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Abstract

The trace of the fabric tensor in static, isotropic, two-dimensional, frictionless,
polydisperse granular materials is examined theoretically and numerically. In the
monodisperse case, the trace of the fabric tensor equals the product of volume frac-
tion and coordination number — thus the fabrics trace can be seen as contact density.
For various size distributions, we obtain a correction factor to the monodisperse ob-
servation, which involves the first three moments of the particle size distribution
function. The theoretical prediction is found to be in good agreement with numeri-
cal simulations of static frictionless systems.

Key words: Fabric tensor, discrete element simulation, bidisperse and
polydisperse size distributions

1 Introduction

Inhomogeneous and anisotropic materials attract still increasing interest, not
only in the framework of classical disordered systems like glasses but also, more
recently, in connection to granular materials, see (Roux et al., 1987; Guyon
et al., 1990; Vardoulakis and Sulem, 1995; Jaeger et al., 1996; Wolf and Grass-
berger, 1997; Herrmann and Luding, 1998; Vermeer et al., 2001). Disordered
materials can be characterized by frozen-in or quenched disorder, a property
that distinguishes them from a crystal, where long-range order exists, or a
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simple fluid or gas, where homogeneity and isotropy can often be assumed.
Connected to the structure of disordered materials, and of more general rel-
evance, are concepts like rigidity percolation, see (Moukarzel, 1996; Jacobs,
1998), or internal variables to describe damage/fracture, see (Cambou and
Sidoroff, 1985; Vardoulakis et al., 1998; Kun and Herrmann, 2000). Research
focusses on the relations between the quantities stress, strain, and fabric, see
(Cowin, 1985; Sadegh et al., 1991; Roux et al., 1991; Darve et al., 1995), and
very recently a tremendous interest in homogenization and constitutive laws in
the framework of a micro-macro transition emerged, see (Vermeer et al., 2001;
Darve et al., 1995; Cambou et al., 1995; Emeriault and Chang, 1997; Cowin,
1998; Kuhl et al., 2000; Ehlers and Miillerschén, 2000; Dedecker et al., 2000;
Oda and Iwashita, 2000; Bagi, 1996, 1999; Edwards and Grinev, 1999; Ball
and Blumenfeld, 2002; Bagi, 2003). A helpful tool for such studies are discrete
element or, with other words, molecular dynamics simulation techniques, as
introduced by Cundall and Strack (1979, 1983); Allen and Tildesley (1987),
and applied to idealized granular materials by Radjai et al. (1999); Léatzel
et al. (2000); Luding et al. (2001a,b); Luding and Herrmann (2001); Létzel
et al. (2001); Luding (2002a).

An essential question is the characterization of disorder and, as a first step, the
quantitative prediction of mean material properties. Straightforward progress
is possible when a periodic structure (crystal) is regarded: one has only to ac-
count for one unit cell and global properties can easily be predicted, as done by
Kruyt and Rothenburg (2001); Luding and Herrmann (2001); Luding (2004).
For disordered media, the concept of the fabric tensor naturally occurs when
the system consists of an elastic network, or a packing of discrete particles. The
fabric tensor is then a zero- and second-order harmonic fit to the probability
distribution function for load-carrying contacts in a given direction.

Various definitions of the fabric tensor exist in the literature, see (Rothenburg
and Selvadurai, 1981; Goddard, 1986; Mehrabadi et al., 1988; Chang, 1988;
Thornton and Randall, 1988), including definitions for elliptical or polygonal
particles, see (Sadd et al., 1997; Goddard, 1998), and tensors of higher rank
than two, see (Chang et al., 1995; Jenkins, 1997; Tobita, 1997). The fabric ten-
sor can be related to the anisotropic material stiffness tensor, see (Bathurst
and Rothenburg, 1988; Chang et al., 1995; Kruyt and Rothenburg, 1996; Liao
and Chang, 1997; Liao et al., 1997; Bigoni and Loret, 1999; Bagi, 1999), in
static, frictionless assemblies. The isotropic part, i.e. the trace of the fabric is
then a measure for the bulk stiffness or compressibility under isotropic strain,
see (Létzel et al., 2000; Luding, 2002a). The fabric is most readily exam-
ined by means of molecular dynamics simulations, as done by Cundall and
Strack (1983); Thornton (1997); Luding (1997); Thornton (2000); Thornton
and Antony (2000); Oda and Iwashita (2000), but also experiments are avail-
able, see for example (Oda et al., 1997; Dubujet and Dedecker, 1998; Tsoungui
et al., 1998).



