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Abstract. Using
a

modification of an algorithm introduced by Rosato et ai., we study the

segregation behaviour of a
vibrated container filled ~vith monodisperse discs and

one
large

m-

truder disc. We observe size segregation on time scales comparable to experimental observations.

The large disc oses with a size dependent velocity. For size ratios smaller thon
a cntical value

we
find metastable positions during the ascent, in agreement with geometrical arguments by

Duran et ai. This confirms the importance of geometry as one of the possible causes for size

segregation. We relate Dur results to recent experiments and discuss the mechanisms active m

size segregation m the absence of convection.

l. Introduction

The investigation of the behaviour of noncohesive granular materials has received quite a lot

of interest in the last years iii. Powder processing is of great practical importance and further-

more, granular media show striking properties of both theoretical and experimental interest.

One feature of the behaviour of granular matenals which is usually considered annoying in

industrial processes is size segregation [2-4]. The demixmg of multidisperse po~A>riens, where

the large particles use to the top, occurs m shear flow as well as m vibrated powders. The

latter is the effect we study in the present work.

Recently, there has been a vivid discussion on the question whether size segregation m

vibrated powders might only be due to convection, another phenomenon widely observed in

granular materials. This would imply that segregation should be regarded as being a secondarjr
elfect rather than a distinct phenomenon [5.6]. In systems where strong convective motion takes

place, convection certainly is the dommating driving force for segregation [5]. In a vibrated

container with rough vertical walls, large particles move to the top together with the small
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ones, due to the up,vard con,>ective flux in trie middle of the container. The small particles

mo,re do,vn agam, but the large particles stay at the top smce they are not able to penetrate
trie rather dense array of small particles belo,v them. In experimental setups, convection is

mitiated already for quite low ,;alues of the vibrational acceleration. For very small vibration

iiitensities, convection is confined to a small region in the Upper part of tire container I?i. As has

been sho,vn experimentally [8, 9], size segregation can be observed in this so-called quasi-static
regime, too. i~Te concentrate on it in the following.

It has been sho,vn that geometric elfects play an important role in size segregation in the

quasi-static case [9]. Duran et ai. [9] proposed a model for size segregation based on trie

e,>aluation of trie positions that a large disc (or sphere) of radius R could take in a regular

array of monodisperse small discs (or spheres) of radius r.
In reference [9] a critical size ratio

4l~
=

RIT (4l~
=

12.9 in 2D, 4l~
=

2.78 in 3D) is deduced from these considerations. For size

ratios belo~n. 4l~ trie stable positions for the large disc are separated by some distance, ~Arhereas

above this cntical ratio they are continuons. From that one can conclude that the intruder

should rise mtermittently for small size ratios and continuousljr for size ratios 4l > 4l~, a finding
which is supported by experimental observations.

Trie existence of a critical size ratio below which no segregation is observed was discussed

extensively [10,11]. Experimeiits by Duran et ai. [8] show that a size ratio exists below ,vhich

no ascent is observed within hours of experiment. The value of this critical size ratio ~A.as

mentioned to depend on the shaking amplitude, the size of the container, and on the initial

position of the particle. Size segregation was also related to the evidence of micro-fluctuations

m
the positions of the particles. Together with rougir walls, that may lead to micro-cracks or

long range block sliding in the bulk. A study of these phenomena
m

the 2D monodisperse case

is presented in reference [12].
Quite a fe~A> computer simulations of shaken granular media exhibiting size segregation bave

been put for,vard, including à40nte Carlo like simulation methods [13,14], molecular dynamics
simulations [6,15] or sequential deposition models [16]. In this work ~Are introduce an extension

of the algorithm introdùced by Rosato et ai. [13] and discuss the physical relevance of the

parameters used. The dependence of the ascent velocities of the large disc on the size ratio 4l

is iuvestigated and the mechanisms causmg the ascent ai-e discussed. ive find good qualitative

agreement ,vith recent experiments [8], sho,ving that size segregation occurs even without

convection, only due to geometric elfects.

2. Simulation Method

2.1. THE ORIGINAL ALGORITHM. We first give a short description of the procedure as

introduced in reference [13]. The algorithm is designed to model the motion of a 2~dimensional

array of IV hard discs in a vibrating container. Initially the discs are positioned at random

mside the box and then they are allowed to relax by falling towards the bottom of the container;
the details of which ,vill be explained belo,v. One period of the vibrational motion is modeled

by first lifting all discs through some height A (called the shaking amplitude) without changing
their horizontal positions. Secondly the discs are allowed to fall down. After relaxation has

taken place the array is lifted again by -4.

