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Rotationally driven gas of inelastic rough spheres
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Abstract. — We study a gas of inelastic rough spheres confined on a 2D plane, driven on
the rotational degrees of freedom. Event driven molecular dynamics (MD) simulations are
compared to mean-field (MF) predictions with surprisingly good agreement for strong coupling
of rotational and translational degrees of freedom — even for very strong dissipation in the
translational degrees. Although the system is spatially homogeneous, the rotational velocity
distribution is essentially Maxwellian. Surprisingly, the distribution of tangential velocities is
strongly deviating from a Maxwellian. An interpretation of these results is proposed, as well
as a setup for an experiment.
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Systems of hard spheres have a long-standing history as a basic model for gases, liquids,
and e.g. glasses. When dissipation is added, one has the minimal model for granular materials
and it is only a small step to include also the rotational degrees of freedom via a tangen-
tial interaction at contact. Granular materials belong to the fascinating world of non-linear,
dissipative, non-equilibrium systems [1-4], whose interest is due to their practical impor-
tance and due to the theoretical challenges they represent. Granular media are collections
of macroscopic particles with rough surfaces and dissipative, frictional interactions. Molecu-
lar dynamics (MD) simulations are an established tool to complement advanced theoretical
approaches and difficult experimental studies.

In order to study systems of rough spheres, kinetic theories have been extended to (weak)
dissipation and friction [5,6]. Alternative, more recent approaches are based on a pseudo-
Liouville operator formalism [7—10] and are less general in the sense that they assume ho-
mogeneity and Maxwellian velocity distributions in order to arrive at a mean field (MF)
description of systems with rotational degrees of freedom. Either the system is left undis-
turbed [7-9] and thus cools continuously, or a “driving” can be applied, i.e. energy is fed into
the system in order to reach a steady-state situation [11,12,18].

The typical driving of a granular material, in both experiment and simulation, can be
realized by moving walls [2] which lead to rather localized input of energy. Alternatively, the
system can be driven by a global homogeneous, random energy source in different variations
[11,13-18]. Depending on the experimental setup, energy can be given either to translational
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degrees of freedom or to the rotational ones, or to both. The first case catched most of
the attention — reason enough to change the focus and feed rotational energy instead of
translational. In the experiment, translational energy input was applied for special boundary
conditions and a variety of interesting experimental results were obtained just recently [19-24].
One can obtain a gas and a liquid state, together with dense, solid-like clusters which form
due to dissipation.

The dynamics of the system is usually assumed to be dominated by two-particle collisions
which are modeled by their asymptotic states: A collision is characterized by the velocities —
before and after the contact, and the contact is assumed to be instantaneous. In the simplest
model, one describes inelastic collisions by a normal restitution coefficient r only, i.e. the
negative ratio between the normal velocities after and before the collision. However, since
surface roughness and friction are important [7-10,25, 26], one should allow for an exchange
of translational and rotational energy. In the simplest approach [5,7,26], surface roughness is
accounted for by a constant tangential restitution coefficient r;, which is defined in analogy
to r in the tangential direction. A more realistic friction law involves the Coulomb friction
coefficient [9,10,27-29], so that the tangential restitution will depend on the collision angle.
Constant tangential restitution is recovered in the limit of perfect friction.

In this Paper, we will focus on a system of such perfectly rough particles, where only the
rotational degrees of freedom are coupled to a homogeneous driving. Such a situation could
correspond, for example, to a gas of rough magnetic particles subject to a rapidly varying,
homogeneous, magnetic field. Besides a possible experimental application, we believe that
this study is interesting in itself. We examine the case of isolated rotational driving, since
the correct modeling of the driving mechanism is of great importance for a theory of granular
gases to describe realistic experimental situations.

The model consists of N three-dimensional spheres with radius a and mass M, interacting
via a hard-core potential and confined to a 2D plane of linear extension L, with periodic
boundary conditions. The degrees of freedom are the positions 7;(t) the translational velocities
v;(t) and the rotational velocities w;(t) for each sphere numbered by i = 1,..., N. When two
particles 1 and 2 collide, their velocities after collision are related to the velocities before
collision, through a collision matrix which is derived from the linear and angular momentum
conservation laws, energy/dissipation balance. The magnitude of dissipation is proportional
to the quantities 1 —r? and 1 —r?, while the strength of the coupling between rotational and
translational motion is connected to 1 + r;, where the normal restitution r varies between 1
(elastic) and 0 (inelastic) and the tangential restitution r; varies between —1 (smooth) and
+1 (rough), corresponding to zero and maximum coupling, respectively [5,7,26].