The dynamical evolution of the fabric tensor, as examined by Shima (1993);
Kruyt and Rothenburg (2001) during compaction, by Dubujet and Dedecker
(1998) during constant volume deformation, by Oda et al. (1997); Oda and
Kazama (1998); Thornton (2000); Thornton and Antony (2000); Oda and
Iwashita (2000); Kruyt and Rothenburg (2001) during shear, and by Luding
(1997) for various boundary conditions, is still an open issue; see also (Roux,
1997, 2000). The inclusion of the concept of a dynamic material structure
tensor into continuum models (Dubujet and Dedecker, 1998) or its relation
to advanced hypoplastic continuum constitutive models, see (Kolymbas et al.,
1995; Bauer and Tejchman, 1995; Gudehus, 1996; Tejchman, 2002), with in-
ternal tensorial state variables.

The purpose of this paper is to examine the isotropic part of the fabric ten-
sor in static, isotropic, two-dimensional (2D), polydisperse packings, as a first
step. Throughout this paper a volume can also be seen as an area and a par-
ticle surface can be interpreted as the circumference of a particle. After the
definition of the fabric used here, the effect of different particle size distri-
butions on the fabric tensor is examined theoretically. The solution of our
approach is then approximated (in order to allow for simpler equations) and
compared to numerical simulations of corresponding assemblies with different
particle size distribution functions.

2 Single particle case

One quantity that describes the local configuration of a granular assembly to
some extent is the fabric tensor of second order
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where the n¢ are the components of the unit normal vector at contact ¢ of
particle p with radius a,. Eq. (1) is a definition of the fabric tensor that uses

the so-called branch vector [P° from the center of particle p to its contact c.
However, the unit normal and the unit branch vector are identical in the case
of spherical particles (disks in 2D). The trace of the fabric tensor,

cp
Fio = mgng=C", (2)
c=1

is the number of contacts of the particle, CP.



3 Many particle case

The mean fabric tensor is a quantity that describes the contact network in
a given volume V. The three-dimensional volume is obtained from the two-
dimensional area by multiplication with the length of the system (height of the
disks), h. Thus we continue with the expression volume, because the formalism
can easily be extended to three dimensions. Assuming that all particles which
lie inside V' contribute to the fabric with a weight V, = mha?, we take the
average of the fabric tensor by weight V,

(Fas)v =3 S VPl ®)

There would be at least two possibilities for V), () the volume of the polygon
(e.g. obtained via a Voronoi tesselation) that contains the particle, or (i) the
volume of the particle itself. We choose option (7)) so that in analogy to the
trace of the fabric for a single particle, the trace of the averaged fabric is

mh
(Faa)v = v Z CLIZ, Cc? (4)
peV
N7 (5)
P

a contact number density — in our definition. Alternative definitions, (Cowin,
1985; Goddard, 1986; Chang, 1988; Sadegh et al., 1991; Dubujet and Dedecker,
1998; Cowin, 1998; Bigoni and Loret, 1999), see may involve constant prefac-
tors or slightly different contributions, e.g. the connection vector from particle-
center to its contact neighbors center can be used, so that our interpretation
may not be applicable.

3.1 Monodisperse particles

In the monodisperse case, Eq. (4) for identical particles (a, = a) reduces to
(Faa)v = v{C), where v is the volume fraction, defined as the ratio of the
volume covered by particles and the total volume. This is because in 2D, the
system arranges itself in an almost regular, periodic triangular lattice. The
brackets (...) denote an average by particle, i.e. (C) = (1/N) X, C?, whereas
(...)v denotes an average by volume-weight, see Eq. (3). The volume fraction
is thus defined as v = (1)y.



