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Abstract

Granular materials, like sand, powder or grains present intriguing phenomena. Vibration and shearing
can lead to convective motion and segregation. A variation of stress may cause localization phenomena
like stress chains or shear bands. Granular systems are thus in a state far from thermodynamic
equilibrium, however, we present an attempt for a thermodynamic description by extending the
concept of compactivity.

In vibrating containers under the influence of gravity, the granular material shows a peculiar
density profile. In the weak dissipation / strong agitation limit the density decays exponentially
with height, whereas one observes an almost uniform profile in the case of strong dissipation /
weak agitation. In the latter regime, the formation of convection cells due to walls or amplitude
modulations can be observed. The onset of fluidization can be determined and is in good agreement
with experiments. Connected to convection is the effect of rapid segregation, however, comparatively
slow segregation can also be observed in the absence of convection.

Numerical simulations of flow in hoppers show that the density fluctuations have a power
spectrum, allowing for large “events” with finite probability. There is also ample experimental and
numerical evidence showing the existence of spontaneous density patterns in granular material flowing
through pipes or hoppers. Due to fluctuations of the wall friction, shock waves are created and arches
are formed, slowing down the material which follows. In regions of anisotropic stress, the rotational
degree of freedom is frustrated parallel to strong stresses, so that ordering akin to anti-ferromagnetic
spin coupling may be observed.

Pouring two different materials on a flat surface leads to a sandpile with stratification patterns.
The mechanisms leading to this segregation of the two types are examined with experiments and
numerical simulations. The stress distribution inside a sandpile depends strongly on the contact
network. A relatively small polydispersity causes a reorganization of the contact network and leads
to the so called stress chains, i.e. the stress at neighboring particles may vary dramatically.

Finally, the plastic shear bands occuring in large scale deformations of compactified granular
media are investigated by using an explicit Lagrangian technique as well as molecular dynamics
simulations with non-spherical particles.
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1 Introduction

Many rather astonishing phenomena are known to occur when granular materials like sand or powders
move, see Hansen and Bideau (1992), Jaeger and Nagel (1992), Jaeger et al. (1996b,a), Campbell
(1990), Thornton (1993), Mehta (1994), Wolf and Grassberger (1997), Behringer and Jenkins (1997),
and Herrmann et al. (1998). One example is the so-called “Brazil nut” segregation under vertical
vibration, i.e. large particles rise to the top of a vibrated container that is filled with smaller grains, as
examined by Williams (1976), Rosato et al. (1986, 1987), Devillard (1990), Duran et al. (1993), Knight
et al. (1993), Duran et al. (1994), Dippel and Luding (1995), and Gallas et al. (1996). Other interesting
phenomena are heap formation under vibration, see Faraday (1831), Walker (1982), Dinkelacker et al.
(1987), Evesque and Rajchenbach (1989), Laroche et al. (1989), Rajchenbach (1991), Clément et al.
(1992), Chen (1995), density waves emitted from outlets, see Baxter et al. (1989), and uncorrelated
noise in the power spectra of local forces, see Liu and Nagel (1992), Baxter et al. (1993). All these
effects originate in the ability of granular materials to form a hybrid state between a fluid and a solid:
When the density exceeds a certain value, i.e. the critical dilatancy threshold, it resists shear like a
solid. Below this density it will “fluidify”, see Reynolds (1885), Bashir and Goddard (1991).
Particularly suited to study this fluidization is an experiment where sand is put on a loud-
speaker or in a box on a vibrating table, see Evesque and Rajchenbach (1989), Clément and Ra-
jchenbach (1991), Clément et al. (1992), Zik et al. (1992), Rosato and Lan (1993), Clément et al.
(1993), Luding et al. (1994a), Warr et al. (1995), and Warr and Hansen (1996). Under gravity the
sand jumps up and down and although kinetic energy is strongly dissipated, energy input through
the boundaries is sufficient to reduce the density, thus allowing the material to flow (“fluidization”).
Under certain circumstances, directed flow between top and bottom can occur in form of convection
cells as has been observed experimentally when inhomogeneities in the amplitude of the vibration
occur, see Rétkai (1976). More striking is that sand spontaneously can form heaps, see Evesque and
Rajchenbach (1989), Clément et al. (1992), as first described already by Faraday (1831). Also within
these heaps convection occurs which is one possible motor for the heap formation: Inside the heap
the sand rises, pops out at the top and then slides down on the surface. The other heap-forming
instability is caused by the interstitial gas and is important for sufficiently small grains. Usually
those heaps have complicated shapes that change in time, and sometimes one also observes ripples
and other regular structures on their surface and in the interior, see Pak and Behringer (1993, 1994),
Pak et al. (1995). In very wide, rather shallow systems, the spontaneous formation of surface waves



is reported, see Douady et al. (1989), Melo et al. (1994, 1995), Metcalf et al. (1997), Shattuck et al.
(1997), Luding et al. (1996a), Shinbrot (1997), Wassgren et al. (1997), even in the absence of an
interstitial gas. These subharmonic instabilities may spread over the whole system and form regular
structures, or, may be localized and form the so called “oscillon”, see Umbanhowar et al. (1996).
When particles of different sizes but equal density are put on a vibrating plate the larger particles
tend to rise and after some time one observes a segregation into regions with larger and regions with
smaller particles. The motor for segregation is still under discussion. However, convection seemingly
enhances segregation dramatically so that other types of segregation are suppressed, see Knight et al.
(1993), Duran et al. (1994), Luding et al. (1996¢). When the vibration of the plate also has a horizon-
tal component the material will flow in one direction, a technique often used for powder transport,
see Poschel and Rosenkranz (1997).

Granular media at large densities have a broad spectrum of striking effects. A packing of sand
behaves like a solid when pushed, but offers no resistance to a pulling force. The famous Reynolds
experiment proves that due to dilatancy a deformed elastic bag full of sand increases in volume when
it is being deformed. Studying in more detail the propagation of sound in a granular packing shows a
strong dependence of the wave velocity on pressure, see Goddard (1990), due to the complex network
that transmits the stresses. Large deformations of granular media occur along shear planes due to
an irreversible plastic instability, see Sornette et al. (1991).

In order to formalize and quantify the complicated rheology of granular media various attempts
have been made. Continuum equations of motion and kinetic theories have been proposed by Savage
(1979), Jenkins and Cowin (1979), Haff (1983), Homsy et al. (1992), Hwang and Hutter (1995),
Goldshtein and Shapiro (1995), thermodynamic formulations by Jenkins and Savage (1983), Edwards
and Oakeshott (1989a), Mehta and Edwards (1989), Edwards (1991), Herrmann (1993), cellular
automata by Baxter and Behringer (1990, 1991), Désérable and Martinez (1993), Kéroly and Kertész
(1994), Peng and Herrmann (1994, 1995), Peng and Ohta (1996, 1997), and a random walk approach
by Caram and Hong (1991). However, only a few of these methods have so far given a satisfactory
explanation of phenomena, like size segregation or density fluctuations. This is because it is very
difficult to incorporate into these theories static friction, local rotations and other relevant microscopic
mechanisms.

To gain a better understanding of the rheological effects in granular media it can be very help-
ful to perform computer simulations, see Cundall and Strack (1979), Campbell and Brennen (1985),
Walton and Braun (1986), Bardet and Proubet (1991), Bardet (1994), Walton (1993b), Luding et al.
(1994a), Ristow (1994), Poschel and Buchholtz (1995a), Herrmann (1995), Wolf (1996), Potapov and
Campbell (1996), Wolf (1996), Luding et al. (1996d,a), Luding (1997). For over two decades discrete
methods have been used where in contrast to continuum approaches one treats the granular material
as an assembly of particles interacting through their contacts only. This technique was introduced
by Cundall (1974), Cundall and Strack (1979) to study the motion of rock masses. Since then it has
been applied to statistical micromechanics, see Cundall and Strack (1979), Bathurst and Rothen-
burg (1988), constitutive behavior of granular soils, see Thornton and Randall (1988), Dobry and Ng
(1989), Issa and Nelson (1989), creep of soils, see Kuhn and Mitchell (1989), analysis of rock-support
interaction, see Lorig and Brady (1984), and many other applications in soil mechanics, see Grabin-
sky (1992), Ting et al. (1989). Such and similar techniques have also been applied to model size
segregation, see Haff and Werner (1986), Poschel and Herrmann (1995), Dippel and Luding (1995),
outflow from a hopper, see Hong and McLennan (1992), Ristow (1992a,b), Ristow and Herrmann
(1994), shear flow, see Campbell and Brennen (1985), Hanes and Inman (1985), Walton and Braun
(1986), Campbell (1990), Thompson and Grest (1991) and flow down an inclined chute, see Hutter
et al. (1986), Poschel (1993), Walton (1993a), Pouliquen and Renaut (1995).

In section 2 we propose a thermodynamic description of granular materials as a first step.
Loose granular media can in fact be described by a thermodynamic formalism, see Herrmann (1993),
in which sand grains are treated in a similar way as molecules in a gas.

The following section 3 is dedicated to a brief introduction of the modeling approaches used
later on. In particular we will present the “soft-particle” Molecular Dynamics (MD), textbooks are
Allen and Tildesley (1987), Rapaport (1995), and also the “hard-particle” Event Driven (ED) method,
see Allen and Tildesley (1987), Lubachevsky (1991), both for inelastic spherical particles with friction
forces. We present systems of granular material fluidized in a vibrating box examined by Luding et al.
(1994a,d), Luding (1995) in section 4 and discuss the role of surface roughness, wall properties and



dimension.

A series of experiments, see Athey et al. (1966), Cutress and Pulfer (1967), Blair-Fish and
Bransby (1973), Lee et al. (1974), Schick and Verveen (1974), Drescher and de Josselin de Jong
(1972), Michalowski (1984), Baxter et al. (1989), have shown strong density fluctuations when granu-
lar material flows under the action of gravity. Baxter et al. (1989) used X-ray diffraction experiments
to visualize these wave-like patterns emanating from the outlet of a two dimensional wedge-shaped
hopper. Similarly, rather erratic shock-like density waves have been observed in flows through pipes
by Pdschel (1994), Ristow and Herrmann (1994). Another experimentally observed ubiquitous phe-
nomenon in granular media seems to be the 1/f* noise behavior, see Schick and Verveen (1974),
Bak et al. (1987), Peng and Herrmann (1995), Taguchi and Takayasu (1995). For avalanches moving
down the slope of a sand pile theoretical considerations of self-organized criticality by Bak et al.
(1987) led to the proposal that their size and life time distributions were power laws which was in
fact verified experimentally on very small piles by Held et al. (1990) and, more recently, on rice piles
with elongated grains by Christensen et al. (1996), Frette et al. (1996), Luding (1996). The growth of
a sandpile can, however, also be modeled by neglecting multi-particle effects like avalanches as shown
in section 7. A simplified one-dimensional one-particle model is already sufficient to lead to a com-
plicated dependence of the angle of repose on the material parameters, see Grasselli and Herrmann
(1997). Furthermore, stratification patterns can be observed when pouring two different species on
the pile. The simple model leads to patterns similar as those observed experimentally.

In section 8 quasi-static granular assemblies are modeled by using the MD method, see Luding
(1997), from section 3 The geometry of a sand pile is sufficiently inhomogeneous to allow for arching,
see Edwards and Oakeshott (1989b), Wittmer et al. (1996, 1997), Luding (1997), Savage (1997), Wolf
and Grassberger (1997), so that the pressure under the apex of the sandpile has a minimum rather
than a maximum. Already small polydispersity can lead to stress chains with peculiar probability
distributions of the forces, see Luding (1997).

In order to understand the formation of the fractal network of shear bands in a slowly de-
formed box, see Poliakov et al. (1994), Poliakov and Herrmann (1994), results obtained with the Fast
Lagrangian Analysis of Continua (FLAC) method are presented in section 9. FLAC is an explicit La-
grangian technique that makes use of the classical non-associate Mohr-Coulomb plastic yield criterion
that is traditionally used as a constitutive relation in continuum theory of dense granular materials.
Finally, we summarize the presented results in section 10.

2 A thermodynamic approach to granular media

Subject to external forces, granular materials locally perform rather statistical motions due to their
mutual collisions. For example, on a loudspeaker the individual grains chaotically jump up and down
forming a gas-like cloud of colliding particles. For flow down an inclined chute, see Drake (1990),
Poschel (1993) one has a laminar flow with a well defined (average) velocity profile and a superimposed
Brownian-like motion of the particles in all directions.

The above observations inspired several authors to use thermodynamic concepts to describe
granular media. On the one hand a “granular temperature” Ty, was defined by Campbell and Brennen
(1985), Thompson and Grest (1991), Hanes and Inman (1985), Ogawa (1978), Jenkins and Savage
(1983), Jaeger et al. (1989), as Ty, o (6%) — ()2, i.e. proportional to the kinetic energy surplus with
respect to the global motion. The brackets (...) denote an ensemble averaging. Strictly speaking this
definition is thermodynamically justified if an equipartition theorem exists which is not the case for
granular particles since they dissipate energy at collisions.

