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Abstract

A study of the transport coefficients of a system of elastic hard disks, based on the use of Helfand-

Einstein expressions is reported. The self-diffusion, the viscosity, and the heat conductivity are

examined with averaging techniques especially appropriate for the use in event-driven molecular

dynamics algorithms with periodic boundary conditions. The density and size dependence of the

results are analyzed, and comparison with the predictions from Enskog’s theory is carried out. In

particular, the behavior of the transport coefficients in the vicinity of the fluid-solid transition is

investigated and a striking power law divergence of the viscosity with density is obtained in this

region, while all other examined transport coefficients show a drop in that density range in relation

to the Enskog prediction. Finally, the deviations are related to shear band instabilities and the

contept of dilatancy.

PACS numbers: 05.60.-k,02.70.Ns,05.20.Dd
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I. INTRODUCTION

Transport coefficients characterize the different dissipation mechanisms in non-

equilibrium states. At the macroscopic level, they are introduced by phenomenological

equations, like the Navier-Stokes equations for a simple fluid, which predict the time evolu-

tion of mass, momentum and energy [1]. Each transport coefficient is related to the propa-

gation of one (or more) of these microscopic quantities, bridging therefore the hydrodynamic

and the microscopic scale. In the case of low density gases, the macroscopic equations have

been justified, their range of validity has been determined, and explicit expressions for the

transport coefficients have been obtained using the Boltzmann kinetic equation as starting

point [2, 3]. At higher but moderate densities, the Enskog equation has also proved to give

a quite accurate description of a gas of hard spheres or disks.

A remarkable and fundamental development in the statistical mechanics theory of trans-

port processes was the derivation of expressions for the transport coefficients based on equi-

librium time-correlation functions. These are the so-called Green-Kubo formulas, and they

involve different microscopic fluxes [4]. These expressions, although formal, are of general

validity and have been extensively used for the analysis and modelling of transport in dense

systems. In particular, they have been applied to the computation of transport coefficients

by means of molecular dynamics simulations.

Alternative formal expressions for the transport coefficients are provided by the Einstein-

Helfand formulas [5, 6], the simplest of which being Einstein’s formula for the self-diffusion

coefficient in terms of the second moment of the displacements. The Einstein-Helfand ex-

pressions for the other transport coefficients involve moments of corresponding dynamical

variables, which are the time integrals of the microscopic fluxes appearing in the Green-Kubo

relations.

In the last years, there has been a revived interest in transport processes in systems

composed by hard particles motivated by the study of granular media in general, and gran-

ular gases as a special case [7–9, 50]. The simplest valid model of them is an assembly of

inelastic hard spheres or disks, in which the inelasticity is accounted for only through one

constant parameter, the coefficient of normal restitution. In the low density limit, hydrody-

namic Navier-Stokes like equations, with explicit expressions for the transport coefficients,

have been obtained for this model, by starting from the inelastic extension of the Boltz-
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mann equation [10]. Moreover, it has been shown that the transport coefficients for a dilute

granular gas can be expressed in the form of generalized Green-Kubo relations [11, 12].

The Enskog equation has also been extended to inelastic particles [13, 14], but its density

and inelasticity range of validity is still not clear. On the other hand, formally exact relations

between transport coefficients and appropriate correlation functions, similar to the Green-

Kubo and Einstein-Helfand formulas, appear up to now limited to the low density limit

mentioned above and to the simplest cases of tagged particle motion [15, 16], although

there have been some more general proposals [17, 18]. Therefore, for high densities, the only

available hydrodynamic theory for granular systems is restricted to the so-called quasi-elastic

limit.

The first calculations of transport coefficients for hard-sphere systems by means of equilib-

rium molecular dynamics simulations go back to the pioneering works by Alder and coworkers

[20, 21]. The dependence of the values of the transport coefficients on the density and also

on the number of particles used in the simulations have been analyzed. At high densities,

significant deviations from the Enskog theory predictions are observed, especially for the

self-diffusion and shear viscosity coefficients [22–25].

In spite of all the work done for three dimensional systems, it is hard to find results for

two dimensions, i.e., for a fluid of hard disks. A notable exception is ref. [26], where the

viscosity of a system of hard disks is measured by using an Einstein-Helfand expression.

It could be argued that this is due to the presence of long time tails in the equilibrium

correlation functions appearing in the Green-Kubo expressions of the transport coefficients

[27, 28, 51], but it must be noticed that they do not invalidate by themselves the possibility

of a hydrodynamic description. Mode coupling theory and, more conclusively, simulation

results obtained in lattice-gas cellular automata have shown that the asymptotic logarithmic

tail is expected to dominate only on time scales unphysically large, and therefore irrelevant

from the practical point of view. In this study the logarithmic correction will be consequently

ignored, and effective values of the transport coefficients will be calculated and compared

with Engskog predictions. A more detailed discussion of this point will be given in later

sections of the paper.