3.2 Polydisperse particles

The situation is different for a polydisperse granular packing, insofar as Eq.
(4) does not reduce to (F,,)y = vC. The principal problem is to evaluate the
sum in Eq. (4) as a function of the size distribution.

Assume a polydisperse distribution of particle radii with probability f(a) da
to find the radius a between radii @ and a + da, and with [;° da f(a) = 1.
Therefore considering the continuous limit of Eq. (5), one has:

(Fua)v = 37 [ daVy(a) C(@) J(a) ()

with the mean number of contacts C'(a) of particles with radius a. With a
continuous size distribution function, the volume fraction is obtained via

v= {1y =1 [ daVya)f(a) (7)

We will evaluate Eq. (6) using an approach similar to the one proposed by
Ouchiyama and Tanaka (1981). Assume that a reference particle with radius a
is surrounded by identical particles of mean radius @ where @ = [;° da a f(a) .
Here we are interested in that part of the reference particle’s surface that is
covered or shielded by a contact partner, as sketched in Fig. 1.

The surface angle covered by a particle with radius @ on a particle of radius a
is

2¢(a) = 2arcsin ( i_) = 2 arcsin (2 i 6) , (8)

a a

where € = a/@ — 1 is a small quantity for narrow size distributions and thus
quantifies the deviation from the monodisperse situation.

The linear compacity

¢s = 2¢(a)C(a)/2m 9)

of the reference particle is defined as the fraction of its surface which is shielded
by other particles. Now, the basic assumption is that ¢, is independent of a
or, with other words, the number of contacts is proportional to the surface



Fig. 1. Schematic graph of a central particle with radius a, surrounded by identical
particles of the mean radius a. The shielded surface of the center particle is shown
as thick solid arcs.

(circumference) of a particle (in 2D). Thus, the expected mean coordination
number becomes

C= / da C(a) f(a) = mcsqo (10)

with ¢o = [3° da f(a)/¢(a). Note that Egs. (9) and (10) imply that C(a) is
linear in a (with an offset) — this can be false for much broader particle size
distribution than examined here. In the same spirit, according to Eq. (10), the
trace of the fabric for a polydisperse assembly is

<Faa>V :UVQQ 3 (11)

with our central result, the correction factor

( 2>g _ Jo° da an(a)/(ﬁ(a)
@ al dad? f(@) -

Q

g2 =

and C = (C) implied. The brackets (a*), denote the k-th moment of the
modified distribution f(a)/#(a), normalized by go. This leads to (a®), = 1
and for a monodisperse granulate, one has again g = 1. In our nomenclature,
gx thus means (a*), normalized by a*.



8.8 Narrow size distribution

In the limit of a narrow size distribution, by Taylor expansion to first order
in € (corresponding to a Taylor expansion around a = @), one obtains

5~ R (1 ! é) | 19)

In Fig. 2, we plot 1/¢(a) from Eq. (8) and its Taylor expansion in Eq. (13).
The dashed line on the graph is the approximation and the solid curve is the
exact form. Since the simpler approximation has less than 1% error in the
range —0.5 < € < 1.5 (or 0.5 < a/a < 2.5), we will use it for correspondingly
narrow size distributions in the following. By this approximation, one obtains
the correction factor for the fabric of a polydisperse packing,

g2m1+@<£;—1>, (14)

which accounts for arbitrary size distribution functions f(a), as long as they
are not too wide.
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Fig. 2. 1/¢(a) plotted against e = a/@ — 1, in first order approximation and exact.
The inset shows the quality factor ¢ = ¢(a)/¢1(a) of the approximation.

3.4 Special size distributions

In this section, we apply the above theory to special cases in order to evaluate
the quality of Eq. (14) in the following section.