On the other hand, Edwards and Oakeshott (1989a), Edwards (1991), Mehta and Edwards
(1989) put forward another idea for static packings: Based on the important observation that granular
materials do not conserve energy they proposed to consider the occupied volume V to replace the
internal energy in the usual thermodynamic formalism and define a temperature-like quantity X =
0V /dS which they called “compactivity” where S is the entropy. Although formally intact, this
formalism is not easy to generalize to rapid flow like on a vibrating table or on an inclined plane,
since the volume is not properly defined. While Edwards’ approach seems intuitively correct for dense
packings and the definition and use of Ty, appears to be reasonable in the limit of strong internal
motions or weak dissipation the two definitions fail in the corresponding opposite limit.

Let us present in the following a thermodynamic approach to granular materials by Herrmann
(1993), founded on similar principles as equilibrium thermodynamics and incorporating at least partly



the intuitive pictures of previous work: We shall consider subsystems sufficiently small to have no
velocity or density gradients and for which the energy flux into them is such that energy dissipation
is homogeneous. Energy conservation implies that 0 = AE;,, + AD — AI where AD is the energy
dissipated in a given time and AT is the energy that was pumped into the system during that time. In
a steady state the internal energy A F;,, is like in traditional thermodynamics the change of the sum
of kinetic and potential energy of all the degrees of freedom of the grains as elastic bodies (translation,
rotation, elasticity, etc.). One can now treat the excess dissipated energy AD = AD — AT in a similar
way as the heat in usual thermodynamics.

One can express changes in D as 6D = pdC where p is an internal pressure acting at collisions.
The extensive conjugate quantity C plays the role of a potential and should in fact be proportional to
the volume of contact deformation. The “equilibrium” - which is in fact a steady state driven by the
energy flux - can be defined as the ensemble minimizing C', and one can postulate in analogy to the
second law of thermodynamics that C' should decrease for any change of state at constant internal
energy FEin: AC < 0 driven by the elastic repulsion between colliding grains.

As in usual thermodynamics one can now work in different ensembles. Naturally, one would
work at fixed p (granular ensemble) in which a granular potential G, can be defined as G, = Eint +pC
and where at constant p the equilibrium is given by the minimum of G,. The response function s
defined as k = % = p% measures how much more energy can be dissipated if p is increased. On
top of the granular ensemble one can build up the traditional body of thermodynamics as if the grains
were a gas of particles interacting elastically. One can fix or free the number N of particles, define
a “granular” temperature T, and entropy S or impose to the system either an external volume V or
an external pressure p. Special for granular media is that one could also impose an external shear T
or the dilatancy Vjy, see Reynolds (1885), Bashir and Goddard (1991).

Considering a “state” given by the positions, orientations, linear and angular velocities of the
grains as rigid bodies the entropy is well-defined as noted already by Edwards and Oakeshott (1989a),
Edwards (1991), Mehta and Edwards (1989). A reasonable definition for a “granular” temperature

T, would then be: T, = BB%T which is, in fact, similar to that defined previously by Campbell and

Brennen (1985), Thompson andpGrest (1991), Hanes and Inman (1985), Ogawa (1978), Jenkins and
Savage (1983), Jaeger et al. (1989). Experimentally, p and T}, are independent control parameters of
the system: T, is essentially driven by the amount AI of energy that is fed into the system per unit
time. p/T, depends mainly on the density of collisions and can therefore increase by fragmenting the
grains into smaller pieces.

3 Models for particle-particle interaction

In this section we will discuss several models for particle-particle interaction using different degrees of
abstraction. We will start with methods that account for the excluded volume of the particles via a
repulsive potential, either “hard” or “soft” and will relate both models to each other. The next step
of abstraction is to neglect the detailed interaction at the contact but instead assuming molecular
chaos so that the particles collide randomly. Then, we discuss the possibility to use lattice models as
in fluid dynamics, neglecting also the discrete nature of the particles. Finally, we simplify even more
and assume that it is possible to project a dynamic process, like the growth of a sandpile, back to
one-particle trajectories.

The elementary units of granular materials are mesoscopic grains consisting of many atoms
each (1015 — 102%). When these objects interact (collide) the attractive potentials of the individual
atoms can often be neglected. It is important that on a microscopic scale the surface of the grains is
rough. Solid friction is the consequence: When two grains touch and their contact surface is at rest
with respect to each other, a finite force Fj is needed to trigger a relative motion (static friction).
If the contact areas slide on each other, a finite force Fy is needed to maintain the motion (dynamic
friction). The forces follow the relation Fy < Fs and depend on the normal force and neither on the
velocity nor on the area of contact (Coulomb’s law). This picture is idealized and an entire discipline
called tribology, has evolved to study solid friction in depth, see Johnson (1989).

Friction has the crucial consequence that the system does not conserve energy on the level of
the grains. Other sources of dissipation can be viscous damping or plastic deformations of the grains.
Since dissipation may occur due to various reasons, we discuss in the following only simple dissipation



laws, assuming that the detailed knowledge of the interaction potential is of minor importance. In
fact, more complicated laws increase the number of parameters without giving qualitatively different
answers.

The difference between the two most frequently used methods is the interaction potential. For
the molecular dynamics method soft particles with a power law interaction potential are assumed,
whereas for the event driven method rigid particles are used. The consequence is that the duration
of the contact of two particles is finite for MD but vanishes for ED.

3.1 The event driven, rigid particle method

The description of the collisions of rigid particles is based on the work of Mindlin (1949), Mindlin
and Deresiewicz (1953), Maw et al. (1976, 1981). Therefore, we apply the simplified collision model
introduced by Walton and Braun (1986) and recently established experimentally by Foerster et al.
(1994) and Labous et al. (1997).

For given velocities before contact, three coefficients are needed to evaluate the velocities af-
ter collision. The first, the coefficient of normal restitution, r, defines the incomplete restitution of
the normal component of the relative velocity. The second, the coefficient of friction, u, relates the
tangential force to the normal force, i.e. Coulomb’s law. The third, the coefficient of maximum tan-
gential restitution, g, delimits the restitution of tangential velocity of the contact point, to ensure
energy conservation. Note that this model implies that two grains at contact either slide following
Coulomb’s law or stick together, see Foerster et al. (1994), Walton and Braun (1986). In the follow-
ing, we apply the basic conservation laws and determine the equations for the velocities after collision.

Consider two particles with diameter d; and d» and masses m; and ms. The normal unit vector
for their contact is 7 = 7 — 72/ |1 — 72|, where 7; is the vector to the center of particle i (i = 1, 2).
For the interaction of particle i = 1 with a fixed wall, we set ms = 00, do = 0 and 7 is in this case
the unit-vector perpendicular to the wall-surface pointing from the contact point with the wall to the
center of the particle. The relative velocity of the contact points is ¥, = ¢} — T2 — (‘é—lu'il + %2&52) X 1,
with ¥; and &J; being the linear and angular velocities of particle 7 just before collision. From the
momentum-conservation laws for linear and angular momentum there follows

1-)41 :Ul+Aﬁ/m1a (1)
dy -
== -
J; =& —(2I1)nXAP’ (2)
1')"2=1')'2—A]3/m2, (3)
da -
J) =&y — ——17t X AP 4
Wy = g (212)nx , 4)

where ¥ and & are the unknown velocities of particle i after collision. I; is the moment of inertia
about the center of particle 4 and AP is the change of linear momentum of particle 1 and is a function
of r, u, and fo:

o 2
AP = —map(1 + )7t — ?m12(1 + )T, ()

with the reduced mass mia = mima/(m1 +ms). (n) and (¢) indicate the normal and the tangential
component of 7, respectively and the factor 2/7 in the tangential part of (5) stems from the fact that
solid spheres are used. r is the (constant) coefficient of normal restitution and g = min[Gy, 41] is the
coefficient of tangential restitution. The latter is simplified in so far that exclusively sliding or sticking
is allowed. A sliding, Coulomb-type interaction has 8 = 3;, i.e. AP is limited by p, AP, and a
sticking contact has a constant maximum tangential restitution 8 = By < 1 due to the elasticity of the
material. Using the basic conservation laws one can calculate 8; = —1— p(1+47) cot(y)(1+1/g;) with
the collision angle v, and the factor ¢; = 4I;/(m;d?) that accounts for the mass distribution inside
the particles, see Foerster et al. (1994), Luding (1995, 1998). As illustration, a schematic picture of
two colliding particles is given in Fig. 1. The angular velocities are wi = wy = 0 immediately before
collision (a) and non-zero after collision (b). For a detailed discussion of the above equations see
Luding (1995, 1998).

For the simulation of rigid particles, we use an event driven method such that the particles
undergo an undisturbed motion in the gravitational field until an event occurs. An event is either the



(b)

Figure 1: Typical velocities of two particles immediately before (a) and after (b) collision.

collision of two particles or the collision of one particle with a wall. From the velocities just before
contact, the particle velocities after a contact are computed following (1)-(4). An efficient scalar
ED algorithm was introduced by Lubachevsky (1991) which updates only those particles involved
in the previous collision. Like Luding (1995), Luding et al. (1994d) we implement the algorithm of
lubachevsky91 with some changes and extensions. Despite the gravitational acceleration, all contact
times of particles with each other or with the lateral walls can be calculated analytically. The
coefficient of normal restitution depends on the partner of the colliding particle; for example, we use
r, or 1, to indicate particle-particle, or particle-wall collisions respectively. For more details on the
collision model see Walton and Braun (1986), Foerster et al. (1994), Luding (1995, 1998).

3.2 The connection between soft- and hard-sphere models

In the ED method, the time during which two particles are in contact is implicitly zero. The conse-
quence is that exclusively pair contacts occur so that the momentum change, AP in (1)-(4) suffices
to describe the collision completely. ED algorithms with constant r run into difficulties when the
time between events, teyv, becomes too small. In systems with strong dissipation ¢., may even vanish
and the so-called ‘inelastic collapse’ may occur, see Luding et al. (1994a), Bernu and Mazighi (1990),
McNamara and Young (1992, 1993).

In MD simulations, on the other hand, ¢t. > 0 and the sum of all forces f (t), acting on a particle
at time t € [to, t1], is needed to calculate the momentum change of this particle:

AB= [ Foya. (6)

to

In general, the contact begins at time tg and ends at time ¢;. For a constant force f or an infinitesi-
mally small time interval ¢; — t9, the momentum change AP in (1)-(4) can be replaced by the term
f(t)dt to arrive at a differential formulation for the change of velocities v — ¥ and &' —&. The primed
and unprimed quantities are the values at time ¢; and tg, respectively. For a detailed discussion of
the connection between soft- and hard-sphere modelling see Luding (1998).

3.3 The Molecular Dynamics Technique

Since the modeling of realistic deformations of the particles would be much too complicated, let
us assume that the overlap of two particles is the quantity important for the interaction potential.
The interaction is short range, i.e. the particles interact only when they are in contact so that their
penetration depth 6 = 1(dy + d2) — (7 — 72) - 7 is positive.

The first force, acting on particle 1 from 2 — accounting for the excluded volume which each
particle occupies — is an elastic repulsive force

o1 = knd0(6/80)"7 (7)

where k,, is the elastic modulus and g is a normalization constant dependent on the non-linearity v
and the dimension. In the simplest case of a linear spring that follows Hooke’s law one has v = 1.



In the case of elastic spheres in three dimensions » = 3/2, see Landau and Lifshitz (1975), i.e. Hertz
contact, and for conical contacts v = 2 should be used.

The second force — accounting for dissipation in the normal direction — is a viscous damping
force

.f:iiss = 7n6(5/60)¢ﬁ ’ (8)

where 7, is a phenomenological normal viscous dissipation coefficient and § = —#5 -7 = — (& —T) -7
the relative velocity in the normal direction.

The simple linear spring-dashpot model (with ¥ = 1 and ¢ = 0) can be solved analytically
and leads to a contact duration t, = w/w and a restitution coeflicient r = exp(—mn/w), with w =
Vwg =%, wE = kn/mia, n = Yn/(2mi2), and mi2 = mima/(m1 + ms), see Luding (1998).