In this paper, the transport coefficients of a system of hard disks will be measured by

means of Einstein-Helfand expressions that are appropriate for molecular dynamics simula-

tions with periodic boundary conditions, using the minimum image convention [6]. For con-
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tinuous interaction potentials, this method is strictly equivalent to the Green-Kubo method

and has the advantages of directly showing the positivity of the transport coefficients and

of being based on a straightforward, numerically robust accumulation [26]. In the case of

hard particles, there is a fundamental reason to use methods based on Helfand-Einstein

expressions for the transport coefficients. The Green-Kubo relations, except in the case of

self-diffusion, involve forces between the particles, which are ill-defined for hard spheres or

disks and there is no trivial way to extend them to hard-particle fluids. In fact, a recent

careful analysis of the dynamics of a system of hard spheres has shown that the correct

Green-Kubo expressions for this system have a new singular contribution due to instanta-

neous collisions, as well as the usual time integral of the flux correlation functions [30]. The

singular part vanishes in the low density limit, but gives a relevant contribution at high

densities. On the other hand, the Einstein-Helfand formulas do not involve the forces, and

have the same form for both continuous (soft) and rigid (hard-sphere) potentials. It must

be stressed at this point that it is an Einstein-Helfand method that was already numerically

implemented by Alder et al. in their study of the transport coefficients in hard-sphere fluids

[20, 21].

The most interesting finding of the present study is that the shear viscosity shows a diver-

gence at the crystallization density (in a non-sheared system), while the heat conductivity

is correlated to the isotropic pressure. Thus, while pressure and heat conductivity show

a small drop at crystallization (due to the better ordering of the particles), self-diffusion

vanishes close to that density, and shear viscosity diverges. This divergence is well below

the excluded volume caused divergence of pressure and heat conductivity at the maximum

density possible in hard disk systems.

The outline of the paper is as follows. In the Section II, the Einstein-Helfand expressions

for the transport coefficients are revised, and written in a way that is appropriate for hard

sphere molecular dynamics simulations with periodic boundary conditions. The special case

of self-diffusion, in which the actual trajectories of the particles along different cells must

be followed, is first discussed. For all the other transport coefficients studied here, it is

shown that a decomposition of the contributions to the transport coefficients into a kinetic

and a collisional part, allows the use of the minimum image convention. Moreover, the

decomposition will turn out to be especially useful for event driven simulation algorithms.

In Sec. III, the method is applied to a system of hard disks for calculating the self-diffusion,

4



shear viscosity, and heat conductivity coefficients over the whole density range. The results

are compared with the theoretical predictions from Enskog’s theory. Particular emphasis is

put on the behavior of the transport coefficients in the fluid-solid transition region and on

characterizing the divergence of the shear viscosity. The paper finishes with the discussion

of the main results in Sec. IV.

II. EINSTEIN-HELFAND EXPRESSIONS FOR THE TRANSPORT COEFFI-

CIENTS

A. The self-diffusion coefficient

Self-diffusion is the macroscopic transport phenomenon describing the motion of tagged

particles in a fluid at equilibrium, in the limiting case that their concentration is very low,

while at the same time they are mechanically identical to the fluid particles. The macroscopic

number density n(r, t) and the flux j(r, t) of tagged particles satisfy the continuity equation

∂tn(r, t) + ∇ · j(r, t) = 0. (1)

The corresponding constitutive relation closing the above equation is provided by Fick’s law

j(r, t) = −D∇n(r, t), (2)

which defines the self-diffusion coefficient D. An expression for this transport coefficient

in terms of the second moment of the displacements is given by the well-known Einstein

formula [2, 3]

D =
1

2d
lim
t→∞

d

dt
〈|r(t) − r(0)|2〉, (3)

where r(t) is the position of an arbitrary tagged particle at time t, d is the dimensionality

of the system, and the angular brackets denote an average over the ensemble describing the

equilibrium of the system.

To actually compute the above equation in our numerical algorithm, two different averages

have been carried out. First, an average over the N particles in the system is taken, and

then a second average over a number N of initial configurations (trajectories). Assuming

ergodicity of the system, different trajectories can be generated from the same simulation
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run by considering different initial times tk. Therefore, the full average is

〈|r(t) − r(0)|2〉 =
1

NN
N∑

k=1

N∑

i=1

|ri(t + tk) − ri(tk)|2. (4)

This double averaging is possible because the dynamical variable involved in Eq. (3) is a

mono-particle property in the present case, and all the particles are equivalent.

When using periodic boundary conditions for evaluating Eq. (4), as in the simulations to

be reported here, it is crucial to take into account that particles on a given trajectory, have

to be followed as they cross the border of the periodic system. The positions in Eq. (4), as

written down here, use the actual positions, but the real relative displacements should be

used instead. If periodic images of the center cell were not used, the displacements would

not be obtained correctly. In this sense, the practical implementation of the algorithm for

this transport coefficient differs from those used for the other transport coefficients to be

discussed in the following.

The simulation results for D to be reported later on, will be scaled with the value obtained

from the Enskog equation in the first Sonine approximation for d = 2 that is [31]:

DE =
1

2nσg2(σ)

(
kBT

πm

)1/2

. (5)

Here T is the temperature, kB the Boltzmann constant, σ the diameter of the disks, m their

mass, and g2(σ) the value of the equilibrium pair correlation function at contact, which

is a function of the density n. An estimate for this quantity is provided by Henderson’s

expression [32]:

g2(σ) =
1 − 7ν

16

(1 − ν)2
, (6)

with ν = nπσ2/4 being the solid fraction. The approximation in (6) is valid for densities

well below the crystallization solid fraction νc ≈ 0.7.