3.4.1 Bidisperse

In a bidisperse system, one has two particle radii a; and ay and the size-
distribution function is thus

fla) = fi6(a — a1) + fod(a — as) (15)

with the fractions f; = N;/N and fo = Ny/N, of particles with radius a,
and asq, respectively, with N = N; + N,. It is straightforward to compute the
terms necessary for a calculation of g, in both Egs. (12) and (14) one by one.
Combining the terms

a= fia; + fray,
a? = fia} + foa;
g_fl% + fzaz )
Qo= fid(a) ™" + fop(ax) ™",
qo(a®)g = fralp(ar) ™" + faajg(as) ', and
#(a1,2) =arcsin [1/(1 + a1 2/a)] ,

allows the calculation of both the exact expression and the approximate one.
For a special bidisperse system with a; = a, as = 3a, and fi; = f, = 1/2,
i.e. €0 = —% and e = %, we are in the range where our approximation, Eq.
(14), has less than about 1% error, see Fig. 2. Therefore, for this special
bidisperse situation, one gets

a=2a ,
a?=5a’,
a? =14a
g0 = (¢(a ) +¢>(az) ")/2, and
go(a” >g=( “$(ar) "+ 9a”¢(az) 1)/2 , with
¢(a1) =arcsin [1/(1 + 1/2)] = arcsin (2/3), and
¢(ag) =arcsin [1/(1 + 3/2)] = arcsin (2/5) .

After explicit computation this leads to the exact go = 1.223 or to g, ~ 1.220
from Eq. (14), in good agreement with the exact value for a binary mixture
with size ratio ay/a; = 3.

3.4.2  Uniform disperse

In a uniform disperse system, a special case of polydisperse systems, the radius
of the particles is distributed uniformly between (1 —wy)@ and (1+wo)@ where



2woa 18 the width of size-distribution function

fla) = 213059 (14 wo)a — a) © (a — (1 — wo)a), (16)

with the Heaviside step function ©(z) = 1 for z > 0 and O(z) = 0 elsewhere.
It is again straightforward to compute the contributions to g2, so that one
obtains

= (1/3)2(3 + ud)
F=at(1+ud) |
1 17”0 dz
o= 2wo arcsin(1/(1 + z)) ’
“wo
_92 14+wo d 2
qo(a®)y = a / - vy , and
2wy arcsin(1/(1 + z))
14w dr z?
go= 3 -fl—wo0 arcsin(1/(1+z))
2 — w T
(3 + ’LUS) flljwoo arcsin((li/(l—kw))

The polydispersity correction for wy = 0.5, leads to go = 1.085, while from
the approximation one gets go = 1.083, both again in good agreement.

4 Simulations and Results

For a numerical verification of our theoretical predictions, we perform soft
sphere molecular dynamics (MD) simulations of disks in a box with flat walls.
The interaction of the particles is the simplest linear spring-dashpot model,
see e.g. (Luding et al., 1994; Luding, 1997), disregarding friction and non-
linear behavior at the contact. Firstly, we generate about N = 2000 particles
(disks), on a sparse square lattice, with random radii according to the distribu-
tion function of radii f(a), as defined above, and give them some small initial
velocity, in order to create initial disorder. Secondly, we use the MD simulation
and compress the system until a pre-defined volume fraction, say v = 0.9, is
reached. In most cases, compression is achieved by moving the top-wall down.
However, also other protocols of compression like a stress-controlled isotropic
compression did not lead to a recognizably difference in the initial condition —
the lack of friction is the likely reason for this independence on the history of
preparation. Then the simulation is continued until almost all kinetic energy
is dissipated. Figure 3 shows one typical steady state configuration. Averages
are performed in the middle of the system, in order to avoid boundary effects,



i.e. we do not use the cells close to the boundaries displayed in Fig. 3. The
center-subsystem can be divided further into various smaller subsystems to
allow for different averages of varying quality. Within the statistical fluctua-
tions, the system is spatially homogeneous, and the majority of the overlaps
detected is smaller than a few per-cent of the particle diameter, even for the
highest densities used.

For the comparison with theory, the average of the trace of the fabric tensor,
the average of the contact number, and the g5 factor are computed directly
from the simulations center-sub-systems using Eq. (14).
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Fig. 3. Typical uniform disperse configuration with wy = 0.5. (Left) Particles are
plotted as circles and the straight lines indicate the subsystems. (Right) Contact
network.

