. (v) For the same polydispersity, but for a layerwise construction,
no dip is observed.

In simplified model systems with smooth, spherical particles most of the phenomenol-
ogy (as stress chains and arching) is found, but our impression is that a nonspherical particle
shape contributes in addition and is of eminent importance for the quantitative comparison
of numerical simulations with experimental data. However, it is still interesting to examine
also the model-systems with spherical particles, since their simple geometry allows treat-
able theoretical approaches to predict the fabric- and stress-distribution in dense packings.
Whereas the two dimensional polygonal particles are used in simulations many years, the
simulation of polygonal particles in three dimensions is still a rarely addressed issue as well
as the modeling of rolling friction and the friction due to rotation about the contact normal,
effects which will play a role in realistic situations.
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