B. Shear viscosity

The coefficients of shear viscosity η and bulk viscosity ζ are defined through the macro-

scopic expression for the pressure tensor P for a simple fluid [1]

P(r, t) = p1 − η
[
∇u + (∇u)+

]
+

(
2η

3
− ζ

)
1 ∇ · u, (7)
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where p is the pressure, u the flow velocity, 1 the unit tensor, and the superscript + means

here transposed.

The Einstein-Helfand formulas for η and ζ are analogous to Eq. (3). For the shear

viscosity one has [5, 6]

η =
m2

2V kBT
lim
t→∞

d

dt
〈|Gη(t) − Gη(0)|2〉, (8)

with V the volume of the system, and

Gη =
N∑

i=1

ẋiyi. (9)

In this case, only an average over a set of different initial conditions can be taken from

the simulations, since the dynamical variable Gη already involves all the particles in the

system. Therefore, the quantity that, in principle, should be obtained from the simulations

is

〈|Gη(t) − Gη(0)|2〉 =
1

N
N∑

k=1

{
N∑

i=1

[ẋi(t + tk)yi(tk) − ẋi(tk)yi(tk)]

}2

. (10)

Nevertheless, this expression leads to very noisy results and the slope of the best fit line

can be only determined with a high uncertainty. Moreover, it presents the same difficulties

as the Einstein expression for the self-diffusion coefficient when using periodic boundary

conditions, i.e., for the positions yi, it requires to follow the motion of the particles through

different unit cells. It is thus convenient to elaborate a little more Eq. (10). The idea is

measuring the increments of Gη for physically well defined time intervals, instead of directly

determining its actual value at successive times.

Let us consider a time interval [t + tk, t + tk + ∆t] in which no collisions occur in the

system in a given trajectory k. The purely kinetic variation of Gη, due to the displacements

only, is

∆G(K)
η (t + tk) =

N∑

i=1

ẋi(t + tk)ẏi(t + tk)∆t. (11)

In addition, there is also a contribution due to the discontinuous change of the velocities in

collisions. Consider a collision between particles i and j. There is an instantaneous jump in

Gη given by

∆G(C)
η = ẋ+

i yi + ẋ+
j yj − ẋ−

i yi − ẋ−
j yj , (12)

7



where we have taken into account that the positions do not change during the instan-

taneous collision and the index + (−) indicates that the velocity is the post-collisional

(pre-collisional) one. Both velocities are related by the collision rule for hard disks

ṙ+
i = ṙ−

i − ṙij · σ̂σ̂,

ṙ+
j = ṙ−

j + ṙij · σ̂σ̂, (13)

with rij = ri −rj and σ̂ being the unit vector joining the centers of disks i and j at contact

and pointing from particle j to particle i. Using the above rule, Eq. (12) can be rewritten

as

∆G(C)
η = yijδẋi, (14)

where yij = yi − yj, and δṙi = −(ṙij · σ̂)σ̂ is the change of the velocity of particle i in

the collision. Since the dynamics of a hard particle system consists of free streaming and

instantaneous collisions, Eqs. (11) and (14) fully determine the time evolution of Gη along

a trajectory. Moreover, these equations only involve the velocities and relative positions of

the particles. As a consequence, they avoid the difficulties of using other Helfand-Einstein

relations with periodic boundary conditions in the simulations, as discussed by Erpenbeck

[33], since no contribution leads to the growth in time of the dynamical variable Gη due

to the infinite checkerboard of identical systems. This is because contributions from pairs

of particles in different unit cells cancel out precisely due to the boundary conditions. An

alternative use of a Helfand-Einstein relation for computing the shear viscosity with periodic

boundary conditions has been discussed in [26].

Equations (11) and (14) are particularly suitable for event driven algorithms as the one

employed in the simulations presented in this paper. In these algorithms, the time steps are

the intervals between successive instantaneous collisions in the system. At every collision,

the kinetic change ∆G
(K)
η associated with the previous time step is computed as well as the

contribution from the collision itself, ∆G
(C)
η . For the latter, only the positions and velocities

of the pair of colliding particles must be taken into account, while for the kinetic contribution

the motion of all the particles in the system has to be considered.