The third force — accounting for friction — acts in the tangential direction and can be chosen
in the simplest case as

f;hear = _'Yté{, (9)

where 7, is the viscous damping coefficient in tangential direction and € = @, - ¥ is the tangential
component of the relative velocity, with & = @5/|#2|. Eq. (9) is a rather simplistic description of
shear friction. For many applications (arching, heap formation) it is, however, important to include
real static friction, see Lee and Herrmann (1993), Wolf and Grassberger (1997), which can be done by
a ‘static’ friction force, see Cundall and Strack (1979), Schéfer et al. (1996): When two particles start
to touch each other, one puts a “virtual” spring between the contact points of the two particles, and
g" t) = ft? Uhadt is the total tangential displacement of this spring during the contact. The restoring

frictional force is thus —k;& (static friction). According to Coulomb’s criterion, the maximum value
of the restoring force is then proportional to the normal force f¢ at this contact, with the friction
coefficient u. Cast into a formula this gives a friction force

—

Foiction = —% min(kelé], 1 %) - (10)

We note that the tangntial spring has to be kept at a maximum length &max = pfS/k: in order to
lead to reasonable agreement with contact dynamics simulations or theoretical calculations by Radjai
et al. (1997). Only when particles are no longer in contact with each other the spring is removed.
Main source of static friction in real systems is the geometrical roughness of the surfaces, see Poschel
and Buchholtz (1993), Walton and Braun (1993), Walton (1994), P6schel and Buchholtz (1995b),
and the same effects of particle stopping can be obtained also without Eq. (10) by using particles
of complicated shapes, like crosses or polygons, see Buchholtz and Pdschel (1994), Buchholtz et al.
(1995), Kohring et al. (1995), Matuttis and Luding (1997). In fact, when particles deviate from the
spherical shape rotations are suppressed in dense packings under strong load. However, in some cases
it is sufficient to use a combination of Egs. (9) and (10):

.)E;iyn = - min(7téa /‘Lf’rcb)t-’7 (11)

a rather bold alternative to the more realistic static friction law in Eq. (10), but reasonable for many,
especially dynamic situations, see Radjai et al. (1997).

3.4 The stochastic DSMC simulation method

Direct simulation Monte Carlo (DSMC) is a method first proposed by Bird for the modelling of rarefied
gas flows by Bird (1994); it was also used for liquid-solid flow simulations (see Tanaka et al. (1996) and
references therein). One of the advantages of the algorithm is its suitability for parallelization. Here
we introduce dissipation and an excluded volume correction and apply the method to dry granular
media.

In DSMC the evolution of the system is integrated in time steps 7. At each time step every
particle is first moved without interaction with other particles. The particles are then sorted into
spatial cells with length L and volume V, = L”, where D is the dimension. L is set to one half of the
mean free path but not less than two bead diameters. The time step 7 is chosen sufficiently small to
assure that even the fastest particle needs several time steps to cross a cell. Between particles in the
same cell stochastic collisions are assumed to take place. The rules for these collisions are taken from
kinetic theory. Let N, be the number of particles in the cell, vpmax an upper bound for the relative



velocity between the particles and o the scattering cross section of spheres (o2p = 4R, o3p = 47 R?).

Then N.(N, — 1)
— 1)oUmaxT
M — c c max 12
¢ 2V, (12)
is the maximum number of pair collisions in each cell. To obtain vy, we sample the velocity
distribution from time to time and set v,y to twice the maximum particle velocity found. In order
to obtain the correct number of collisions with regard to the actual relative velocities an acceptance-

rejection method is applied: For a pair of particles ¢ and j the collision is performed if

=5l g (13)
Umax
where Z is a random number uniformly distributed in the interval [0,1]. This method leads to a
collision probability proportional to the relative velocity of the particles.

Since the collision takes place regardless of the position of the particles within the cell, an
impact parameter b must be chosen so that the post-collision velocities can be calculated. Molecular
chaos is assumed here, b is drawn from an uniform distribution in the interval [-2R, 2R] in 2D or in a
circle with radius 2R in 3D. We tested the validity of this assumption with ED and found no deviations
in the parameter range discussed below. The remainder of the collision scheme is identical with the
event driven procedure, so that the normal component of the post collision velocity is @™ = —r#™,
whereas the tangential component remains unchanged.

To achieve better results at higher densities the DSMC method was extended in two respects;
we refer to the modified method as DSMC2. Firstly, an offset of 2R was added to the particle distance
along the direction of momentum transfer by Alexander et al. (1995). Secondly, we correct M, in (12)
by replacing the volume V, of a cell with the effective free volume V, — Vj;, where 1} is the volume the
particles in that cell would need in a random close packing [packing fraction 0.82 in 2D, see Gervois
and Bideau (1992), and 0.64 in 3D, see Jaeger and Nagel (1992)]. In a direct comparison with ED
simulations, the DSMC method was applied to vibrated granular media by Miller et al. (1997) and
for freely cooling granular media in the absence of gravity by Luding et al. (1998).

3.5 Lattice models

It seems natural to describe the flow of granular media by means of concepts of fluid mechanics.
Taking into account the dissipation rate in the energy balance equations Goldhirsch and Zanetti
(1993), Savage (1992) predicted the existence of an associated instability: Slightly denser regions have
more dissipation and therefore lower pressure which, in return, generates a flow that will enhance the
density. So, dissipation is responsible for the formation of clusters of high density, see Goldhirsch and
Zanetti (1993). It has also been possible to derive from this kinetic gas theory, see Savage (1992),
Haff (1983), Jenkins (1985), that the viscosity increases very sharply with density.

Alternatives to the direct solution of the equations of motion of fluids are the so called Lattice
Gas (LG) and Lattice Boltzmann Models (LBM). These models are defined on a lattice with velocity
vectors that can only point into a few discrete directions, and all have the same length. For the LBM
this simplification is somewhat compensated by the fact that on each site one has more real degrees
of freedom (six on a triangular lattice) than in the classical numerical techniques allowing for the
definition of a local shear or a local rotation. For a more detailed description of Lattice- and Lattice-
Boltzmann models, used for the modelling of granular media, see Flekkoy and Herrmann (1993),
Peng and Herrmann (1994), Herrmann (1995), Vollmar and Herrmann (1995), Alonso and Herrmann
(1996). Here, we will only discuss a recently proposed one-particle model, for heap formation, see
Alonso et al. (1997). One-particle model means in this context that only one particle is inserted into
the system and then moved by following the rules described below, until it comes to a halt. Once
stopped the particle will never move again, and the next particle is inserted.

3.6 A simple one-particle lattice model

Two essential features of granular materials are (i) excluded volume, and (ii) dissipation. On a lattice,
the excluded volume can be modelled by allowing no more than just one particle per site. If a particle
encounters an empty site below it, it falls due to the action of gravity. If it hits the surface h(z) of
the granular material, there are two possibilities, either the particle stops, thus increasing the local



height of the surface by Ah, or it moves along the slope. In the traditional model by Bak et al.
(1987) the decision for either of the two options depends only on the local slope. The new model also
monitors the actual energy of the particle and accounts for the dissipation at each contact with the
coefficient of energy restitution r¢. The energy after each contact ¢’ = rce is a function of the energy
e before collision. Note that the restitution coefficient r and the coeflicient of energy restitution are
connected via the relation 7¢ = r2. The particle will stop immediately if e’ < e;, and it will continue
to jump if e’ > e;. Friction, and also the macroscopic surface roughness of the material, are combined
in the parameter e;, the trapping probability. If the energy is sufficiently large, the particle jumps a
distance Az that is, in the simplest case, exactly one lattice site a. In order to account for inertial
effects, the model can be generalized, so that

Az = int [e—l] , (14)

€t
where int[] selects the integer part of the argument. Another variation of the model delimits Az,
because a particle with large e and thus large Az will destroy the surface at each impact and thus
loose more energy due to internal rearrangements in the pile. The upper bound of Az is denoted by

AZmax. In section 7 we will compare experiments and the different variations of the model, when two
species of particles with different properties are poured from a point-source onto a sandpile.

4 Simulating vibrated granular media

Due to the complex dynamics and the dissipative nature of granular systems, analytical approaches,
i.e. kinetic theories by Savage (1979), Haff (1983), Jenkins and Savage (1983), Campbell (1990), Hwang
and Hutter (1995), are quite difficult to handle and can be solved only in small ranges of parameter
space. Mazighi et al. (1994) solved the dissipative Boltzmann equation, for a one-dimensional (1D)
system under vibration, in the limits of weak and strong dissipation. Furthermore, the experimental
assessment of local quantities, like granular temperature or pressure, is extremely difficult. However,
an experimental setup was developed that uses digital high-speed photography to track the linear
and angular motion of the particles in 2D systems, see Warr et al. (1995, 1994), Foerster et al. (1994).
In addition to experiments and theories, numerical simulations are an adequate tool to study the
behavior of dissipative granulates and thus complement experiments and theories. The majority
of the simulations on vibrated systems of granular media are performed by using the soft particle
molecular dynamics (MD) method, see Taguchi (1992), Gallas et al. (1992b), Luding et al. (1994b,c¢),
Walton and Braun (1986), Kohring (1994), but also the hard particle event driven (ED) algorithm,
see Luding et al. (1994a,d), Mazighi et al. (1994), Allen and Tildesley (1987), McNamara and Young
(1996), Du et al. (1995), is used. For a critical comparison of both methods see Allen and Tildesley
(1987), Luding et al. (1994d,c), Luding (1994), Rapaport (1995).

We present simulations for systems of spheres with rough surfaces in two-dimensional (2D)
vibrating boxes using the collision model introduced in section 3. The systems are examined by
systematic variation of the parameters, as for example the coefficient of friction, u. We find that the
behavior of the system depends on the frictional properties of both, particles and walls. Introducing
particle-particle friction changes the behavior quantitatively. Rough, dissipative walls lead to a
qualitative change of the behavior of the system when density is low. If dissipation is not too
strong and enough energy is fed into the system, e.g. via vibration of the container, the surface
of the material may fluidize, see Clément et al. (1993), Luding et al. (1994a), and the energy will
scale with the typical velocity of vibration rather than with the typical acceleration, see Luding et al.
(1994a), Brennen et al. (1993), Rosato and Lan (1993). Simulations in 1D by Clément et al. (1993),
Luding et al. (1994a), Mazighi et al. (1994) were complemented by two dimensional simulations by
Luding et al. (1994a), Luding (1995) and experiments by Brennen et al. (1993), Warr et al. (1995).
The potential energy F - in 2D experiments and simulations - scales with the typical velocity V' to a
power 6 < 2,i.e. E o< V7, in contrast to theoretical predictions by Warr et al. (1995), Lee and Dufty
(1996).



4.1 System and boundary conditions

Our system is a rectangular container of width L, and open at the top. The vertical position of the
bottom of the box at time ¢ is given by

20 (t) = AO sin(27rft), (15)

where f is the frequency and Ay the amplitude. The typical velocity of the motion is V = Agw, with
w = 27 f. The container is filled with N spherical particles with diameter d; (¢ = 1, ..., N). If not
explicitly mentioned, d; is uniformly distributed in the interval dy —wo < d; < dg +wg, where dy = 1
mm and wy = 0.1 mm. The properties of these particles are defined through the coefficient of normal
restitution 7, the coefficient of friction p and the coefficient of maximum tangential restitution Jy.
As a simplification, we assume for most simulations that the bottom of the container is elastic and
perfectly smooth, i.e. 1, = 1 and pu = 0.

In the following, three different average quantities of the system are calculated, (i) the reduced
height of the center of mass H, (ii) the kinetic energy K and, (iii) the rotational energy R. The
averages are performed at phase zero, i.e. when the bottom moves upwards with velocity V = Agw.
We calculate the reduced height of the center of mass, H = hcy. — he.m.o, With the height of the
center of mass, he.m. = (1/M) Efil m;z;, the total mass M = Z,IL my; of all particles with mass m;,
and the vertical coordinate z; of particle i. The average mass of one particle is m = M/N, and the
height of the center of mass at rest is, see Luding (1995),

hom.o & % (1= V3/2)mn + V3/203] + ”2"]‘370 [1+ Van] - (16)

Here ny is the average number of beads per layer in the presence of walls, n, = int[N/ns] is the
number of full layers and n, = N — npnp is the number of beads in the uppermost layer. Note,
that (16) is exact only for monodisperse particles. As an example, for N = 50, and L = 10dy we
approximate n, = 9, since due to the size fluctuations of the particles, almost always nine particles
per layer are found not 10, as would ideally fit into the box. Thus we use for N = 50 and L/dy =
10 the values ny = 9, n, = 5 and n, = 5, which leads to he.m.o = 2.492 x 102 m. Varying n; by
+1 we show that H is almost independent of the specific value of n; for velocities V' > 0.1 ms™', as
should be. For larger amplitudes or smaller frequencies as used in this study, additional tests have to
be performed, in order to verify Eq. (16) for particles of different sizes.

The average potential energy per particle is mgH, with ¢ = 9.81 ms~2 being the gravitational
acceleration. Apart from the constant prefactor m/2, the average kinetic energy per particle is
K =(1/M) Zfi . miv?, with v; being the velocity of particle 4. In analogy, we define the rotational

energy as R = (¢g/M) Efl 1 mi(%wi)z with w; being the angular velocity of particle i. The prefactor
q describes the mass distribution inside the particles and thus determines the moment of inertia
I =gm(d/2)%.