Thus the shaking of the container resembles distinct "taps" separated by long time intervals

as used in reference [5]. Nevertheless, it should be possible to compare the simulations to

experiments in ,vhich the vibration frequencies are higher, as long as the assembly of beads

can relax sufficiently ~vithin one penod.
In the simulation, the do,vnward part of the vibration cycle is realized as follows. A disc is

selected randomly and a trial position for this disc is generated. If this ne~Ar position leads to
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an overlap,vith another disc, the motion is rejected and the old position is kept: otherwise the

disc is moved to the ne~A> position. After this the next disc is chosen at random until a specified
number of trials nmax ai-e rejected (nmax

=
IV in Ref. [13] ). The assembly is then considered

as relaxed and a new shaking cycle starts.

The trial position for a disc is chosen by generating two independent and equally distributed

random numbers (~ E [-1, Ii and (y E [-1, 0]. The ne~A> position (z', y') of a disc is then given
by

Z'
# X + (xô (1)

v'
"

v+(Yô (2)

where z and y denote the old horizontal and vertical position respecti,>ely. Note that trie

choice for the new position corresponds to do~Arn~vard motion with fluctuations in the horizontal

direction. The parameter à, which corresponds to the maximum step ~,>idth for a disc, was set

to à
= r in reference [13].

2.2. MODIFICATIONS OF THE ALGORITHM. ~Te introduce two modifications to the original
algorithm. The first and less important of the two consists of allowing small upward motions

of the discs m the falling part of the shaking cycle. Trie reason for this modification is the

following. The Rosato algorithm models the fluctuations in the system by random displace-

ment. Because the fluctuations stem from interparticle collisions, the algorithm should also

allow upward motion m some cases. For this reason, ~Are take (y E 1-1, ôo], ~A>here ôo is some

small number larger than zero. The value of ôo should not be too large, either, since m
that

case motion might never cease m
the system. From another point of vie,v, ôo might aise be

considered as some measure of the elasticity of the discs. Laige ôo values correspond to large
fluctuations and thus to ~Areak dissipation. However, it is unclear how ôo is related to physical

quantities hke the coefficient of restitution. We take ôo
=

0.05 in our simulations, ,vhich cor-

responds to only very slight upward motion and mamly makes it easier for the system to relax

mto a final state.

The second modification of the algorithm consists of choosing a much smaller value for the

maximum displacement à thaii in the original work. This changes trie behairiour of the system
significantly. To illustrate this, we performed simulations with values of à rangiiig from 0.05r

to 0.5r. In all simulations referred to in this paper, we use N
=

500 discs of radius ?.
with

one large disc of radius R, 1. e. the intruder. The assembly was considered as relaxed when

no move could be accomplished for nmax =
5N trials. Clearly, this does not provide equally

good relaxation for different values of à, since the larger à, the more moves will be rejected.
We chose the abovementioned value for nma~ bit shaking an assembly of discs and checking
for which value of nm~x the density of the assembly could trot be increased significantly by
mcreasing nmax. These tests also showed that including the possibility for the discs to move

upwards substantially enhanced the relaxation of the assembly. The ,ralue nmax we finally
adopted showed reasonable relaxation for the whole range of à used here, although it was

best for the smallest ,naines. We should mention here that although trie algorithm does not

provide exphcitly for rolling of discs on each other, discs on the surface always "roll" into a

local minimum by a succession of Monte Carlo steps for our choice of parameters.

The initial configuration in these simulations was provided for as described above for the

original algorithm,
i. e. the large disc ~vas placed at some height above trie bottom of trie

container, then random positions were chosen for trie background discs (see [13]) This config-
uration was then allowed to relax m the same way as m a normal shaking cycle, after which

trie shaking procedure started.
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Fig. 1. Influence of the choice of à on the speed of ascent of a large disc of 4l
=

2 in simulations

with A
=

2r. The corresponding values of à
are

(from top to bottom) o-à, 0.3, 0.2, o-1, 0.05.

Figure 1 shows the strong dependence of the speed of ascent for an intruder of size ratio

4l
=

2 on à. "Speed" is to be understood in terms of height per shaking penod. The period
is the only time scale defined in this kind of simulation. For small values of à it even looks

questionable if trie large disc uses at all.