As for the self-diffusion coefficient, the simulation results for η will be reported scaled

with the Enskog value in the first Sonine approximation, that for d = 2 and densities ν < νc

is [31]

ηE = η0

[
1

g2(σ)
+ 2ν +

(
1 +

8

π

)
g2(σ)ν2

]
, (15)

8



where η0 is the value in the Boltzmann limit

η0 =
1

2σ

(
mkBT

π

)1/2

. (16)

C. Bulk viscosity

The coefficient of bulk viscosity ζ was already introduced in Eq. (7). The corresponding

Einstein-Helfand expression is [5, 20]:

ζ +
4η

3
=

m2

2V kBT
lim
t→∞

d

dt
〈|Gζ(t) − Gζ(0) − pV t

m
|2〉, (17)

where

Gζ =

N∑

i=1

ẋixi. (18)

The pV t term in Eq. (17) arises from the fact that the equilibrium average of Gζ does not

vanish, as it is the case for all the other variables G associated to transport coefficients, but

it is equal to the external work pV , defined by the virial theorem [5, 20]. Since this mean

value is also computed in the simulations and it slightly shifts as the simulations proceed,

the results for the right hand side of Eq. (17) are determined much less accurately than for

the expressions for the other transport coefficients. Additionally, the subtraction of η, which

itself is determined with some uncertainty, causes further errors in the values estimated for

ζ . For these reasons, we have not been able to obtain reliable results for the bulk viscosity in

the high density region, and no further consideration will be given to it here. Note however,

that it is still possible to split expression (17) in a kinetic and a collisional contribution, like

we have done before. For that sake, the microscopic expression of the hydrostatic pressure

is used [34]:

p =
mN

V
〈ẋiẋi〉 +

mσ

V
F〈x̂ijδẋi〉, (19)

where x̂ij is the unitary vector pointing from center of particle j to center of particle i, and

F is the collision frequency [2]. In terms of this equation and following the same reasoning

as in the previous section, it is straightforward to identify that the kinetic increments on

Gζ in the particular case of the bulk viscosity, are related to deviations of the variable with

respect to the mean value. This happens for the kinetic part,

∆G
(K)
ζ (t + ∆t) =

N∑

i=1

[ẋi(t)ẋi(t) − 〈ẋi(t)ẋi(t)〉] ∆t, (20)
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as well as for the collisional part:

∆G
(C)
ζ (t + ∆t) = [xijδẋi − 〈xijδẋi〉] , (21)

with δẋi being the change of velocity of the particle i in its collision with particle j, as

already defined above. Note that expressions (20) and (21) are again perfectly compatible

with the minimum image convection.

We finally reproduce, for the sake of completeness, the Enskog value of the bulk viscosity

for hard disks [31]:

ζE =
8ν2g2(σ)

πσ

(
mkBT

π

)1/2

. (22)

D. Thermal conductivity

The coefficient of thermal conductivity λ is defined by the Fourier law for the heat flux

q(r, t) [1]

q(r, t) = −λ∇T (r, t). (23)

Enskog’s theory prediction for the heat conductivity is

λE = λ0

[
1

g2(σ)
+ 3ν +

(
9

4
+

4

π

)
ν2g2(σ)

]
, (24)

where λ0 is the Boltzmann value

λ0 =
2kB

σ

(
kBT

πm

)1/2

. (25)

The Einstein-Helfand expression for this coefficient is [23]

λ =
1

2V kBT 2
lim
t→∞

d

dt
〈|Gλ(t) − Gλ(0)|2〉, (26)

with

Gλ =
N∑

i=1

xiei. (27)

Here ei is the energy of particle i,

ei =
mṙ2

i

2
. (28)

As it was the case with Eq. (10), also Eq. (26) is not well suited for numerical simulations

with periodic boundary conditions, since it involves the positions of the particles. Therefore,
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we are going to transform it in a similar way, i.e., measuring separately the increments of the

dynamical variable Gλ between collisions and the collisional contributions. The variation of

Gλ along a trajectory k in a time interval ∆t such that no collisions take place is

∆G
(K)
λ =

1

2

N∑

i=1

[ẋi(t + tk)ei(t + tk) − ẏi(t + tk)ei(t + tk)] , (29)

where the isotropy of the equilibrium state has been taken into account. The statistical

quality of the simulation results is therefore increased.

In a collision between particles i and j, the instantaneous change in Gλ is

∆G
(C)
λ = xie

+
i + xje

+
j − xie

−
i − xje

−
j

= xij(e
+
i − e−i ) = xijδei. (30)

The second equality follows from the total energy conservation in the collisions here consid-

ered. Using again the isotropy of the system, we can write

∆G
(C)
λ =

(xij + yij)δei

2
. (31)

Equations (29) and (31) do not contain absolute positions of the particles, but only their

relative positions and their velocities. Therefore, we have obtained again an expression that

does not require to follow the track of the particles all along the simulation, namely to use

the so-called unfolded particle coordinates. The values of the position and velocities of the

particles expressed in folded coordinates can be used, without taking care of the cell crossing.

E. Qualitative discussion

In this subsection we briefly discuss some issues in a qualitative manner, before we analyse

and discuss simulation data in the next section and show quantitative results.

The decomposition of the dynamical variables and the methods explained above in this

section, are validated for a wide density range below. The time evolution of the dynamical

variables in Eqs. (4), (9), and (27), is linear in the whole range of densities and already from

a very small number of Enskog collision times on. The values of the transport coefficients can

be therefore easily calculated from the slope of the different curves, as a consequence of Eqs.

(3), (8), and (26). Using as an example the mean square displacement (self diffusion), this
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is illustrated below, see Fig. 1. Similar results are found for the other transport coefficients

(data not shown).