A useful concept in classical statistical mechanics of equilibrium systems is the equipartition
theorem. In granular media, seen here as an example for dissipative non-equilibrium systems, energy
is mot necessarily equally distributed between the different degrees of freedom. Depending on the flow
of energy, i.e. dissipation and energy-input, the boundary conditions and the collisional properties,
the degrees of freedom may be activated differently, see Luding (1995), Du et al. (1995), McNamara
and Luding (1998a).

In the following, density and velocity distribution functions are presented, and the partition
of energy between the degrees of freedom is discussed, i.e. energy non-equipartition is observed.
Simulations are compared to experiments and the influence of the wall properties on the behavior of
the system is examined.

4.2 Density and velocity distribution functions

Using the direct simulation Monte Carlo (DSMC) method, the dynamics of spheres in two-dimensional
vibrating boxes can be described. With an excluded volume correction for the DSMC method, as
introduced in section 3, one can access even higher densities. The results obtained by DSMC are
then compared with results from event driven (ED) simulations in the following.

The height of the center of mass is a measure for the energy stored in the system. To evaluate
the validity of the DSMC method for this application we first compare ED, DSMC and DSMC2 in two



dimensional simulations. In Fig. 2 the height of the center of mass H is plotted against the velocity V'
for elastic walls and inelastic particles, while the particle number density is displayed as a function of
height z for f=100Hz and V=0.11ms 1. At low excitations of the bottom plate (V < 0.6 ms™!) the
DSMC method becomes invalid. However, the improved DSMC2 method still gives good agreement
with ED down to V = 0.06 ms™!. In this case the density is about 84% of the maximum density the
system has at rest. The considerably improved agreement of DSMC2 with ED can also be seen in
the density profile.

In Fig. 3 the probability distribution is plotted for the horizontal (U,) and the vertical (U,)
velocities. The agreement of DSMC2 and ED is reassuring. The mean square velocity is larger
for elastic walls compared to dissipative walls and the distribution of the vertical component is
asymmetric with the maximum shifted towards negative velocities. The decay for positive velocities
is slower than for negative ones, due to the dissipation in the system and a net energy flux from the
bottom upwards.
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Figure 2: Comparison of the three different methods: DSMC2, DSMC and ED. Left: height of the
center of mass vs. V. Right: density profile for V =0.11ms~".
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Figure 3: Semi-log plot of the probability distribution P(U) of the horizontal velocity U, (left) and
vertical velocity U, (right) for the simulation with 4 = 0.00316 m and V' = 1.98ms™ 1.

4.3 Energy non-equipartition

At first, the behavior of the system is examined when the coefficient of friction changes. Using N =
50, r = 0.9, Bo = 0.5, and elastic, smooth walls, we vary the coefficient of friction u from 0 to 20.
The two limits correspond to perfect sliding and to an extremely rough surface, respectively. In Fig.
4(a) the reduced height of the center of mass H is plotted against p for two values of V, ie. V =
1.57 ms™!' and V = 0.314 ms™'. For V = 0.314 ms™! the frequency f is varied, i.e. f = 40, 100,
and 500 Hz, and for V = 1.57 ms~! f = 100 Hz is used. The standard deviation of the H values
lies between 10 and 15 percent of the absolute value of H. The reduced height H depends slightly on
i, i.e. for increasing p the potential energy decreases. Note that the value of H does not change as
long as V stays constant. This fact is consistent with the scaling laws found by Warr et al. (1995),



Luding et al. (1994d). Furthermore, H saturates in both limits 4 <« 1 and g > 1. H for perfectly
smooth surfaces is approximately twice as large as H for completely rough surfaces. In panel (b) the
ratio K = K/R of the translational to the rotational energy is displayed for the same simulations as
in (a). The data coincide even for different V' values. The ratio K/R seems to be rather independent
of the external parameters Ay and w. However, there exists a dependence of K/R on the coefficient
of friction u. The solid line in Fig. 4(b) is the function

o 20+ 0/n) )
(14 o)

with ¢ = 2/5, and 8o = 0.5, as derived from simulations by Luding (1995). The above &, the effective
coupling between the kinetic and the rotational energy, is obtained from the following assumptions
for the limiting regimes. For weak coupling, i.e. small u, the rotational degree of freedom is weakly
excited and the behavior k o 1/u is expected. For strong coupling x should not depend on g,
since the rotational degree of freedom is already maximally excited. In this regime, the translational
and angular velocities are of the same order of magnitude, i.e. vZ, ~ vZ) & (dwyo/2)? =~ v3. Here,
the indices x, z, and y correspond to the directions horizontal, vertical and perpendicular to the
plane of motion, respectively. Two linear and one rotational degrees of freedom are active, and with
K =~ v2,+v2, and R =~ q(wy0d/2)?, k « 2/q is obtained. We find that for vanishing p or ¢, s diverges.
For vanishing (1 + f3y), the ratio of kinetic and rotational energy should behave like k o< (1 + 39) 7%,
since By = —1 corresponds to a smooth surface. For small (1 + o) almost all collisions occur in
the regime of sticking contacts, for large values of (1 + ), only a certain fraction of the collisions
is sticking, the rest are sliding contacts independent of By. Thus, if (1 + fo) is small, it strongly
affects the rotational velocities after contact. If (1 + o) is large, the effect is, however, rather weak.
Therefore, the multiplicative factor (1 + B9)~! in Eq. (17) is explicitly set in evidence. In Fig. 4(c)
we plot the ratio of K and H, i.e. K/H, against p for the same simulations, as presented in Fig.
4(a). Equipartition of potential and kinetic energy, i.e. mgH = (m/2)K, here corresponds to a ratio
K/H = 2g. The ratio of kinetic and potential energy is smaller than expected, except for the low
frequency data (crosses). Also, except for low frequencies, the ratio K/H decreases slightly with
increasing p. In panel (d) the kinetic energy is plotted against yu; it collapses for large u, but shows a
behavior different from the scaling that was found for the potential energy in panel (a) for small p.

4.4 Comparison with experiments

We now perform a direct comparison of our simulations with recent experiments by Warr et al.
(1995). In order to reproduce the experimental setup the system width is set to L = 165 mm, the
vibration frequency to f = 50 Hz, and the amplitudes are 4y = 0.5, 1.12, 1.84, and 2.12 mm. For
each amplitude simulations with different particle numbers N = 27, 40, 60, and 90 are performed.
All particles have the same diameter, i.e. dg = 5 mm and wg = 0, with the coefficients of normal
restitution, r = r,, = 1, = 0.92. The coefficients of friction are pu = p, = pp = 0.22, and the
coefficients of maximum tangential resitution are here set to By = Bow = Bob = 0.

Similar to Figs. 15 and 16 in Warr et al. (1995), we plot H = he.m. — he.m.o as a function of
V = Apw in Fig. 5(a) and as a function of the inverse number of layers, h = ny/N in Fig. 5(b). The
simulations (open symbols) are not in perfect agreement with the experimental data (solid symbols).
To compare the simulations with the experiments, we perform power law fits of the form

HxV? (18)

and display the results in Table 1. Fig. 5(b) shows that also the dependence of H on the number of
particles N is different in simulations and experiments. The powers x obtained from fits to the form

H  (ny/N)X (19)

are displayed in Table 2 for f = 50 Hz and different amplitudes. These simulations were performed
with a container of infinite height; simulations in a container with height 285 mm, as in experiments,
lead to the averaged powers 9 = 1.52 and X = 0.70, still sytematically larger than measured experi-
mentally. The reduction of the slopes comes mainly from simulations with large amplitude and small
numbers of particles in which sometimes a particle hits the top.



1 \ \ \ 10000 g \ T \
(a) V=157 m/s, f=100Hz + V=157 m/s, f=100Hz +
Vv=0314m/s, f=40 Hz X (b) V=0314 s, f=40 Hz X
V=0.314 m/s, f=100Hz % V=0.314m/s, f=100Hz  *
V=0.314m/s, f=500Hz O 1000 ¥ V=0.314m/s, f=500Hz O
ot o+ 5 Eq. (17)
o1f Ty ]
+ PR
= + x %
> 100 |
X
10
¥ O ECe
0.001 Il Il Il Il Il 1 Il Il Il Il Il
0.001 0.01 0.1 1 10 0.001 0.01 0.1 1 10
u u
45 T T T T T T T T
V=157 m/s, f=100Hz + d V=157 m/s, f=100Hz +
(o) V=0314ms, f=40 Hz x | os | (d) V=0314ms, f=40 Hz  x
V=0.314 m/s, f=100Hz  * V=0.314m/s, f=100Hz  *
35 V=0.314 m/s, f=500 Hz O B V=0.314 m/s, f=500 Hz O
04 R +
- J +
30 y Xxyxxx " ., —_ + +
I 7 % . i = 03k i *
~ % X x X \(‘_d/ % X x X +
X 20" E 0 #g x
N = ¥ 02 | @@D
15 |8 @ﬁ@ﬁmﬁcﬁé+ e %+>:¥ - %%++
10 b . 0 D4 ksl
01
5 - m
| | | | | 0 | | | | |
0.001 0.01 0.1 1 10 0.001 0.01 0.1 1 10
u u

Figure 4: (a) Reduced height of the center of mass, H, plotted against p in log-log scale. The
parameters are N = 50, np = 10, r = 0.9, and By = 0.5. The values of the typical velocity, V', and
of the frequency, f, are defined in each figure. (b) The ratio of kinetic and rotational energy, K/R,
plotted against p in log-log scale. Simulations are the same as in (a) and the solid line represents
Eq. (17). (c) Ratio of the kinetic energy and the reduced height, K/H, plotted against p in semi-log
scale. (d) Kinetic energy K, in arbitrary units, plotted against p in semi-log scale. The simulations
are the same as in (a).

One reason for such large values of the exponents ¥ and x could be the value of ;. Therefore,
we perform the same simulations as for Fig. 5, but now using different values for the restitution with
the bottom, i.e. r, = 0.84 and 0.96. For decreasing r,, we observe a decreasing H, but we do not
observe a significant dependence of ¥ on 7y, and also x decreases only slightly with decreasing r.
Another possible reason for the discrepancy between experiment and simulation is the experimental
setup which is not really two-dimensional, i.e. particles may collide with the front and back walls. We
expect that in the third dimension, front and rear walls also affect the behavior of the system. Warr
et al. (1995) estimated this energy loss and found that (due to wall friction between two particle-
particle contacts) it was of the order of a few percent of the energy lost per particle-particle collision.
Thus, further detailed comparisons of experiment and simulations are necessary to understand the
effects which cause the differences.

4.5 The role of the side walls in 2D and 3D

In order to better understand the influence of the walls, we will now examine the specific role of
the side walls, an examination of the role of the front and back walls is beyond the scope of this
review. The strange dependency of the potential energy on the typical velocity is most obvious in
a plot of H against V for all possible combinations of r and r,. The agreement between DSMC2



N [27 40 Je60 J90 [9 |
experiment [| 1.239 | 1.310 [ 1.326 [ 1.022 ]| 1.22
simulation | 1.72 | 1.66 | 1.57 | 1.45 1.60

Table 1: The power ¥ in the law H o« V? from experiments by Warr et al. (1995), and simulations
by Luding (1995).

Ao (mm) J05 112 [1.84 [212 [[x |
experiment || 0.140 | 0.172 | 0.396 | 0.350 || 0.26
simulation | 0.60 | 0.71 | 0.81 | 0.91 0.76

Table 2: The power x in the law H o (ny/N)X from experiments by Warr et al. (1995), and simulations
by Luding (1995).

and ED for all boundary conditions shows that the particle-particle and particle-wall interaction is
correctly represented. For elastic walls and dissipative particles we find ¥ ~ 2 if V < 0.6ms~!. For
inelastic walls we observe a smaller value, ¥ = 1.5, over two log-cycles, whereas for elastic particles
and inelastic walls two different regimes are seen. In the latter case H ~ V for small V and H ~ V2
for large V. For V > 5ms™! the density is sufficiently small that many collisions with the walls
occur before the next particle collision takes place. Therefore, if the walls are inelastic, the horizontal
velocity of a particle decays between two particle collisions. Thus the dissipation of energy per unit
time through the walls decreases due to decreasing collision frequency. Particle-particle collisions are
necessary to trigger dissipation, and the system behaves similarly to a system with dissipative particle
collisions.

Once the agreement between ED and DSMC?2 is established in 2D, we can now investigate
the behavior in 3D. In order to obtain densities comparable to those in 2D the number of beads is
increased by a factor of 10, because the system is 10 diameters wide and deep. We estimate the height
of the center of mass at rest to H3zp(0) = 2.2 x 10~®m by using an ED simulation with dissipative
beads and a fixed bottom plate. Irrespective of the particular boundary condition chosen, no new
qualitative aspects of the behavior of the system are found when the transition from 2D to 3D is
performed. This means that, effectively the physical behavior of a 2D system is recovered, because
of the equivalence of the two horizontal dimensions.