The parameter à determines ho~v much the whole assembly can expand during the falling
part of the shaking cycle. The larger à, the more it expands and thus larger relative motions

of the discs are possible. In experiments it ~vas observed that in the quasi-stat.ic situation the

discs move nearly as a solid block with only small fluctuations around their mean position m

the assembly [8]. Unfortunately, no data on these fluctuations are available. Thus, so far it is

impossible to relate à directly to physical quantities. However, it should be set to a small value

still sufficiently larger than zero to provide observable fluctuations around the mean positions
of the discs in falling. We investigated the segregation behaviour of the system for à

=
o.lr,

which gives quite good agreement of our simulations with experimental results.

Because small values of à make the simulations more time-consummg there are some limita-

tions to the size of the system and to the maximum number of shaking cycles. The maximum

size ratio we used was 4l
=

12, because for larger size ratios the number of small discs would

have to be increased, leading to longer computation times.

In the following simulations the starting configuration was obtained differently from the

procedure descnbed above, m
order to be

m
close agreement with the experiments of [8].

Instead of usmg a random initial configuration of small discs, the box ~Aras filled with small

discs m a triangular pattern as regularly as possible, after first having placed the intruder at

some well-defined height. For the larger intruders (1. e. 4l > 8) this was usually chosen as

(4l + 1)r. We will discuss the implications of this choice m the following section, as they are

related to the mechanism of size segregation.

3. Results

3.1. THE MECHANISM OF SIzE SEGREGATION IN THE QUASI-STATIC CASE. In this section

we describe
m

detail the mechanisms by which size segregation takes place m our simulations.
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Fig. 2. Snapshots of the ascent of an intruder (4l
=

10.5, A
=

0.5r). a) The circles denote the

position of the discs after 445 shaking cycles, the arrows the final positions after 470 shaking cycles,
always taken after complete relaxation of the assembly. b) Situation after 900 shaking cycles.

Besides, we discuss quahtatively the dependence of the rising behaviour of the intruder on the

size ratio. A quantitative discussion will be presented in the following section. Figure 2 shows

two snapshots of the ascent of an intruder of 4l
=

10.5. Trie mechanism by which this ascent is

accomplished can be seen clearly from Figure 2a. Due to the fluctuations in the falhng part of

the motion of the whole assembly, a small disc is able to squeeze m beneath the large disc and

rolls down mto the hole below it, followed by an avalanche of other small discs. The intruder

is then stabilized in this new
(higher) position. In the motion of the small discs no convection

was observed. Usually, an avalanche as the one in Figure 2a is followed by another one on the

other side of the intruder as to make up for the asymmetry induced by the first one.

The small discs whose arrangement above the intruder was disturbed before arrange them-

selves
m an orderly fashion below the large disc as it rises. Besides, a triangular hole forms

belo~n. the intruder as can be seen from Figure 2b. This hole is very stable and persists through-
out the further rise of the intruder. We will discuss the relevance of this effect in the followmg

subsection.

In Figure 3, we plot the vertical position of a rather small intruder (4l
=

2)
versus the number

of shakes and observe the intermittent ascent as also reported expenmentally [9]. Figure 3

shows that ascent takes place, but very slowly. The plateaus on which the intruder rests for

very long times correspond to the stable positions calculated in reference [9]. The speed of

rise is approximately 4 layers of small discs during 10 000 shakes. In expenments, see Figure 4

of reference [9], trie speed is 7 layers dunng 54 000 shakes (1h with a frequency of15 Hz). This

is a very crude evaluation, but it shows that the time scales observed in our simulation are of

the same order of magnitude as those observed expenmentally. The positions from which the

intruder falls down again once in a while correspond to the less stable of the two positions an

intruder of 4l
=

2 can take on the triangular lattice formed by the small discs (see Ref. [9])
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Fig. 3. Ascent diagram for
an intruder of size ratio 4l

=
2 at ~

= r
and à

=
0.1r.

Intermittent ascent of an intruder with 4l
=

3 already was reported in reference [13] for small

vibration amplitudes A, but on much shorter time scales. For larger intruders. intermittent

ascent cari still be observed in ouf simulations, as well as continuous ascent for 4l
=

12 (see
Fig. 4). ~Ve investigated the influence of 4l on the segregation speed for 4l < 12 in some detail

,vhich led to surprismg results that will be discussed in the follo,ving subsection.