In order to feed energy, the system is agitated each time interval At = fd_rl, with a driving
rate fg,. Here, we will not apply driving frequencies much higher than the collision rate 2, but
will use driving frequencies around 100s~!, comparable to ). This is rectified, since numerical
checks with strongly different values of fg, lead to a similar behavior of the system even for
driving frequencies lower than, but of the same order as 2, provided that a stationary state is
reached. The translational velocity remains unchanged, but the angular velocity w; of particle
i is modified at each time of agitation ¢ so that wi(t) = w;(t) + r; wo, where the prime on
the left hand side indicates the value after the driving event. Due to the two-dimensionality
of the system, we apply the driving force only to the z-direction, so that the scalar w is to
be understood as the z-component of w. wy is a reference angular velocity (in this study we
use wo = 2.4 10~*s71) which allows, with vy = awe = 2.4 10" ms~!, where a = 1073 m, to
define the dimensionless translational and rotational particle temperatures Ty, = Eyr/(NTo)
and Trot = 2Eyot/(NTp), with the translational energy Ei, = (M/2) Zf;l v?, the rotational
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Fig. 1 — Snapshot of the particle distribution in the steady state for a system of N = 11025 particles,
v=20.34, r: =1, and r = 0.1.

energy B, = (¢Ma?/2) Y, w? (¢ = 2/5 for 3D spheres), and the reference temperature
To = MvZ. The variance of the uncorrelated Gaussian random numbers r; (with zero mean)
can now be interpreted as a dimensionless driving temperature Ty, [11]. The stochastic driving
leads thus to an average rate of change of temperature

ATrot/At = Hdr 5 With Hdr = fderr . (1)

The starting point for our mean-field analysis is the theory of Huthmann and Zippelius [7],
for a freely cooling gas of infinitely rough particles, which was recently complemented by event
driven (ED) simulations in 2D and 3D [8] and by studies of driven systems as well [11]. The
main outcome of this approach is a set of coupled evolution equations for the translational
and rotational MF temperatures T, and Tpot [7] which can be extended to describe arbitrary
energy input (driving) [11]. In the present study, given the random driving temperature Tq,
and an energy input rate fq4,, as defined above, one just has to add the positive rate of change
of rotational energy Hyg, to the system of equations:

d
STlt) = [_GATEJQ +GBTt1r/2Tr0t] (2)
d
“Tlt) = 2 [GBT - GCTY T | + Har , (3)

with G = 8/(VmMa)vga,(v), and the pair correlation function at contact gaq(v) = (1 —
7v/16)/(1 — v)? in the approximation proposed by Henderson [30,31], dependent only on
the volume fraction of the granular gas v = 7a®?N/V. The constant coefficients in Egs. (2)
and (3) are A = (1—r%)/4+n(1 —n)/2, B =1n?%/(2q), and C = n(1 —n/q) /(2q), with the
abbreviation n = n(ry) = ¢(1+1¢)/(2¢ + 2), as derived in Ref. [7]. A typical steady-state
configuration in shown in Fig. 1.
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Fig. 2 — Simulation (points) and theory (lines) for the parameters v = 0.34, N = 11025, and r; = 1,
plotted against . (a) Stationary rotational temperature Tyot, normalized by the MF value Tyt (r = 0)
at r = 0. (b) Ratio of stationary rotational and translational temperature R = Trot /5.

Setting to zero the temporal derivatives in Eqgs. (2) and (3), one obtains the steady state
properties of the system:

. Hy, 2/3
Troqt = (GF) , and Tterq = Treo%/R ) (4)
with T = 2(B/A)"/? (C — B?/A), and R = A/B.

In Fig. 2 we present the stationary (steady-state) values of Tyot, normalized by the MF
value Tt (r = 0), and of the ratio R = Tt /Ter}, as obtained from numerical simulations of
a system of N = 11025 particles, with volume fraction v = 0.34, r, = 1, and r ranging from
0.99 to 10~*. Surprisingly, the agreement with the MF prediction is very good, even for the
lowest value r = 10~* of the normal restitution, which corresponds to very strong dissipation,
where the deviation from MF theory is of the order of only 10%.

To give an example, if the system is driven on the translational degrees of freedom, the
stationary temperatures show deviations of 30 —40% from MF predictions already for r = 0.6,
see [11]. The snapshot in Fig. 1 shows the particle distribution for » = 0.1 and appears
spatially homogeneous — apart from small density fluctuations not quantified here.