First, we examine the probability distribution of the orientation, #, of the
fabric tensor, i.e. the orientation of the eigenvector that corresponds to the
major eigenvalue. Fig. 4(a) shows the polar plot of the distribution of angles
6. Fig. 4(b) is similar to (a), only the angles of the branch vectors ¢ for each
contact are used to compute the probability distribution. These two graphs
show that the system in static equilibrium is almost isotropic and hence has
no memory about its previous compression. The compression was performed
vertically, but a small majority of orientations is found at  ~ 7/2. We applied
several different uniaxial compression protocols, but the homogeneity of the
system remains — within about 10 per-cent fluctuations. There is no indication
of a correlation between the applied strain and the response of the fabric
tensor. We attribute this fact to the lack of friction in our model; if friction is
present, one expects memory effects, i.e. a dependence of p(#) on the history
of the construction of the packing, see (Dubujet and Dedecker, 1998; Radjai
et al., 1998, 1999).
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(a) (b)

Fig. 4. Polar plot of the distributions p(6) (a), where @ is given by the orientation
of the major eigendirection of the fabric tensor, and p(¢) (b), where ¢ is given by
the orientations of the branch vectors between two particles in contact.

In order to quantify the deviation from an isotropic packing, we perform
Fourier series fits of the form

p(0) = po + posin(20 + 0) + pysin(46 + 6,) (17)

shown in Fig. 4 as lines (the maximum order of the fit is given in the inset).
Order 2 means, for example, that all terms higher than order 2 are neglected.
For the distribution p(#), one obtains for the order 4 fit, ps/py = —0.07 and
p4/po = 0.15, whereas one has systematically smaller deviation from isotropy,

i.e. pa/po = —0.04 and py/py = 0.02, for p(o).

4.1 Bidisperse

The parameters for the bidisperse size-distribution are the same as in sub-
section 3.4.1. First the simulation results are compared to our theoretical
predictions. We divide the center system (disregarding the boundary subsys-
tems) into 16 subsystems and calculate (F,,)v, 92, C, and v for five different
simulations with different initial configurations. Fig. 5 shows (F,,)v plotted
against Cvg,, where the line indicates the identity. The simulation data fluc-
tuate around the theoretically expected curve.

Therefore, using x = (F,,)v/Cvg,, we compute the mean, (x) = (1/n) ¥,
and the typical fluctuations, o, = 1/(22?) — (x)?/(n —1), for different numbers
of subsystems n. Fig. 6 shows the error plotted against the number of sub-
systems. It increases with increasing number of subsystems or for decreasing
number of particles in the sample, as displayed in the inset. The data show
that the error of a measurement depends on the size of the averaging volume
or representative elementary volume (REV). The relative fluctuations of one
measurement are of the order of one per-cent for 70 particles averaged over,
proportional to M~! when M is the number of particles in the subsystem. The

11
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Fig. 5. Average of the trace of the fabric tensor plotted against Cvgy for bidisperse
systems from five different realizations. The solid line is the theoretically expected
relation, see Eq. (11). Data set 1 has a density of v = 0.84, whereas the density of
the other data sets is v = 0.90.

second important fact can be extracted from the other inset, namely from the
plot of (z) vs. M, where one can see that the theory slightly underestimates
the true contact number density. In conclusion, (z) is independent of the num-
ber of subsystems, but its error increases with M, or tends to practically zero
for large enough subsystems.
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Fig. 6. The error o, of Cvgy/{Faa)y for different numbers of subsystems n. The line
is a fit to the data o, ~ 910™*n. The insets shows the same data plotted against
the number of particles M in the subsystems. The top inset gives the error with
the fit o, ~ 0.7M ! (dashed line), the bottom inset gives the average (x), which
should be unity (dotted line), and the error-bars indicate the fluctuations of the n
different values. .

Second, the g, factor calculated from the simulations is compared to the the-
oretically expected value. In the total system, the particle size distribution is
defined according to Eq. (15) with f(a1) = f(az) = 3. But when taking the
average in subsystems, the values of f(a;) and f(ap) differ. It is straightfor-

12



ward to rewrite Eq. (14) as

(18)

_1 V3 . 14— 13Af
”- _7< _(2—Af)(5—4Af)>’

where g, is a function of Af = f(as) — f(a1) and it will be equal to the global
value 1.220 only when Af equals zero. When g, is plotted against Af for
different simulations, as expected, one recovers the theoretical approximation
Eq. (18), indicating that the fluctuations in Figs. 5 and 6 are of statistical
origin.