The effect of the time step for the analysis of the numerical simulation will also be

discussed below, see Fig. 7. Qualitatively speaking, the optimal value for ∆t should be below

the Enskog collisional time, in order to obtain a correct value for the transport coefficients.

There should be maximally one collision for any particle within one averaging time-step ∆t.

On the other hand it is inefficient to make ∆t too small, since this slows down the simulation

scheme.

The relative weight of the collisional and kinetic contributions on the overall value of, e.g.,

the thermal conductivity transport coefficient, trivially depends on the density of the system.

Below, in Figure 8, it will be shown that the ratio of kinetic to collisional contribution

decreases exponentially fast as density increases. The kinetic contribution is determinant for

very dilute systems, but as density increases the collisional term becomes quickly important,

being the relevant contribution for densities above νc. Both contributions are equal for

ν ≈ 0.30.

III. RESULTS

In this Section, results from several series of event driven simulations are presented. We

consider a homogeneous, freely evolving system of elastic granular disks with periodic bound-

ary conditions, implemented by means of the minimum image convention [35]. Systems with

different numbers of particles and density have been simulated, and the dependence of the

transport properties on these parameters has been investigated. A typical simulation started

with a square lattice of particles having a Gaussian velocity distribution. After a transient

period, the system reaches an equilibrium homogeneous state. Then, the measurement of

the different properties of interest was carried out, using the procedure described in the

previous section. For every calculation, the above process was repeated a number of times,

typically 300, in order to generate the ensemble average over different trajectories. Averages

over different initial times were also considered for overriding the lack of statistical precision

in the cases of the shear viscosity and the thermal conductivity, as compared with the self-

diffusion coefficient. That implied performing longer simulations and store and handle the

numerical data. The number of initial times used was in all cases larger than 200.
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FIG. 1: Time evolution of the mean square displacement (scaled with Enskog prediction for the

self-diffusion coefficient DE) for several densities ranging from the dilute (ν = 0.1) to the dense

limit (ν = 0.75). The time is scaled with the Enskog collision time.

A. Self-diffusion coefficient

Figure 1 confirms our assumption that the mean square displacement increases linearly

with time; therefore equation 3 can be applied for the calculation of the self-diffussion

coefficient by computing the slope.

In Figure 2, the results obtained for the self-diffusion coefficient, Dsim, as a function of the

solid fraction ν are presented. For each density, systems with different numbers of particles

N have been considered, namely N = 169, 625, 1024, and 2401. Moreover, the reported

values are the average over 300 independent trajectories. A strong deviation of Dsim from

the Enskog value DE is observed, even for relatively low densities. Also shown are some

previous results obtained by Holian et al. (in [22]) at ν = 0.3 using a non-equilibrium

molecular dynamics method. They consistently agree with the results reported here. For

large enough packing fractions ν, the particles become trapped in a crystalline lattice and

no free movement is possible [36]. The self-diffusion coefficient must therefore vanish in this

limit. This explains the rather fast decay to zero observed in the simulations. Of course,
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FIG. 2: Scaled self-diffusion coefficients for hard-disk fluids, as a function of the packing fraction

ν. For each value of the density, systems of N = 2401, N = 1024, N = 625, and N = 169 identical

particles have been considered. Also included are previous results obtained by Holian et al. (in

[22]), using non-equilibrium simulation techniques. Note that Dsim
∼= DE for ν = 0.69. The

extrapolated tangent of the curve at this point crosses the line Dsim = 0 at ν ≈ 0.705, a value

which is fairly close to νc ≈ 0.701. [29]

these high density effects are not captured by Enskog’s theory.

The series of values of D obtained for each value of N in the interval 0 < ν ≤ 0.5 have

been fitted to a third degree polynomial

Dsim(ν)

DE(ν)
= a + bν + cν2 + dν3. (32)

The values of the fitting coefficients are given in Table I, where it can be seen that the

coefficient a, characterizing the dilute limit, seems to be weakly dependent on the number

of particles used in the simulation. It is clearly larger than unity, indicating that the dilute

limit is slightly underestimated by the expression for DE we have used. Moreover, we have

carried out simulations with different boundary conditions and found always the same value

consistently. In fact, similar deviations (a > 1) have been previously observed [37]. This

can be due to the fact that the Enskog expression given by Eq. (5) has been computed
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FIG. 3: Dependence of Dsim on the solid fraction ν for low and moderate densities. The symbols

are some of the simulation results given in Fig. 2. The lines are the fits to the polynomial (32)

with the coefficients given in Table I. In the inset, the low density region is enlarged.

in the first Sonine approximation. It is possible that the consideration of higher order

polynomial corrections to the Sonine expansion would improve the agreement between theory

and simulations in the low density limit.

N a b c d

169 1.0207 0.0433 8.629 −11.43

625 1.0299 0.3367 9.775 −12.39

1024 1.0259 0.4683 10.711 −13.48

2401 1.0287 0.5971 11.930 −14.75

TABLE I: Empirical fit of the simulation results for the self-diffusion coefficient to the third order

polynomial in Eq. (32). The error of the fitting for each value is of the order of the last figure

given.