3.2. INFLUENCE OF THE DIANIETER RATIO ON SEGREGATION SPEED. The influence of

the diameter ratio on the segregation speed of a large intruder in the non-convective regime
has been investigated experimentally [8]. A hnear dependence of the speed of ascent on the

diameter ratio has been found, as well as a critical diameter ratio 4l~ m 3.5 for the gi,>en
expenmental situation.

An analysis of the dependence of the segregation speed on the diameter ratio by means of

the original algorithm of Rosato et ai. has been conducted before [14], but mainly to derive

an amplitude dependence for amplitudes much larger than the typical values we use. The

time scales on which segregation occurred in their ~A.ork were of the order of time scales in the

original work, bath of i,>hich are much shorter than m trie experimental work of reference [8]
and in our simulations. For further comparison of our simulation to experimeuts. we performed

simulations for mtruders of size ratios 8 < 16 < 12 to nleasure trie segregation speed.
In Figure 4, we plot the position of trie intruder as a function of the number of shakes for

different size ratios for A
=

0.5r and à
=

0.lr. As can be seen from Figure 4, it is almost

impossible to deduce some exact ascent speed fi.om these diagrams. iiTe calculate the velocity
by averaging it over the whole simulation i-un (except in cases where trie intruder reaches the

surface earlier). Due to the long computation time each simulation took we performed only

a few runs for each 4l value. Figure 5 shows the dependence of segregation speed on 4l as

extracted from simulations of the type of those shown in Figure 4. Averages are taken from

2 to 3 simulation runs. However, the values for different realization for fixed parameters are

consistent.

ive checked that the initial position of the intruder dia trot affect the simulation results.

When placed as described at the end of Section 2, the intruder ,vould in all cases rise quickly

on a first layer of particles. During this time, the whole assembly of small discs relaxed into

trie typical configuration that can be seen m Figure 2. ~A>ith the intruder still resting on trie first
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Fig. 5. Dependence of ascent velocity on 4l. S denotes the number of shaking cycles.

layer of small discs. Thus, ail intruders started from stable and well-defined initial positions,
which can be recogmzed as small plateaus in the begmmng of the simulation at height (4l + 2)r.
The intruder was considered to start its ascent when it left this plateau. Starting the intruder

not in the middle of the box, or on more than one complete layer dia not change the simulation

results.

Figure 5 illustrates the strange behaviour we found and should be taken as a qualitative
rather than a quantitative result. The dashed line is merely meant to guide the eye. The speed

of ascent exhibits an irregular behaviour where certain size ratios seem to rise preferentially
which can be explained by purely geometrical arguments. To our knowledge, no experiments

m 2D have covered this range of size ratios in such detail. We observe no size segregation for

4l < 9 on these time scales,
i e. for 1000 shaking cycles. Naturally, it is possible and even

probable that smaller intruders might use as well in longer simulation runs. In experimental
situations as described in [8], for 4l

=
5.3 waiting times of several minutes occurred, after ~Arhich
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through

some distance
m the simulations.

the intruder resumed its ascent. This corresponds to a few thousand shaking cycles, which is

already longer than the simulation runs presented in Figures 4 and 5.

TO explain the irregular behaviour we observed in our simulations in the ascent speed of the

intruder, one has to look into the mechanism by which the ascent takes place. As mentioned

before, a small disc has to squeeze in between the mtruder and the supporting discs in order

to stabilize it in a higher position. After some time, a triangular hole bas formed below the

intruder. Figure 6 shows a schematic drawing of the situation. The walls of this hole are

geometrically very stable, so that the only discs likely to promote the ascent of the intruder are

the discs labeled a m Figure 6. As we now proceed to show, trie size of the small hole bet~n.een

the intruder and the disc labeled is a non-monotonous function of 4l. Since the disc a has to

fit into this hole, the typical size of the hole strongly affects the speed of ascent.