We applied the DSMC method to dry granular media simulations, accounting for dissipation
and excluded volume. With the corrections described above reasonable quantitative agreement be-
tween the deterministic ED method and the partially stochastic DSMC2 algorithm is obtained. This
proves that the assumptions made for DSMC are correct in the parameter range discussed here and
that the behavior of the system does not depend on possible correlations between collisions. We com-
pared results obtained for various boundary conditions and found that the system shows qualitatively
the same behavior for the height of the center of mass in 2D and 3D. This proves that the scaling
observed is not a 2D artefact. A still open question is the extension of DSMC to larger densities up
to the stable packing density.

4.6 Discussion of the dilute case

Introducing friction between particles leads to their rotational motion. By comparing potential,
kinetic, and rotational energies it is found that the potential and kinetic energies are of the same
order of magnitude, almost independently of the frictional properties of the particles. Kinetic, K, and
rotational, R, energy are coupled via the relative velocity of the surfaces and the effective coupling
parameter that relates K and R. With increasing friction, i.e. increasing roughness of the surfaces,
the ratio K/ R decreases, until it saturates as a function of the structure of the particles, see Eq. (17).
Rough particle surfaces lead to a systematic reduction of the potential energy of the system without
changing the qualitative behavior. The reduction of the potential energy is related to the additional
degree of freedom, i.e. rotation. Because of the surface roughness a certain amount of kinetic energy
is stored in the rotational degree of freedom. This energy is not accessible for the linear motion in
the direction opposite to the gravitational force. Thus, both kinetic and potential energy are reduced
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Figure 5: (a) H plotted against V in log-log scale. The parameters of dissipation are r = r,, = 7y
=0.92, p = py = pp = 0.22, and By = Bow = Bop = 0.0. Squares, circles, triangles and diamonds
correspond to N = 27, 40, 60, and 90 respectively. The open symbols are simulation data, the
solid symbols give the respective experimental measurements. The upper (lower) line corresponds
to d = 1.5 (¢ = 1.0). (b) H plotted against h = ny/N in log-log scale for the same simulations
as in Fig. 5(a). Squares, circles, triangles, and diamonds correspond to A¢ = 0.5, 1.12, 1.84, and
2.12 mm, respectively. Open and solid symbols have the same meaning as in (a). The upper (lower)
line corresponds to x = 1.0 (x = 0.5).

" DSMC2 1 & | " psmcz —— ] L osmc2 ]
10 F ED [} & E 10 ¢ ED [} o 10 ¢ ED [} -
slope 2 ------- T I slope 1.5 -------- I r slopel -------- .
2 1 I 5] - slope 2 - g
g 1F & E 1F é E 1F . E
S @ . 5 5
¥ 01Ff & E 0.1¢ s E 0.1f & E
i B -8
| & i L & . L & ]
E B & )
0.01 & E 0.01 & E 0.01 1 E
e I e TR -
0.001 _ﬁi R R R 0.001 feu 1 el 0.001 Cot I el
0.1 1 10 0.1 1 10 0.1 1 10
V (ms) V (ms1) V (ms)

Figure 6: Reduced height H(V)—H(0) with different dissipation combinations. Left: r,, =1, r = 0.9,
middle: r,, = 0.9, r = 0.9, right: r, = 0.9, r = 1. The error bars indicate the standard deviation.

if rough particles are used.

Interestingly, the properties of the walls affect the system in a more complicated way. In
the dilute regime smooth, elastic or smooth, dissipative walls correspond to the powers ¥ =~ 2 and
¥ & 3/2, respectively. The potential energy increases slower with V' when the walls are dissipative.
Collisions between particles and walls occur frequently whenever the mean free path is comparable to
or larger than the system width L. Thus, the effect is stronger for less dense systems, i.e. larger H.
Rough walls lead to a further reduction of the height H, because large tangential velocities relative to
the walls mean strong dissipation due to friction. Overall dissipation thus depends on the frictional
parameters and also on the density of the system. If one performs simulations in a container with
moving, rough walls, a behavior is observed that is similar to the behavior of a system with smooth
walls. Moving, rough walls lead to energy dissipation due to friction like fixed, rough walls. But
sometimes, due to the velocity of the wall, energy may be fed into the system, see Luding (1995).
However, a system with roughness and normal dissipation, for both particles and walls, follows the
power law E o« V? with 9 & 1.33 over two orders of magnitude in V. This result is consistent with
the experimental findings of Warr et al. (1995).

Performing simulations with rotating particles, and relating the simulations to recent experi-
ments, it was found that the height of the center of mass was of the same order of magnitude as in the
experiment. Note however, that the powers ¥} and x are systematically larger in simulations. This



suggests deficiencies with the three-dimensional nature of the experimental setup. The simulations
which we compared with the experiments were performed in a small range of V' and (ny/N) values.
From other simulations, see Fig. 6, the scaling law E o« V7 is equally obtained with a power smaller
than 2. Recent theoretical approaches by Warr et al. (1995), Lee (1995) always led to the power
¥ = 2. Precise comparisons of simulations, experiments, and theories are necessary to learn where
the differences become significant. For ongoing research concerning dilute vibrated granular media,
see Miiller et al. (1997), McNamara and Luding (1998b,a), Huthmann and Zippelius (1998).

5 Simulation of size segregation

One of the most puzzling phenomena encountered in granular matter is size segregation: When a
mixture of grains of the same material (equal density) but different size is shaken in a container the
larger particles rise to the top. This effect has been extensively studied experimentally by Ahmad
and Smalley (1973), Williams (1976), Bridgwater (1976) and has much importance in numerous
industrial and geological processes, see Brown (1939). Recently, this so called “Brazil nut effect” has
also attracted much interest among physicists, see Jaeger and Nagel (1992), Jaeger et al. (1996b).

Size segregation inevitably seems to contradict equilibrium statistical mechanics since the den-
sity of the overall packing increases with polydispersity and so gravity should make situations with
larger particles on the bottom energetically more favourable. Rosato et al. (1987) proposed a Monte
Carlo algorithm and put forward a kinetic argument to explain segregation using the fact that smaller
particles are more mobile. In the same year, Haff and Werner (1986) performed Molecular Dynamics
simulations of rather small systems and claimed that segregation was essentially a consequence of
solid friction and the rotation of the particles. Jullien and Meakin (1992), Jullien et al. (1993) used a
piling technique which is non—stochastic as compared to that of Rosato et al. (1986, 1987), Devillard
(1990), Dippel and Luding (1995) and found a critical ratio R for the radii of spherical particles below
which no segregation occurs. Based on these ideas, Duran et al. (1993) formulated a geometrical the-
ory for segregation in which the small particles glide down along the surfaces of the larger particles.
Depending on the ratio R of radii, the motion of the large particle takes place continuously and
discontinuously. The former type of motion is found for small R, whereas the latter type is found for
large R above a critical dimension dependent threshold. They also presented experimental evidence
for the two types of dynamics and visualized the discontinuous ascent of the larger particle through
stroboscopic photos. Jullien et al. (1993) reproduced the discontinuous dynamics by including hori-
zontal random fluctuations into their model. Dippel and Luding (1995) generalized Rosatos model by
allowing for small random upward motion and reproduced the experimental findings of Duran et al.
(1993), i.e. they showed that segregation takes place on an extremely slow time scale in the absence
of convection.

Parallel to these local theories there has been the “convection connection”: It is known exper-
imentally, see Ratkai (1976), and numerically, see Taguchi (1992), Gallas et al. (1992b), that shaken
assemblies of spheres form convection rolls which are attached to the walls of the container. For weak
shaking the convection rolls only appear on the surface. Knight et al. (1993) and Ehrichs et al. (1995)
presented experiments where segregation was due to this convection and the fact that larger particles
encounter difficulties to enter again the downwards moving bulk once they are on the surface. They
also verified an exponential decay of the convection strength as function of depth for weak shaking,
see Knight et al. (1995). Duran et al. (1993, 1994) verified segregation due to convection in two
dimensions for strong shaking and claimed that the above mentioned local mechanisms are at work
at weak shaking.

Large scale Molecular Dynamics simulations show, see Pdschel and Herrmann (1995), that
also for weak shaking convection can be responsible for segregation but in a more intricate way:
Under certain conditions the larger particle is able to pull down the convection rolls due to the more
efficient momentum transfer and then rises within the convective flow. Because of the exponential
decay of convection with depth the ability to rise depends critically on the vertical position of the
larger particles.

Throughout the simulation the parameters were v = 1, and ¢ = 0 (linear spring-dashpot)
ky, = 3x106 gs=2 (elastic modulus), v, /m12 = 100 Hz, v¢/m12 = 1 Hz (phenomenological normal and
tangential friction coefficients) and pu = 0.5 (Coulomb friction coefficient). We considered N = 950
particles with diameters uniformly distributed in the interval d; € [1.7,2.3] cm and with masses
m; = wd?p/2, with density p = 1 gcm 2. These parameters correspond to the contact duration for
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Figure 7: Convection rolls in systems without (left) and with the larger particle (right) for f = 2.8 Hz.
The box is L = 50 mm wide and filled to a height of about 70 mm. The big particle with R; =4 cm
triggers convection rolls. The velocities were obtained by averaging over 50 shaking periods of the
box, from Poschel and Herrmann (1995).

small particles t. = 4.6 x 1072 s and the restitution coefficient r &~ 0.6. As in the previous chapter,
the particles are put into a two-dimensional box with walls, here made of particles with the same
material characteristics as the grains, vibrating according to Eq. (15) with Ag = 2 cm. Gravity acts
in negative z—direction with ¢ = 9.81 ms~2. The time step for the numerical integration of the
Gear predictor—corrector scheme of fifth order was At =5 x 1079 s, well separated from the contact
duration ¢, by two orders of magnitude.

Segregation and convection behavior have been investigated by Poschel and Herrmann (1995)
as function of the vibration frequency f in two different systems, either all particles are small or
one single big particle of radius Ry = 4 cm located in the centre of the box close to the bottom
is added. In order to investigate closer what happens at the onset of segregation let us keep all
the other parameters fixed. Fig. 7 shows the convection cells without the larger particle (left) and
with the larger particle (right) for a frequency f = 2.8 Hz, i.e. at the onset of segregation. The
convection cells with and without the big particle, differ significantly, while they are quite similar for
larger or smaller frequencies. This indicates that at the onset the presence of the big sphere triggers
convection which finally leads to segregation. Indeed we find that convection is always present when
segregation happens for the time-scales of a few hundred vibration cycles. Much slower segregation,
taking place without convection during about many thousands of vibration cycles, as reported by
Duran et al. (1993), was not investigated with the MD method. It is important to note that if one
is sufficiently close to the onset of segregation by just putting the larger particles one row lower, one
may entirely suppress the effect of segregation. This dependence of segregation on the height is quite
strong and has so far not been discussed in the literature. By changing the frequency f very slowly
and measuring the convection flow through a plane at a certain height we observed that the transition
from the fluctuation regime to the convection regime is very sharp within the numerical precision
(Af = 0.05 Hz). Moreover, when increasing the frequency the transition occurs almost exactly at
the same frequency as when decreasing the frequency, i.e. there is no hysteresis.

The triggering of convection cells by the big particles is investigated more quantitatively by
calculating the convective flux ® defined as the sum of material (mass) flow in the centre of the box
Jtop and the flow close to the walls jyo4 by considering that these flows have opposite signs. The
flows jiop and jhot are defined as the sum over all particles which move in one direction minus those
moving in the opposite direction. Thus, ¢ corresponds to the number of particles that change from
one cell to another, in a certain direction, within one vibration period. In fact, we measure for each
particle whether the positions at subsequent nodes of the vibration are on different sides of a height
line, where the height of the box was divided into 80 height lines between the bottom of the box and
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from Poschel and Herrmann (1995)

the surface of the packing. Fig. 8 shows the convective flux ® through planes at different heights h
for both systems and for the different frequencies. For f = 2.6 Hz we find almost no directed flow but
only fluctuations. For f = 3 Hz both systems, with and without large particle, behave similarly, as
could also be observed in Fig. 7. For f = 2.8 Hz, however, the convection cells clearly extend deeper
due to the presence of the larger particle. Apparently the larger particle is able to pull the convection
cells down. In the central case, f = 2.8 Hz, the convection rolls are stronger and reach deeper inside
the material when the big particle is present, so that this triggered convection roll catches the big
particle and forces it to rise to the top.