Figure 2 and Table I clearly indicate a strong dependence of the fitted values of the self-

diffusion coefficient on the system size. It should be expected that the simulation results

15



 0.5

 1

 1.5

 2

 2.5

 3

 0  2000  4000  6000  8000  10000

D
Si

m
 / 

D
E

N

ν=0.001

ν=0.50

Do-D0 exp(-N/N0)o

FIG. 4: Dependence of the measured self-diffusion coefficient on the number of particles N for

systems with densities ν = 0.001 and ν = 0.5, respectively. The results have been averaged over

30 trajectories for the system with N = 10000 particles, and over 300 trajectories for all the other

systems. The error bars in this scale are smaller than the symbols used.

converge to a well defined value as the number of particles increases, although this is not at

all clear from Fig. 2, especially for densities around ν = 0.5. To check this convergence and

characterize it, two series of simulations corresponding to ν = 0.001 and ν = 0.5 have been

performed, see Fig. 4. In the low density case, accurate size-independent results are already

obtained with a small number of particles, namely with N = 169. On the other hand,

for ν = 0.5 the convergence is much slower, and reliable results require a few thousands

of particles. More precisely, the dependence on N in this case is quite well fitted by an

exponential function D∞−D0 exp(−N/N0), with N0 = 900. The existence of an asymptotic

value of D∞ follows from the above results at least in the time window accessible by the

MD simulations. The possibility of a much slower convergence to a higher value or even a

divergence cannot be concluded from our data.
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FIG. 5: Shear viscosity coefficient normalized with the Enskog prediction as a function of solid

fraction for dilute and moderately dense systems for different N . Averages over 300 different initial

conditions and over 300 different initial times have been taken. The low density region is amplified

in the insert.

B. Shear viscosity

The simulation results for the shear viscosity at low and intermediate densities are shown

in Fig. 5. The deviation from Enskog’s theoretical prediction is typically below 10% up to

the transition to the ordered state. This is true even for the simulations with the lowest

number of particles. In fact, no strong dependence of the measured value of the transport

coefficient on N can be inferred from the simulation data in this range. A similar behavior

was found by Alder et al. for a system of hard spheres [20].

Enskog theory clearly underpredicts shear viscosity in the range 0.5 < ν < 0.68, contrary

to what was found in the case of the self-diffusion coefficient, which dropped at νc. This is so

because the collision frequency in that range of densities is overestimated by Enskog’s theory.

In the crystalline region, the measurement of the shear viscosity becomes rather difficult,

since the expected linear behavior of the increment in time of the dynamical variable Gη(t)

disappears- data not shown here (see Eq. (8)).
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FIG. 6: Divergent behavior of the shear viscosity coefficient. The symbols show simulations with

different numbers of particles, as indicated. They have been obtained by averaging as in Fig 5.

The dashed line is the power-law fit given in Eq. (33).

In Fig. 6 the deviations of the measured values of ηsim from Enskog theory in the high

density region are plotted in a logarithmic scale. A power-law divergent behavior of the

viscosity is observed as the density approaches the critical value. Moreover, no shift of the

critical viscosity νη is observed as the number of particles increases. The dashed line in the

figure is the function

η∗(ν) = c(νη − ν)−1, (33)

with c = 0.037±0.001, and νη = 0.71±0.01. This latter value approximately agrees with the

density for which the self-diffusion coefficient vanishes (see Fig. 2), and also with the critical

(crystallization) density in the global equation of state proposed in [29]. Let us mention

that for N = 169 no linear behavior of Gη was found for densities ν & 0.65 and, therefore,

no results with this number of particles are included in figure 6. The behavior of ηsim in this

region, in fact, seems to depend on N .

It is worth stressing at this point the relevance of making the measurements of the cor-

responding dynamical variable in the simulations with a frequency higher than the collision

frequency in the fluid. In this case, the validity of the numerical procedures discussed in
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the previous section is guaranteed and the results obtained from them can be expected to

be correct. On the other hand, if the time interval between successive measurements is

increased and becomes comparable to the mean collision time of the system, the results

for the time evolution of the corresponding dynamical variable G, can present a non-linear

behavior. And even if it turns out to be linear, the slope can lead to wrong values of the

corresponding transport coefficient. As an example, a comparison of the measurement of Gη

with two ∆t values is made on the same system of N = 1024 particles and density ν = 0.30,

see Fig. 7. More accurate results are obtained with a time step between measurements of

Gη shorter than the mean time between collisions. This is a consequence of the effect of

multiple collisions that, if occurring between successive measurements of Gη, invalidate the

arguments leading to Eqs. (11) and (14). Although this applies, in principle, to both the

shear viscosity and the thermal conductivity, the simulation results show that the influence

of the time step between the measurements employed is stronger for the former than for the

latter.