4.2 Uniform disperse

The parameters for the bidisperse size-distribution are the same as in subsec-
tion 3.4.2. Here, we generate the particles with uniformly distributed radii,
see Eq. (16). In Fig. 7, (F,.)v is plotted against Crg,. Again we observe
fluctuations around the theoretically expected values. As mentioned before,
the scatter in the data is due to the averaging over finite samples. The slight
underestimation maybe due to a limited validity of our assumptions, or due
to the overlap that is not taken into account.
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Fig. 7. The plot as in Fig. 5 for uniform disperse systems with global density v = 0.9.

4.2.1 Coordination number and compacity

In our preparation procedure, the system size is fixed at the desired value
such that a constant density is achieved. This implies that below the minimal
possible density (uniform disperse size distribution) vy ~ 0.837 £ 0.002, no

13



stable contact network could be obtained for the frictionless systems consid-
ered here. Note that the issue of a maximum random packing density of a bi-
or polydisperse sphere packing is still subject of onging research, see e.g. Liu
and Ha (2002); Luding (2002b) and references therein. Therefore, we present
data only at higher densities in the following.

For the uniform disperse size-distribution, we check the basic assumption of
our theory, namely that c; does not depend on the particle size. In Fig. 8,
the values of ¢, are plotted for different densities and different particle sizes.
We notice that ¢, is constant for the larger densities, but slightly decreases
with particle size for lower densities. This implies that our analysis could be
somewhat less accurate in dilute systems, however, within the fluctuations of
the data due to the finite size of the samples, we conclude that the assumption
cs = const. is reasonable.
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Fig. 8. Linear compacity, see Eq. (9), for different particle sizes and different densi-
ties. The lines are line-fits to the data with offset ¢y =~ 0.780, 0.765, 0.795, 0.800, and
slope ¢, = —0.09, -0.04, -0.02, 0.005, for increasing density. Only for low densities
close to the stability threshold the assumption fails.

In Fig. 9, the contact number is plotted for different sizes and for different sys-
tem densities. The data show that the smallest possible particles will have a
coordination number of approximately C'(a — 0) ~ 2 and that the increase of
coordination number with the particle size is slightly increasing with the den-
sity. Thus, we expect also the mean coordination number to increase slightly
with density due to the finite stiffness of the particles that allow for additional
contacts when the density is increasing. Our results for different densities are
in qualitative agreement with the simulations by Kruyt and Rothenburg, see
Fig. 9 in the paper by (Kruyt and Rothenburg, 2001). Note that coordination
numbers C(a) < 4 are frequently observed, while C > 4 is valid for these
frictionless systems.
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Fig. 9. Contact number for different particles sizes and different densities. The lines
are line-fits (co +c¢pa/a) to the data with offset ¢y = 2.35, 2.14, 2.16, 2.08, and slope
cm = 1.69, 2.20, 2.46, 2.75, for increasing density.

4.2.2  Local size distribution

In Fig. 10, the g, factor is plotted for the different subsystems from the five
different realizations. The line is the theoretically expected value, however,
the simulation results are fluctuating around it. We attribute the variation of
g2 again to the local size distribution function within one subsystem, which is
different from the global distribution function. In the following, the local g,
will be used.

1.16 T T T T T T T
16cdls -
9cels o
114 + 4cdls o
lcell &
112 | R . )
. 8 .
~ 110 8 ¢ 9 9 @ a8y
U T T T
108 [ E ¥ o 8 gmi
1.06 +
1-04 1 1 1 1 1 1 1

084 085 086 087 08 089 09
v

Fig. 10. The g factor from uniform disperse simulations, plotted against the global
density in the system from which it was taken.