This effect can be explained by the fact that in the region around the large particle the accel-
erations are higher since the momentum is transferred with less dissipative loss through the larger
particle than through a corresponding pile of smaller particles of the same volume. We measured the
sum of the absolute values of the forces of all the particles in a region around the position of the large
particle and averaged it over time. The region was ring shaped with the inner border of radius 4.5 cm
and the outer border of radius 8 cm. At the onset of segregation (f = 2.8 Hz) the average force of
the small particles around the large particle is about 15% larger than that of the small particles in
the same volume in a system containing no large particle. This effect is strongest in the lower part
of the ring shaped region. For f = 2.6 Hz the difference is only 5%. Therefore the accelerations in
the region around a large particle are larger than if no particle would be present. We believe that
this increase in high frequency oscillations is responsible for pulling the convection rolls down. It is,
however, interesting to note that the granular temperature (kinetic energy) in this region is roughly
the same in the two systems.

One can see from Fig. 7 that the convection cells decay very sharply in strength but that even
in the deep regions some essentially horizontal motion occurs. This is reminiscent of the stroboscopic
pictures of Duran et al. (1993, 1994) implying that even in the low acceleration regime some particles
move inward horizontally. Within our framework, however, this motion could be interpreted as the
exponentially weak tail of the convection rolls. On the other hand, it may simply be a consequence
of mass-conservation, i.e. the small particles fill up the volume left free by the large particle when it
rises.

Next we investigated the dependence of the onset of convection on the ratio R of radii. Note
that in our case R = R; /(1 cm) because the mean radius of the small particles is 1 cm. For f = 3.2 Hz
a big particle of radius R = 4.0 was immediately moving up. We also studied the cases R = 3.5,
R =3.0, R = 2.5 and R = 2.0, for which the large particle remains a certain time on the bottom
before it suddenly rises quite rapidly. Fig. 9 shows a typical evolution of the vertical position of the
big particle with R = 2. The times before the upwards motion starts do not noticeably depend on
R and are of the order of 30 s. Once the large particle arrives at the top it performs an oscillating
motion up and down (whale effect) that was also observed experimentally by Duran et al. (1993,
1994). This motion seems to be due to the convection rolls: When R is small, the oscillating motion
is regular because a small particle suffers less difficulty in reentering the bulk from the surface and
following the convective motion. For large R the whale effect is less pronounced and a more erratic
horizontal motion is observed. Particles with smaller R also seem to dip deeper into the bulk showing
that the convection cells can move them more efficiently.

In conclusion, it seems that segregation of granular media in a vibrating box in two dimen-
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Figure 9: Evolution of the vertical position of the big particles as function of time, R = 2.0 (grey
curve) and R = 3.0 (black curve) with f = 3.2 Hz, from Poschel and Herrmann (1995).

sions is intricately connected to convection. The large particles, surrounded by a region of higher
acceleration, loosen the material and thus deepen the penetration of the convection rolls from the top
into the medium. After some time the larger particles are caught by the lower part of the rolls and
pulled upwards. This triggering effect is only relevant close to the characteristic onset frequency of
segregation which is sharply defined and strongly dependent on the initial depth of the large particle.
Once the large particle is on the top it periodically moves up and down driven by the convection cells.

In addition to convection, arching and geometry are also important as pointed out by Duran
et al. (1993) and Dippel and Luding (1995). How the large particles move in the exponentially weak
convection field before being lifted upwards, and how the motion depends on R is probably best
described by the local arching mechanism proposed by Duran et al. (1993, 1994). The fact that the
whale effect of larger particles is less pronounced is certainly due to their lower mobility because of
steric hindrance effects as formulated by Rosato et al. (1986, 1987).

Many of the details of segregation are still not completely clear, and in particular in three
dimensions additional geometrical effects might play a role. This as well as other questions are difficult
to study conclusively with a numerical technique due to the excessive requirements in computer time.
It would for instance be interesting to see what happens when the box is so wide that the walls
of the box are much farther away from the large particle than the height of the packing. In this
experimentally relevant case the walls would not be able to cause or stabilize the convection rolls
in the bulk. Simulations with periodic boundary conditions have, however, provided rather similar
results as with fixed boundaries, see Gallas et al. (1992a). Tt would also be interesting to study larger
ratios R in order to verify predictions made about characteristic values of R & 12 in 2D and R ~ 3
in 3D, see citejullien92,jullien93,duran93, but for that case one would need to consider substantially
larger systems in the sense of particle number. Three dimensional calculations have been made by
Gallas et al. (1996), but there the length scales are even smaller. The limitations in observation
time due to the computational requirements also puts limits on the determination of the segregation
velocity. We cannot exclude that particles rise on time scales much larger than those which are
numerically accessible, see Dippel and Luding (1995).

6 Simulating the Flow through Hoppers and Pipes

The outflow of granular materials from hoppers and silos is an important technological problem
although it seems to be so common place and standard technology. After many years of uninterrupted
service a silo might one day suddenly sucumb under a “siloquake” or similar shock phenomena, of
surprising violence causing considerable harm. In fact silos and similar equipment are by orders of
magnitude the industrial structures most susceptible to collapse. The reason for these catastrophic
events is that the forces exerted by the flowing granular material against the wall of the container
can fluctuate by many orders of magnitude.



Figure 10: Spatial density fluctuations (vertical) for a typical outflow simulation, as a function of
time (horizontal). For more details see Ristow and Herrmann (1994).

6.1 Fluctuations

Using similar techniques as in section 5 but including the Coulomb (dynamic) friction of Eq. (11) and
rotations of particles, simulations were made for the flow out of a hopper by Ristow (1992a,b), Ristow
and Herrmann (1994). For the flow through a pipe, the results from ED simulations are presented
by Duran et al. (1996), Luding et al. (1996d).

From simulations of the flow out of a hopper, see Ristow (1992a,b), the existence of a minimal
outlet diameter was reported, below which clogging occurs due to arching. The minimal outlet size is
larger for equal sized particles than for randomly distributed radii, since the rheology is very different
when particles are monodisperse: For a random distribution of radii the acceleration occurs on a
ramified structure that has strong temporal fluctuations. Particles of equal size form regular, crystal-
like domains and the motion occurs between the blocks. This block motion has been described in
detail in the experiments by Drake (1990).

For the following simulation we use the Hertz interaction v = 1.5 with linear damping ¢ = 0
as expressed in Egs. (7) and (8). The elastic moduli are k, = 10® gs=2 and k; = 10% gs2, the
damping constants are vy, /mi2 = 100 Hz and ¢ /m;2 = 500 Hz, and the friction coefficient is u = 0.5.
The particles, each with diameter d; drawn from a Gaussian distribution with width w around mean
dy = 1 mm, are subject to the gravitational acceleration g = 9.81ms~2 and the time-step used for
the simulations was At = 2 x 1074 s. The silo walls are made of particles with the same material
properties as the flowing grains. In Fig. 10 a space-time diagram of the density inside a silo is plotted,
where space is binned in intervals of 1.56 dy. The silo has an outlet of width D = 10dy and the walls
are tilted by © = 30°. High and low density correspond to light and dark regions respectively. When
particles of equal size are used one observes equally well developed density patterns. The effect is
reduced when the diameter D of the outlet becomes too large. If it is too small the flow of particles
can entirely stop due to arching. The critical diameter Dy when this arching sets in has been studied
before with similar techniques, see Ristow (1992a,b).

Regions of a given density (the same grey-scale) form curved stripes: First, the particles are
accelerated by the gravitational acceleration, and later the flow takes place with an almost constant
speed. This agrees with the experimental findings by Baxter et al. (1989); in those experiments,
density waves move downwards for rather small opening angles. We observe no structure in distance
or magnitude of the waves. In order to obtain better quantitative information on the stresses in
flowing granular media, we examine the outflow from a silo and focus on the stresses at the walls —
a quantity that is also accessible experimentally.

When considering smooth walls, i.e. when all wall particles having the same radii, we do not
find density waves and the power spectrum looks significantly different. It shows an upward curved
slope with increasing frequency which one also finds when configurations block during the outflow.
A similar effect was also found in simulations of flow on an inclined plane by Po6schel (1993).

In the following we use again the Hertz interaction v = 1.5 with linear damping ¢ = 0. The
elastic moduli are k, = 10® gs2 and k; = 10® gs~2, the damping constants are vy, /m12 = 500 Hz
and v¢/mi2 = 500 Hz and the friction coefficient is y = 0.5. With these parameters we measure
for typical velocities a restitution coeffcient of » = 0.7. The time-step used for the simulations was
At = 5 x 1079 s. The simulation volume is rectangular with width 10 cm and height 40 cm, as
displayed in Fig. 11. The material is initially filled into the upper half, and the silo outlet is centered
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Figure 11: Schematic drawing of the silo geometry, the top is left and the bottom is right.
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Figure 12: Distribution of (a) normal force p and (b) shear force T at the wall of the hopper with
outlet at height h = 20 cm. The data are taken 0.165 s after opening the outlet of a hopper with
© = 40° and the upper and lower curves give the forces on the left and right wall respectively, from
Ristow and Herrmann (1995).

at height 20 ¢cm with width Dy = 2 cm. The right (left) hopper wall is tilted counterclockwise
(clockwise) by an angle © from the horizontal. The particles are initially randomly placed in a large
volume above the outlet. After they settled due to the action of gravity, the outlet is opened and
the particles start to flow. Particles are continuously added from above to guarantee steady state
conditions.

In order to get quantitative information about the flow, the stress at the side walls of the
hopper can be measured. From the normal (p) and the tangential (1) components of the force acting
on each of the wall-particles, averaged over 1000 time steps, the situation at time ¢t = 0.165 s after
the opening of the outlet is presented in Fig. 12. We observe very strong spatial fluctuations and an
asymmetry of stresses, i.e. the stresses at the left and right wall (upper and lower curve respectively)
are not the same at a given height. Furthermore, the shear force is at least half as big as the normal
force due to the friction coefficient of 4 = 0.5. The curves of normal and shear stress have similar
shape, meaning that frictional forces are mainly activated.

Baxter et al. (1993) also measured the stresses acting on the walls of a three dimensional
hopper with an opening angle of 45° during the outflow of sand. They observed a power law decay
in the spectrum of the time dependence of the normal stress (pressure) where the exponent strongly
depended on the run. Measuring the fluctuations of the quantity S = 1/p2? + 72 which are of the same
order as the mean value, one cannot deduce any apparent correlations. More quantitative information
are presented in Fig. 13 where the power spectrum, §, of the time sequences of S is plotted, i.e. the
square of the amplitude of its Fourier transformation. For sufficiently open hoppers, like for ©® = 55°,



10000 F——rrm——rr—— 1000 p———rrr— 9
i (a) | (b) 1
1000 = 1
100 | = 100 E
10 | = 4
1F = 10 | 3
0.1F - |
0‘01 [ Ll Ll il I lllu- 1 L1 gl L1 1l L1111
1 10 100 1000 10000 1 10 100 1000
f(sh) f(s7h)

Figure 13: Log-log plot of the power spectrum § of the stresses (measured in arbitrary units) 11
particle diameters above the outlet for different angles (a) ® = 40° and (b) ® = 75°. The straight
line in (a) indicates an exponent of -1.8. The data are from Ristow and Herrmann (1995).

the spectrum decays with a power law over at least one order of magnitude with an exponent of
about 1.3. This is in very good agreement with the experimental results of Baxter et al. (1993) which
worked at the same opening angle. Their power law, however, extends over a much larger range than
in the simulation because the computer requirements limit the observation times to several minutes
while the real experiments can be carried out over many hours.

It is very interesting to note that if the hopper walls become more inclined the spectrum
changes abruptly and becomes white noise. Savage (1993) found a similar situation in numerical
calculations of the wall stresses in shear cells as function of density: Only at rather high densities
the power spectrum showed a power law while for lower densities he observed white noise. In our
case, although the density cannot be varied, a change in the opening angle determines whether there
are stagnation zones or not. Evidently the density in the flowing regions is lower than in stagnations
zones.

Investigating the force distribution and the shape of the stagnation zones in outflowing hoppers
one observes an interesting dependence on the opening angle: In the case of funnel flow (0 ~ 75°),
there are no stagnation zones, and the power spectrum of the stresses against the walls indicates
white noise. By opening the angle one finds stagnation zones and a power law spectrum. This
leads one to suspect that the power law in the stress spectrum does not originate from the power
law in the density fluctuations, see Baxter et al. (1989), Ristow and Herrmann (1995), because the
density fluctuations also follow a power spectrum in the case of funnel flow. It seems more likely that
the stagnation zones act like “noise transformers” in which essentially uncorrelated random kicks
emerging from the outflowing core are transmitted through the complex contact network to the wall.
Similar observations have been made with the propagation of shock and sound waves in dense packed
boxes by Liu and Nagel (1992).

6.2 Decompaction

Effects like recurrent clogging, see Pdschel (1994), and density waves, see Peng and Herrmann (1994),
Baxter et al. (1989, 1993), Lee and Leibig (1994), are frequently observed during granulate processing.
Density waves have been found in simulations to occur in a steady state regime by Peng and Herrmann
(1994), Lee and Leibig (1994) or in experiments, related to gas-particle interactions (pneumatic
effects) by Raafat et al. (1996, 1997). In the spirit of current efforts dealing with model granular
materials by Clément et al. (1992), Knight et al. (1993), Duran et al. (1994), Warr et al. (1994) the
problem of a 2D granular material made up of rather large beads is attacked. The size of the particles
is large enough so that the influence of the surrounding gas can be neglected. The advantages of such



material are a direct optical observation of the particles and the possibility of tractable computer
simulations.