C. Thermal conductivity

Fig. 9 depicts the results obtained for the heat conductivity. Although the discrepancies

with the Enskog predictions are not large (they remain of the order of 10%), the qualitative

behavior as a function of the density resembles that of the self-diffusion coefficient reported

in Fig. 2. It exhibits a maximum around ν ≃ 0.55, decaying below the Enskog prediction

for larger densities (ν & 0.7). This decay is due to the increased mean free path due

to the particle ordering. Of course, in contrast with Dsim, λsim does not vanish in the

ordered region, since there is still considerable transport of energy through collisions. The

relative weight of the collisional part versus the kinetic component of λ was shown in figure

8, which increases exponentially as density increases. Moreover, Gλ was found to exhibit

linear behavior in the transition to the ordered state, even for the smallest system considered

(N = 169). Similarly to the case of the shear viscosity, no systematic dependence of the

results on the number of particles used is observed. Let us mention that, although small,

the deviations from the Enskog predictions in Fig. 9 are larger than those found by Alder

et al. for a system of hard spheres [20].

In Fig. 10 we investigate the transition region (ν > 0.65), where the dispersion of our
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FIG. 7: Time evolution of the dynamical variable (∆Gη)
2 obtained with two different time intervals

∆t, one shorter than the mean collision time tE and the other larger than it. The number of particles

is N = 1024 and the density ν = 0.30, in both cases. The solid line is the Enskog prediction. Time

is scaled by t0, Boltzman’s mean time between collisions. Note that t0 = tE in the dilute limit,

where g2(σ) → 1.

measurements is clearly higher. The deviation of the measurements with respect to Enskog’s

value is plotted using two different expressions for the pair correlation function g2(σ) set in

Equation (24). On the one hand, we have used the formula given in equation (6), and these

are the open symbols. For the other two series (solid symbols) a semi-empirical formula,

valid in the whole range of densities studied here, was used as given in reference [29]:

gL
2 (σ) = g2(σ) + m(ν|νc, m0)

[
Pdense(ν)

2ν
− g2(σ)

]
, (34)

where m(ν|νc, m0) is a connecting function, and Pdense is the reduced pressure in the dense

region (see Ref. [29] for more details). The explicit expressions of these functions are:

m(ν|νc, m0) =
1

1 + exp [−(ν − νc)/m0]
, (35)

Pdense(ν) ≈ 2νη

νη − ν

[
1 − 0.04(νη − ν) + 3.25(νη − ν)3

]
, (36)
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FIG. 8: Variation with density of the ratio between the kinetic and collisional contributions to the

overall thermal conductivity, as calculated by equations (29) and (31), respectively. The results

correspond to a simulation with N = 2401 particles. The behavior seems to be exponential, with

a linear best fit curve λkin/λcol ≈ 45 · e−ν/0.083.

in terms of the parameters νc,νη and m0 ≈ 0.0111.

In Fig. 10 results for high values of ν are plotted. The logarithmic scale is used in order

to be consistent with Figure 6. The empirical pair correlation function gL
2 is expected to

work better for values of the density around and above ν ≈ νc = 0.70 [29, 38, 39]. The

deviation from the theoretical value remains approximately constant for a wide range of

solid fractions, covering the low and moderate densities. When gL
2 is used, the deviation

remains constant even beyond the transition to the dense configuration, while there is a

clear deviation of the data if the simplified form of equation (6) is used. This is most clearly

observed in the range (0.65 . ν . 0.74). The effect of the correction for smaller values of ν

is nevertheless negligible.
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IV. DISCUSSION

In this paper, the transport coefficients of a system of elastic hard disks have been eval-

uated by means of equilibrium molecular dynamics simulations. In order to avoid the fun-

damental difficulties recently identified in the use of the standard Green-Kubo formulas

in hard-particle systems [30], a Helfand-Einstein representation has been employed. The

consideration of periodic boundary conditions in the simulation of a non-sheared, isotropic,

homogeneous, freely evolving system of elastic hard spheres or disks forces some modifica-

tions of the usual Einstein-Helfand’s formulas for the transport coefficients, especially if the

minimum image convention is used. Moreover, the expressions proposed here are especially

suitable for event driven methods. They allow a detailed study of the dependence of the

coefficients on the system size and density, and also the relative weigth of the collisional and

kinetic contributions.
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A. Remarks on the long time tails

For the sake of putting the results reported here into a proper context, some comments

on the role played by the long time tails exhibited by the Green-Kubo time correlation

functions [28] are required. For the sake of concreteness and also because it is by far the

most studied transport coefficient, we will particularize the following discussion to the self-

diffusion coefficient D. Its Green-Kubo representation involves the time integral of the

velocity autocorrelation function (VACF). In 1970, Alder and Wainwright [27] reported from

molecular dynamics simulations an algebraic long time tail of the VACF with an exponent

d/2, where d is the dimensionality of the system. For d = 2, the case considered here, this

implies the presence of a contribution to D of the form at0 ln t
t0

in the time scale in which the

algebraic decay holds. Here, a is a constant measuring the amplitude of the tail contribution

and t0 the characteristic time at which it shows up.
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Theoretical analysis of the long time tails has been carried out since its discovery by

using kinetic theory and also mode coupling theory. A partial review is given in ref. [44].