In Fig. 3, we show the stationary rotational and translational velocity distributions for
r = 0.1, with the other parameters as above. The rotational velocity distribution is very
near to a Maxwellian. A three parameter fit f(z) = Aexp(—B|(z — (z))/o|*), where o =

({(z - (m))z))l/ 2, and z either equals w or v, is plotted as dashed line in Fig. 3. The parameters
(w), {v) and o are taken from the simulations, and the fit gives a = 1.92(6) for w, while we
obtain a = 1.41(6) for v. This last value is quite near to the value 3/2 obtained theoretically
by T.P.C. van Noije et al. in [16]. The applicability of the approach of [16] to the present
case, however, has to be discussed since in [16] a translationally driven, granular gas of smooth
particles is considered. A generalization to arbitrary driving is a next possible step.

Rotational velocities are characterized by good homogenization at low r, while the trans-
lational velocity distribution shows strong deviations from a Maxwellian.

In order to check the role of the tangential restitution, we show in Fig. 4 the stationary
values of R with r = 0.1 and r; € [—1,1]. While for positive r; there is still good agreement
with MF theory, strong deviations appear as r; — —1. Note that many realistic materials
obey the relation r; = 0.4 [28], what renders our mean field approach still acceptable.
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Fig. 3 — Steady state rotational (a) and translational (b) velocity distributions for N = 11025,
v =034, r, =1.0 and » = 0.1. A power law fit (dashed line) gives an exponent a = 1.92(6) for the
rotational distribution and o = 1.41(6) for the translational distribution (see text for details). For
comparison, a Maxwellian (solid line) is plotted in (b).

Our conclusions are that the driving on the rotational degrees of freedom is able to keep the
spatial homogeneity of the system up to very high dissipation rates, for positive values of r;.
This leads to a very good agreement of the stationary temperatures with the MF predictions.
There are two possible reasons for this. From one side, the driving acts on rotations. Then,
it cannot favorize collisions, since it does not increase the normal component of the relative
velocity of the colliding particles. From the other side, the increase of rotational energy
triggered by the driving leads to a shearing force between particles, which reduces density
fluctuations and should destroy the translational velocity correlations - but astonishingly does
not. When r; — —1, the agreement with MF is lost. To explain this result one has to
remember that 1 + r; is a measure for the strength of the coupling. Not enough rotational
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Fig. 4 — Simulation (points) and theory (lines) results for R = Trot/T%:, with parameters v = 0.34,
N = 11025, and r = 0.1, plotted against 7.
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energy is transferred to the translational degree, so that the randomization on collisions does
not take place. Thus, it is not surprising that MF is no more valid in this very singular limit.
Snapshots of the particle distribution for r = 0.1 and r; near to —1 (not displayed here) show
indeed stronger density fluctuations in the system as reported in Fig. 1.

The translational velocity distribution exhibits strong deviations from MF prediction, in
the homogeneous high dissipation regime, showing that deviations from a Maxwellian are not
necessarily related to clustering. Moreover, one can have a good agreement of the second
moment (the temperature) of the velocity distribution with MF theory together with non
Maxwellian velocity distributions. This poses a theoretical challenge, since recently proposed
theories for translationally driven granular gases [32], assume that clustering is responsible for
fat tails in the velocity distribution. The reason why clusters do not to occur in our situation,
possibly due to the fact that vortices in their early stage are destroyed by the rotational
driving, is an issue for future studies.

Apparently the temperature of the system depends mainly on the energy balance relations,
which depends indirectly on density fluctuations (density fluctuations influence strongly both
the frequency of collision and the rate of dissipated energy per collision) while higher moments,
and the overall shape of the velocity distributions are more sensible to other details.

A possible setup for an experiment is the following. Each, extremely rough, granular
sphere, contains a small (to reduce the effect of dipole-dipole interaction at collision) magnetic
bar. The plane on which the spheres move should be extremely smooth, in order to avoid
energy dissipation. Then, spatially homogeneous magnetic pulses periodically spaced in time
can be applied in the horizontal directions. This would be the magnetic analogon of the
oscillating plane. If the magnetic field is really spatially homogeneous, the magnetic dipoles
of the spheres will receive angular momentum from the field, so only rotations are driven, and
this angular momentum will be “randomized” by the collisions, if they are frequent enough.
To reach a steady-state, it is necessary to give an initial translational velocity to the particles.
We are aware that such an experiment is extremely difficult to realize, but a similar setup
seems already operational in Dortmund [34]. Another reason to look at rotational driving via
magnetic forces is the recent interest in electrostatically driven granular media [33] and in
magnetic particles with dipolar interactions [35,36].

Summarizing, the main discovery of this work is that a dissipative gas has strongly anoma-
lous velocity distributions even in the absence of large-scale inhomogeneities. This is achieved
by injecting the energy into rotational motion and allowing for a transfer to translations
through strong friction. The system acts like a “transformer” converting Maxwellian degrees
of freedom into distributions with fat tails.
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