Recent observations of approximately V-shaped microcracks in vertically vibrated sand-piles
by Duran et al. (1994) led to the problem of gravity driven vertical motion of sandpiles in 2D
containers, see Duran et al. (1996), Luding et al. (1996e,d,b). In a continuously vibrated container
with rough walls, the cracks appear periodically at different positions in the pile and exist only during
a short interval of time (e.g. for a few milliseconds at a vibration frequency of 15 Hz). Therefore, an
experiment was designed which allows a much longer observation of the dynamics of these microcracks.
Hence, we study the fall of a 2D granular material inside a rectangular container with frictional
lateral walls. We examine the modes of decompaction, which is a basic problem related to the
general dynamics of non-cohesive powders. This paper reports a series of experiments, paralleled by
computer simulations based on an event-driven algorithm, including rough and rotating particles.

For the experiments, a set of monodisperse oxidized aluminum beads of diameter d = 1.5 mm
was used by Duran et al. (1996), like in previous works on model granular materials by Clément
et al. (1992), Duran et al. (1993, 1994). These metallic beads are initially arranged in an ordered
triangular network inside a vertical 2D cell made up of two glass windows for visualization and two
lateral vertical walls of plexiglass. The width of the cell is typically 3.6 cm and the heights of the
arrays range from one diameter to 19 cm, while the gap between the glass windows is marginally
greater than one diameter d. This setup minimizes friction with the front and back windows while
maintaining strong friction between the pile and the lateral boundaries and thus mimics a convenient
2D granular object.

The cell containing the pile is initially closed at its lower outlet by a 1 mm deep aluminum
blade which can be moved downward at an acceleration of approximately 3g. The whole setup is
carefully aligned in order to make sure that the blade does not touch the cell when moving. The
downwards air drag induced by the moving blade might induce artificial effects at the beginning of the
falling process. We checked this by testing that a single bead or a single layer of beads falls according
to the acceleration of gravity g, so that the influence of the surrounding air will be neglected in the
following. The recording setup consists of a charge-coupled-device (CCD) camera interfaced to an
image processing device. The definition of the origin of time, i.e. the time when the fall starts, is
measured via an additional setup which uses a He-Ne laser, the beam of which is cut-off when the
blade starts moving downwards.

The observation and recording of a large number of experiments in different containers leads
to the conclusion that during the fall discontinuous decompaction may occur via cracks. In Fig.
14 snapshots of a typical experiment are presented (a) complemented by the results of numerical
simulations (b). For details on the simulations and the relevance of the parameters see section 3.
The development of the cracks starts in the lower part of the pile and ascends progressively inside
the bulk in both, experiment and simulation.

From the experimental data two very important features are discoverable which will be consid-
ered in more detail below: Almost perfectly smooth lateral walls are unlikely to induce cracks during
the fall, so that the pile often remains compact. In contrast, rough walls unavoidably introduce
cracks. If a crack occurs in the lower portion of the pile, it quite generally increases in size as the
fall proceeds. If a crack occurs in the upper part, it tends to close and disappear during the fall.
This stability can be explained with a simple generalization of Janssen’s theory, see Janssen (1895),
Duran et al. (1996); it leads to the conclusion that larger piles are stronger decelerated than small
piles. Thus, a crack which opened in the upper half of the pile is likely to close again, because the
lower portion of the pile is larger and thus stronger decelerated than the upper part.

For the numerical modeling, we are interested in the situation when a rather compact array of
particles begins to fall and progressively decompacts. We use a box of width L and initially arrange
N particles with diameter d on a triangular lattice with lattice constant s = 1.01d. Each particle
is assigned a random velocity, uniformly distributed in the range —vy < v;(0) < v in both, the
horizontal and vertical directions. This rather regular system is now allowed to reach a steady state,
i.e. we start the simulation at ¢t = —t,., using r = r,, = 1 and p = p,, = 0. A typical average velocity
in our simulations is 7 = V< v2 > = 0.05 ms~! for ¢ = 0. Due to the rather low kinetic energy,
the array of particles is still arranged on a triangular lattice, except for a few layers at the top which
are fluidized, see Fig. 14(b). In a typical simulation, we use L = 20.2 d and N = 1562, so that
the array consists of about 80 layers. At time ¢ = 0 we remove the bottom, switch on dissipation
and friction and let the array decompact. We used different initial conditions, keeping all other



0.04 s 0.06 s

Figure 14: (a) Experiment: Successive snapshots (aperture time 1/2000 s) taken at 0.02 s intervals
after the piston has been removed. We use L = 24 d and 103 layers so that So ~ 3.7. (b) Simulation:
In a container of L = 20.2 d and with 80 layers so that Sg ~ 3.5; 7 = 0.99, 7, = 0.98, u = 0.5, py, =
1.0, Bo = Bow = 0.2, and T(t = 0) ~ 0.05 ms~! was used, from Duran et al. (1996).
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Figure 15: Plot of the pressure on the side walls as a function of height, obtained from the numerical
simulations of Fig. 14(b). The integration interval is At = 0.01 s and each data point corresponds to
a wall segment about six layers high, from Duran et al. (1996).

parameters fixed and found strong fluctuations in position and shape of the cracks. However, the
cracks are a reproducible effect, almost independent of the initial conditions. When decreasing the
tangential friction, pu,,, the cracks vanish since the pile falls with only weak perturbations from the
lateral walls.

Since the comparison between experiments and simulations seems satisfactory, we investigate,
via simulations, the problem of stress in the pile, see Walton and Braun (1986), Bouchaud (1994),
and in particular the stresses the pile exerts on the lateral walls during the fall. From simulations,
the pressure on the side walls is obtained by integrating the normal component of the momentum
change, Eq. (5), of those particles which collide with the wall within the time ¢ — At and ¢. In Fig.
15 we chose At = 0.01 s and plotted the pressure as a function of height so that each data point
represents the normal stress on a part of the wall about 6 layers high. For ¢ = 0.02 s (diamonds) we
still have a rather small pressure, whereas for t = 0.04 s (crosses) the pressure increases by almost
one order of magnitude in the lower part of the pile. As can be imagined, this increase is strongly
correlated to the occurrence of cracks. During the fall of the array arches, vaults or, in put otherwise,
contact chains may be built up, corresponding in our simulations to a large number of collisions per
unit time and thus to a great amount of momentum change. Such an arch can sustain particles above
it, at least for a short time, and thus allow a crack to open below it. As can be seen in Fig. 15,
these arches disappear after a short while and then allow the pressure to relax and the falling to
proceed further. At time ¢ = 0.06 s (squares) cracks are also formed in the upper part of the pile;
they are again connected to strong stress. For even longer times, ¢ = 0.08 s (x-symbol) the particles
are already too much diluted near the walls, and contact chains are no longer likely.

Before a crack can become visible, a certain time passes during which it opens. The reason
for a crack to open has been identified as the fluctuations of either the wall surface, see Duran et al.
(1996), or the particle motion, see Luding et al. (1996d). Thus, fluctuations lead to a momentum
wave in the material. A part of the material is decelerated and the material from above hits this
slower plug and causes a new, possibly stronger momentum wave. The increased pressure on the
sidewalls may lead to an even stronger deceleration so that eventually a crack opens below the plug
— and becomes visible only that late.

As long as the material is dense, one expects a frustration of the rotational degrees of freedom.
A rotation of one particle in a triangular array is not possible if it is in contact with its six neighbors,
which are also pairwise in contact. This picture is valid in case of a clockwork — however, the surfaces
of granular particles are coupled via friction which permits sliding.

During simulations as presented in Fig. 14(b), the angular velocity of two neighboring particles



is random. Only when regions with strong stresses exist in the system and when this stress system is
anisotropic a clear spin order can be observed. In Fig. 16 we present the spins of the particles from
a simulation with L = 20.2, H = 80, r = 0.96, r, = 0.92, 4 = 0.5, pyy = 1.0, and By = Bow = 0.2, at
time ¢t = 0.04 s.

(a) (b)

Figure 16: (a) Snapshot of the particle spins from a rep-
resentative simulation at time ¢ = 0.04 s. The black par-
ticles rotate clockwise whereas the white particles rotate
in the opposite direction. The arrows indicate the bound-
aries of a region of spin-order, from Luding et al. (1996d).
(b) Schematic picture of the region where the spins are
ordered parallel to the weak stress pyin and perpendicular
to the strong stress pmax-

In the lower left half of the pipe, we observe an array of ordered spins. In Fig. 16(b) we
show schematically that the spins tend to have the same direction along the line of weak pressure
and have alternating direction along the direction of maximal pressure. When the stress is high,
the surfaces of the particles are strongly coupled and neigbours rotate in opposite directions, i.e. the
particle surfaces likely stick together and the particles roll over each other. In the minimum-pressure
direction, friction is less active and sliding is possible. This picture, together with the arrangement
of spins in Fig. 16(a), implies an arch-like structure within the falling pile, where strong stresses are
found perpendicular to the lines of spins with equal direction.

In summary, we observe no steady regime for the falling dynamics of an initially compact
granular material: the assembly decompacts progressively and accelerates downwards. Looking in
more detail at the geometrical patterns formed by the grains, we observe either a discontinuous
decompaction or a continuous one. The discontinuous decompaction is the result of cracks breaking the
array into pieces from bottom to top. Both, experiments and simulations verify two basic predictions
deduced from a simple continuum model by Duran et al. (1996) based on a dynamic extension of the
theory by Janssen (1895). First, as long as no cracks occur, the theory predicts the acceleration of
the top of the pile as a function of the aspect ratio: for increasing height, the acceleration of the top
decreases. Second, if some crack occurs, it is stable only in the lower half of the pile and both blocks,
hence detached, will fall with a larger acceleration and will separate further. Experiments show that
cracks are rarely formed whenever the lateral walls are optimally polished; cracks always appear
when the surface roughness is larger than typically 107® m. On the other hand, in simulations, the
surface is perfectly flat. Nevertheless, cracks are always observed for coefficients of friction close to
the experimental value, since, as mentioned above, the ED algorithm requires the use of a non-zero
thermal agitation in order to provide dynamical interactions by collisions. This eventually introduces
fluctuations in the system that may cause cracks, even when the coefficient of friction is constant and



the wall is flat. In order to test whether cracks are primarily induced by external fluctuations such as
heterogeneities at the lateral walls, we suggest a comparison with Molecular Dynamics calculations,
which do not explicitly require an internal noise. Moreover, the simulations have shown another
important feature: strong pressure fluctuations are connected to the occurrence of arches and cracks
and thus are propagating upwards.

As expected, the down falling motion is equivalent to the upward motion of a pile in a con-
tinuously vibrated box. Cracks, originated by the side walls, are oriented to oppose the motion of
the particles relative to the lateral walls. The cracks are approximately following the geometry of
the triangular network such that they occur mainly at angles of 30 degrees relative to the walls.
Note that also a weak proportion of cracks with other angles is observed, see Fig. 14(b). Thinking
in terms of arches or vaults anchored at the lateral walls, we note that the inverse V-shape of the
contact chains is consistent with the natural shape of stable arches in a triangular network. This is
reminiscent of the concept of ‘free fall arches’, see Brown and Richards (1970), which sustain a plug
of granulate above freely falling particles. Along this line, we may tentatively extrapolate our results
to 3D situations by conjecturing that a similar discontinuous decompaction process might occur via
the successive formation and destruction of arches. As far as we know, the existence of cracks in
monodisperse 3D as well as in polydisperse systems have not been reported so far.

7 Dynamics of sand pile growth

An experimental investigation of the size segregation induced by the flow of a binary granular mixture
in a two dimensional vertical Hele Shaw cell has been performed by Grasselli and Herrmann (1998).
The granular mixtures are made of equal masses of sand and glass beads, the latter having a smaller
angle of repose and a smoother surface. Depending on the size ratio (rough / smooth) of the particles
of the two species, we have shown that three different situations of segregation can be obtained.
First, a perfect segregation between the two media with a sharp interface is found for a ratio lower
than approximately 0.8, a continuous segregation with no interface occurs for a ratio close to unity
and finally, stratification which consists in the formation of alternating layers of each medium arises
for a size ratio greater than 1.5. We studied precisely this last case and reported that the absolute
size of particles, the cell wall separation and the mass flux of the mixture can strongly modify the
stratification process. In that case, the most significant information (the layer wavelength) is drasti-
cally changed. Also new experiments were started on the tail and on the slope of a heap constructed
between two vertical walls, see Grasselli and Herrmann (1997). The particles are injected in the cell
from the left. The right wall induces a boundary condition similar to that in silos. Preliminar results
show that the slope of the heap strongly depends on the distance between the left and right walls and
also on the initial energy of the particles poured in the cell. We are currently investigating the form
of the tail to find its mathematical formulation, see Alonso and Herrmann (1996), Herrmann et al.
(1998).