In particular, mode coupling theories have led to the prediction that the t−1 decay for d = 2

corresponds to intermediate times, while an asymptotic decay as (t
√

ln t)−1 is expected at

larger times [45]. Simulations in two and three-dimensional hard fluids [46, 47] are consistent

with the predictions from a finite-N mode-coupling theory for the VACF, although the

statistical accuracy of the data does not allow a precise verification of the exponent of the

algebraic tail or its amplitude.

More conclusive simulation results have been obtained in lattice-gas cellular automata.

In this case [48], the t−1 tail has been perfectly observed and it has been verified that its

amplitude is predicted to within a few per cent by mode-coupling theory. On the other hand,

the asymptotic logarithmic tail mentioned above is expected to dominate only on time scales

large compared with 1010 mean free times, what is fully irrelevant from a practical point of

view [49].

Quite surprisingly, all discussions we are aware of in the literature identifying the time

tails in computer simulations deal with the VACF, but we have not found any analysis of

its influence on the observed values of the self-diffusion coefficient. The results reported in

this paper, and also in ref. [26], seem to indicate that the above influence remains negligible

over a time scale going well into the time scale of the t−1 tails (see figure 1). On this

scale, D and also the other transport coefficients analyzed, and given by the Green-Kubo

or Helfand expressions, appear as constant, the contributions from the tails remaining very

small. To be more explicit, let us indicate that in the simulations with N = 2401 particles

reported in Fig. 2, the root mean square displacement was verified to exhibit a linear profile

up to times of the order of 8000 collision times. The conclusion is that usual Navier-Stokes

hydrodynamics, with time-independent transport coefficients, works on such time scales.

What happens at the far end of the observed plateau for the transport coefficient remains

open, in our opinion, except for theoretical predictions. Let us point out that the above

picture is consistent with the simulation results for the VACF reported in [48]. An analysis

of them indicates that the influence of the t−1 tail on the self-diffusion transport coefficient

is still only of the order of one percent at t ∼ 1000 collision times.
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B. Discussion on our results for the transport coefficients

We start by the self-diffusion coefficient D. The Enskog approximation leads in this case

to values that underestimate the simulation results by factors up to two, for moderate values

of the density (ν ≤ 0.3), the discrepancies being already relevant at rather low densities.

The observed density dependence of the transport coefficient is well fitted by a third order

polynomial for ν ≤ 0.5, with coefficients that slightly depend on the number of particles,

N , of the system. It has been verified that, at least in the hydrodynamic limit accesible by

the MD simulations, D tends to a well defined limit as N becomes large enough. At higher

densities, the transition liquid-solid is clearly depicted in the behavior of the self-diffusion

coefficient. It rapidly falls to zero as a consequence of the caging of the particles. Finite size

effects are more relevant for dense systems, in which the self-diffusion coefficient approaches

its asymptotic value exponentially with N .

For the shear viscosity the dependence of the results on the size of the system is much

smaller. Also much weaker deviations from the Enskog prediction are observed at low and

intermediate densities. Nevertheless, closer to the gas-solid transition, a power law divergent

behavior has been identified. Interestingly, the density value for which the viscosity would

become eventually singular (νc ≃ 0.71), agrees with the density at which the system begins

to show an ordered triangular structure [40–42]. There were no data obtained for the shear

viscosity above νη.

Note that the results presented here refer to “non-sheared” systems. We have avoided

therefore the problem of the system becoming inhomogeneous and developing a shearband

[43]. A sheared system will not show the divergence found for the viscosity because of the

shearbanding instability [52].

The pressure also diverges but at a considerably higher density νmax ≈ 0.9069. At the

crystallization density νc ≈ νη ≈ 0.7, both pressure and heat conductivity show a drop

relative to the Enskog prediction due to the better ordering in the crystalline phase (see

Fig. 11). The use of a more elaborate expression of the pair correlation function, valid in

a wider range of densities than Henderson’s approximation, improves the agreement of our

data with Enskog theory.
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FIG. 11: Schematic plot of the transport coefficients. The solid line gives the pressure P = 1+2νgL,

with gL from Eq. (35); the dashed line gives the scaled shear viscosity, i.e. Eq. (16), where gL is

used instead of g2, and multiplied by our empirical correction factor 1 + cη in Eq. (34) ; and the

dimensionless heat conductivity from Eq.(31), also with gL used instead of g2.

C. Conclusion

In summary, we have found Enskog theory working rather well for pressure, heat-

conductivity and shear viscosity well below the crystallization density νc. When the Enskog

expressions are corrected by an appropriate pair correlation function gL, which accounts

for the better ordering in the crystalline phase, the theory performs well for pressure and

heat-conductivity up to the maximal possible density νmax.

Only the shear viscosity shows a power-law divergence at νη ≈ νc with values above

Enskog theory already becoming visible at intermediate densities, ν > 0.5. Thus, shear

viscosity behaves differently than the other transport coefficients studied. Its divergence,

implying that the shear modes are hindered for ν > νη. This could in fact be understood

as one reason for shear-band formation. A sheared system at high densities typically splits

into shear bands (with lower density) and a compressed dense crystal (with correspondingly

higher density). From a different point of view, our observations are also consistent with the
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concept of dilatancy: A dense packing with ν > νη can only be sheared by first experiencing

dilatancy so that ν drops below νc.
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