We now calculate the position of the disc
m a geometry as shown m Figure 6. When this

position is known, the distance between the disc1 and the mtruder can be calculated. One can

assume that the center of the intruder is at height 2(R + r) with respect to the center of the

disc labeled 1 in Figure 6. The center of the disc1 is at height

j =

irvà, (3)

because it is the 1-th disc m the wall. The value of1 can be expressed as

=

là
(R + ni 141

The square brackets denote the integer part, e. the largest natural number smaller or equal

to the argument. This corresponds to the disc being the highest of the discs
m

the walls of

the triangular hole whose center is still below the center of the intruder. The corresponding
value of the x-coordinate of the position of the disc is x~ =

ir (always with respect to the

center of the disc 1). For the distance d between the disc1 and the intruder we get

d
= (2(R + r) irvi)~ + (ir)~) là)
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In Figure 7, we plot the distance between the surfaces of the disc1 and the intruder in units

of r
for certain values of 4l according to equation (5). The jumps correspond to a change of

the supporting disc (and thus of the value of1) due to an increase m the size of the intruder.

It occurs whenever 2(4l +1) Il is an integer (see Eq. (4)). The irregular behaviour of the

ascent speed of the intruder as a function of 4l con now be explained as follows. For size ratios

slightly below such a jump value, the size of the hole is too small for the disc a to squeeze m.

Above the jump value, the hole is much larger, thus promoting a fast ascent of the intruder.

As the size of the intruder is increased further, the size of the hole decreases again. That way

the probability for a hole that is large enough to accommodate the disc a to open up decreases

and therefore the speed of ascent decreases. Simulations performed for diameter ratios slightly
below and above these jump values show the expected behaviour (see Fig. 8), implying that

50.o

OE=11 5

40.0

$
OE=9.5

~ 30.0

~i
à

~ OEmll.0

~ 20.0

_~

10.0 ~*~.~

~'~
o soc iooo

Number of shaking cycles

Fig. 8. Ascent diagrams for A
=

o-ST and à
=

0.lr. The corresponding jump values for the size d

of the hole
are at 4l

=
9.39 and 4l

=
11,12, respectively.
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this is the reason for the irregularities in the speed of ascent. In experiments, no such behaviour

coula be observed because the development of a triangular hole below the intruder does not

take place in trie experimental situation. Therefore, we assume that fluctuations will wash out

this purely geometric effect in most experiments. Small holes do develop, but forger ones are

too instable trot to be filled eventually, mainly by horizontal block motions of trie small beads.

Trie ~n.alls of such a hole are toc feeble to resist trie forces exerted on them by trie other discs

from trie sides, forces which are absent from our simulation.

One should be able to reduce this "locking" behairiour of the intruder by introducing
a size

distribution of relatively narrow width on the small particles to disturb the regular arrangement
observed in monodisperse packings. ~~nother possibility might be to use a different probabil-

ity distribution for the choice of the displarement of the single discs. Experiments evidence

fluctuations of the discs around their mean position [8]. If more about these fluctuations were

known, they might be incorporated in the simulations to render them more realistic.

4. Summary

We studied a periodically tapped system of discs with one large intruder disc m a background of

monodisperse smaller discs by means of a Monte Carlo like simulation method which emphasizes
geometric effects. By using a much smaller value for the maximum displacement in one Monte

Carlo step than in previous work [13], the agreement with experiments coula be enhanced

substantially. lN~e observed size segregation without accompanying convective motion of the

background discs. Trie typical ascent velocities are similar to the ones observed in expenments
conducted in this quasi-static regime [8], due to a suitable choice of the maximum step width

à in the simulations.

The ascent of the mtruder takes place
m an intermittent or continuous fashion, depending

on the size ratio 4l
=

RIT. In the case of intermittent ascent we find well defined stable

positions of the intruder. In simulations with a very small intruder, the system may stay
in such a stable configuration for a very long time as observed in experiments [9]. For very
large values of 4l, close to the theoretical threshold for continuous ascent of 4l

=
12.9, the 4l-

dependence of the stability of these positions affects the ascent irelocity significantly. We grue

a purely geometrical explanation for this, based on the mechanism by which the ascent of the

mtruder is accomphshed in our simulations. In experiments, other mechanisms besides this are

active. As recent experiments sho,v, large scale horizontal block motions are hkely to untrap
the intruder Ii?i These do not occur m our simulations, ~A>hich emphasize the local influence

of geometry instead of long-range interactions. Their absence may be an explanation for the

irregulanty of the ascent velocity even for large intruders. Thus, the simulation can contribute

to the understanding of the mechanisms active m size segregation by clearly showmg which

effects are due to the geometry of the problem and which are not.
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