4.2.3 Variable density

In Fig. 11, the trace of the fabric tensor (Fy,,)y is plotted against Crg, from
simulations with different volume fractions and a uniform disperse particle size
distribution. The agreement between the data and the theoretical prediction is

15
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Fig. 11. The same data as in Fig. 5, but for uniform disperse particles with different

volume fractions 0.84 < v < 0.90. The two figures are for four and nine subsystems
evaluated.

reasonable also for smaller densities v < 0.90, as used above. With decreasing
density v, the trace of the fabric tensor also decays, but remains on the identity
line. Hence our theoretical correction factor go works for bi- and uniform-
disperse particle size distribution functions likewise.

In Fig. 12, the probability distribution of the direction of the branch vectors is
plotted for different densities. Like in the bidisperse case, there is no evidence
for anisotropy in the packing.

4.8 Coordination number and overlap

In Fig. 13, the coordination number in the center cells is plotted against the
density obtained in these cells. Note that the density in the center cell is
somewhat larger than the global density due to the empty spaces between the
wall and those particles contacting it. The larger the number of subsystems and
the smaller the global density, the larger are the fluctuations in both C and v.
Even unphysical values C' < 4 can be obtained due to our evaluation procedure
that involves also so-called “rattlers”, i.e. particles with no contacts that do

16



v=0.85 v=0.87

v=0.89

(c) (d)

Fig. 12. Polar plot of p(¢) for the orientation of the branch vector for global volume
fractions (a) v = 0.85, (b) v = 0.87, (c) v = 0.89, and (d) v = 0.90.

not contribute to the mechanically stable contact-network. The coordination
number rapidly increases from a value C = 4 at the smallest density. However,
within the scope of this paper, an evaluation of the functional behavior is
postponed and we do not examine this quantity further.

As the final plot, we present the mean dimensionless overlap as a function of
the global density for the simulations presented above, in Fig. 14. We remark
that the typical overlap obtained is only about 2.5 per-cent of the particle
radius for v = 0.91, and that the overlap increases linearly from zero, at the
minimal density v, ~ 0.84.

5 Conclusion and Discussion

In summary, the trace of the fabric tensor was examined in almost isotropic,
disordered arrays of polydisperse, frictionless particles in static equilibrium,
at different densities. The key result is an analytical expression for the contact
number density, i. e. the trace of the fabric tensor. It factorizes into three con-
tributions: (i) the volume fraction (or, with other words, the density), (ii) the
mean coordination number (a function of density), and (iii) a dimensionless
correction factor g, which is only dependent on the particle size probability
distribution function. The theoretical prediction for g, is verified with molecu-
lar dynamics simulations for various size distributions and densities. As long as
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the distribution is reasonably narrow the agreement between theory and sim-
ulation is reasonable, within the statistical fluctuations. The latter issue was
also addressed in more detail, and a typical deviation of about one per-cent
from the mean is obtained for averaging volumes containing around 100 par-
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ticles. Preliminary simulations with anisotropic configurations and frictional
particles show that the results still hold within a few per-cent (for the cases
examined, however, larger differences can be expected for strongly different
protocols of preparation of the sample). Even though friction should reduce
the average number of contacts for the same preparation protocol, the density
would also be reduced at the same time. Thus there is hope that our relations
still hold as function of density. In any case, we expect that our results are a
starting point for studies involving more realistic systems and particles.

The trace of the fabric tensor is a quantity that is related to the bulk stiffness
of the material, see (Rothenburg and Selvadurai, 1981; Chang, 1988; Létzel
et al., 2000; Kruyt and Rothenburg, 2001; Luding, 2002a). Our theoretical
prediction relates it to the first three moments of the size distribution function
(in the case of a sufficiently narrow size distribution), and thus allows to
predict a macroscopic material property based on a microscopic property of
the material. The prediction is that, in general, the trace of the fabric — and
with it the bulk stiffness — will increase with g9, a function of the “width” of
the size distribution.

Preliminary studies, concerning the trace of the stress tensor for systems with
different particle sizes, (04a)v, show that it contains a lowest order _correction
factor dependent on the first two moments of f(a), i.e. (0aa)v o< (a?/@® — 1).

Future work, concerns the correction for the fabric and the pressure also for
broader polydisperse size distributions, and for three-dimensions. Further-
more, the presented results should be generalized towards an-isotropic struc-
tures and frictional, cohesive and possibly non-spherical particles.
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