The purpose of this project is to determine the macroscopic angle of repose from the microscopic
characteristics of the particles, see Alonso et al. (1997). We simulate the development of a pile of
granular matter on a two-dimensional lattice. Our model includes the effects of friction, dissipation of
energy by the particle-particle collisions, and sticking of the particles to the pile. The model depends
only on a few parameters, so that a large number of particles (more than 108) may be simulated. In
these simulations, we obtain that due to the discretization, the angle of repose of the pile behaves as
a complete devil’s staircase when varying the model parameters. Such fractal devil’s staircases have
the peculiar property that the function varies only on a set of zero measure.

Additionally, using a mixture of two different granulates with different physical properties, we
have been able to observe stratification patterns (Fig. 17) which are similar to those experimentally
observed and reported in the literature. Specifically, we examined the segregation which occurs if a
mixture of different particles is poured on a pile. The aim of this work is to find a model which can
describe all the stratification patterns which are known to occur in real sandpiles.

Using the discrete one-particle numerical model described in section 3.5, we were able to find
different types of stratification depending on the maximum jump width allowed. The first version of
the model allows exclusively jumps from one lattice site to the next. The result of the corresponding
simulation is presented in Fig. 17(b). The stripes are rather thin and are varying in length. A
modification of the model accounts for the inertia of the particles so that particles with high energy



Figure 17: (a) Experimental picture of granular stratification obtained by pouring a binary mixture
between two vertical walls. Stratification-patterns generated by the one-particle model (eg1 = e = 1,
random initial energy 0 < eg1,€e02 < 2, and N = 135000) with (b) constant jump width (Az = a,
r = 0.8, r§ = 0.740), (¢) with energy dependent, unlimited jump width (r{ = 0.8, r§ = 0.794), and
(d) limited jump width (AZmax = 4a, r§{ = 0.8, r§ = 0.760). The model is described in section 3.5.

also perform longer jumps. The simulation in Fig. 17(c) leads to much thicker strata but as difference
to the experiments the strata seem to grow with the system size. The last variation allows for inertia
up to a certain maximum jump-width Azn,ax that determines the width of the stripes in Fig. 17(d).
The limitation of the jump-width can be argued to be necessary, since particles impacting on the
surface with high energy will loose much more energy since many other particles may move and also
dissipate energy.

A more refined model that considers four different values of r¢ and e; for each possible pair
of interacting partners, see Makse and Herrmann (1998), leads to stripes in better agreement with
those observed in experiments, see Fig. 17(a).

8 Quasi-static granular assemblies

In contrast to the dynamic simulations of sandpile growth, silo- or pipe-flow, and size-segregation
in vibrated containers, we focus in the following on quasi-static situations. We are interested in the
stress distribution inside a sandpile made of the simplest possible imaginable model material. This
is a piling of almost identical spherical particles in 2D. Tangential forces like friction are neglected,
see Luding (1997), Luding and Matuttis (1997), Matuttis and Luding (1997).

8.1 Stress distribution

One of the many interesting features of granulates is the stress distribution in static or quasi-static
arrays. In contrast to a liquid, the pressure in a silo, filled with e.g. grains, is not increasing linearly
with depth, but saturates at a certain value, see Janssen (1895). This is due to internal friction and
due to arching, so that the walls of the silo carry a part of the weight of the material. In sandpiles
no walls are present so that the situation may be different, i.e. the total weight of the pile has to be



carried by the bottom. However, the distribution of forces below and also inside the pile is not yet
completely understood. Experiments on rather large piles often show that the normal force has a
relative minimum below the top of the pile, the so-called dip, see Trollope and Burman (1980), Smid
and Novosad (1981). On a much smaller scale, the stress chains are observed, i.e. stresses are mainly
transported along selected paths and the probability distribution of stress spans orders of magnitude,
see Liu et al. (1995), Radjai et al. (1996), Ouaguenouni and Roux (1997).

One simple model pile is an array of rigid spheres, arranged on a diamond lattice, i.e. with
four nearest neighbors each, see Liffman et al. (1992), Hong (1993). The force beneath such a
pile is constant in contrast to the experimental observations, and also periodic vacancies in such a
configuration do not lead to a dip in the pressure at the bottom, see Huntley (1993). The variation of
the size of some of the particles or an attractive force between the particles may lead to a non-constant
force below the pile, see Liffman et al. (1994). Continuum approaches by Edwards and Oakeshott
(1989Db), Bouchaud et al. (1995), Edwards and Mounfield (1996), Wittmer et al. (1997, 1996) may
lead to a dip in the vertical stress if the appropriate assumptions for the constitutive equations are
chosen. Edwards and Oakeshott (1989b) introduced the notion that a pressure minimum can result
from compressive stresses aligning in fixed directions. Wittmer et al. (1997) and Wittmer et al. (1996)
concretized this idea recently with calculations in agreement with the experimental data by Smid and
Novosad (1981). A lattice model based on a random opening of contacts, used by Hemmingsson et al.
(1997), also shows the dip in average over many realizations. Different numerical simulations show a
dip in the absence of friction for specific boundary conditions, see Luding (1997), or when sufficiently
polydisperse particles are used, see Matuttis (1998). The non-linearity of the law for the forces and
the shape of the frictionless particles seem to have a minor influence, see Luding and Matuttis (1997),
Matuttis and Luding (1997), whereas the history of the formation of the pile is crucial for the stress
distribution, see Matuttis (1998). Paralleling the simulations by Luding (1997), an analytical, exact
solution was presented by Oron and Herrmann (1997). For more information on related research
see a review by Savage (1997), and the publications by Savage, by Cantelaube & Goddard, and by
Bouchaud, Cates, & Claudin in the book by Herrmann et al. (1998).

Here, we focus on properties of granular systems in the absence of friction. By neglecting solid
friction, we will examine to what extent phenomena like stress chains and arching depend on friction.
However, we are confronted here with what could be called “geometrical friction”, as the particles
restrict the motion of their neighbors due to excluded volume effects; this makes it possible to create
a stable pile, see Luding (1997), Oron and Herrmann (1997). Without contact friction, energy may
still be dissipated by e.g. viscous deformations, modelled here by a simple viscous dashpot, active
during the contact. Since we are interested in static arrangements of particles in the gravitational
field, we use strong viscous damping, in order to reach the steady state quickly. For the relaxation
of the array we use a molecular dynamics (MD) procedure, see Cundall and Strack (1979), Allen and
Tildesley (1987), as described in section 3, in order to allow contacts to open and to close. The MD
method is not the best choice for a fast relaxation, but closing and opening contacts is implemented
straightforwardly.

In the simulations N spherical particles with diameters d; (¢ = 1,...,N) are used. If not explicitly
mentioned monodisperse spheres of diameter d; = dg = 1.5 mm are employed. The N particles are
placed into a container with different boundary conditions at the bottom and also different system
sizes. Starting from a regular closely packed triangular arrangement with L particles in the lowermost
layer M = 0 at the bottom, we model heaps of slope 60° or 30° by forming layer M with Ly; = L— M
and Ly = L — 3M particles, respectively, as displayed in Fig. 18. The number of particles is thus
N0 = FEO(L,4+1)/2 or NG = FGO (L —3(HGY —1)/2) with the number of layers H(¢%) = L or
HG% =int[(L — 1)/3] + 1. The largest simulated pile has L = 100 and thus N(3%) = 1717 particles.

The initial velocities and overlaps of the particles are set to zero, gravity is slowly tuned from
zero to the selected magnitude and the system is simulated until the kinetic energy is several orders
of magnutide smaller than the potential energy, and the stresses no longer vary with time. The
particles at the bottom layer M = 0 are either fixed, or may slide horizontally and penetrate the
bottom vertically. When sliding is imposed, only the outermost particles are horizontally fixed by
the sidewalls.

An important quantity that allows insight into the state of the system is the stress tensor o,
see Goddard (1986), Bathurst and Rothenburg (1988); in the static case it is defined as

o) = (1/VO)E qafs, (20)
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Figure 18: Schematic drawing of a pile in a box with smooth, flat bottom (left), and on a bumpy
bottom (right), with Lo = 7. The solid bar at the right indicates that the particles in row M = 0 are
fixed, so that the first relevant row with mobile particles is M = 1 with here L; = 5.

where the indices a and 3 indicate the coordinates, i.e. x and z in 2D. This stress tensor is an
average over all contacts of the particles within volume V{9, with ¢ denoting the distance between
the center of the particle and the contact point, and f denoting the force acting at the contact point.
Throughout this study we average over the contacts of one particle (¢) to obtain the stresses for one
realization.

From a static configuration of “soft” particles we may now calculate the components of the
stress tensor Oy, 04z, Oxz, and o,y and also define 0 = (0xx +04,)/2, 0~ = (0xx — 04z)/2, and o* =
Oxz- Since tangential forces are neglected, the particles are torque-free and we observe only symmetric
stress tensors, i.e. 0,5 = 0x,. The eigenvalues of o are thus opmaxmin = 07 £ \/(67)2 + (¢*)2, and
the major eigenvalue is tilted by an angle

max ~— Yxx 1 2 Xz
¢ = arctan Tmax 7 T ) = T4 ~ arctan | ——22 (21)
Oxz 2 2 Oxx

— Oz

from the horizontal in the counterclockwise direction.

In the following, the horizontal coordinate z is scaled by the width [ of the pile, i.e. X = z/I,
and X = 0 corresponds to the lower left end of the pile. In order to find the correct scaling for the
stress we assume following Liffman et al. (1992, 1994), as a simplified example, a rigid triangle with
the density p, the width I, the height h, and the mass m = phl/2. Since the material is rigid, we find
a constant force at the supporting surface, so that the pressure is also constant p = mg/l = pgh/2.
Thus we will scale the stress by the pressure p and further on use the dimensionless stress tensor

_ 20 _ ol _ o2 o)
pgh  mg  hmg
with the volume a = hl/2 of the triangular pile. Apart from the components of S we will also plot
the stress tensor in its principal axis representation, i.e. for each particle we plot the scaled major
principal axis along ¢ and the minor axis in the perpendicular direction.

8.2 Variation of the Width of the System

In this subsection we will examine the difference between the theoretical predictions for the stresses
and the numerical simulations, see Liffman et al. (1994), for a 30° pile. The theory is based on the
assumption that the contact network is a diamond lattice. This condition is valid for 60° piles but
not necessarily for a 30° pile. Thus we perform different simulations with a 30° pile on a bumpy
bottom, see Fig. 18, with L; = 19 and change the contact network from the regular diamond case
by increasing or decreasing the separation of the fixed particles in row M = 0. The centers of the
particles in the lowermost row are separated by a distance do(1 + ¢), with the ¢ values ¢ = 1/15, 0,
-1/750, and -1/150. In Fig. 19(a) and (c) the vertical and horizontal components of the stress tensor
are plotted, and in Fig. 19(b) and (d) the contact network and the principal axis of the stress tensor,
respectively are displayed. The interesting result is that the vertical stress in Fig. 19(a) has a dip
for negative ¢ values, the depth of which increases with increasing magnitude of ¢, see Liffman et al.
(1994), Luding (1997). The horizontal stress in Fig. 19(c) is much larger for negative c as for positive
c.
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Figure 19: (a) Dimensionless vertical stress S,,(1), in row M = 1, vs. dimensionless horizontal
coordinate X = z/I for a 30° pile with bumpy bottom and L; = 19. The immobile particles in row
M = 0 are separated by a distance do(1 + c), i.e. are sqeezed together for negative ¢ or separated for
positive ¢. (b) The contact networks for the corresponding systems. (c¢) Horizontal stress Sxx(1), vs.
X. (d) The principal axis of the stress tensor for the corresponding systems, from Luding (1997).

From Fig. 19(b) we observe that the assumption of a perfect diamond lattice for the contacts
is true only for ¢ = 1/15, i.e. wide separation of the particles. The vertical stress S,,(1) has a zig-zag
structure that we relate to the steps at the surface of a 30° pile. For the naively used ¢ = 0 and also
for small negative ¢ = —1/750 we have a contact network with regions of coordination number 4 and
6, corresponding to the triangular or the diamond contact network. For sqeezed bottom particles,
i.e. ¢ = —1/150, the contact network is again a diamond lattice, but the orientation is tilted outwards
from the center. From Fig. 19(d) we obtain arching for negative ¢ and no arching for positive c.
Evidently, a tilted diamond lattice is necessary for an arch to form in this situation.

In Fig. 20(a) we present for the simulations from Fig. 19 the angle ¢(1), see Eq. (20) about
which the major principal axis is rotated from the horizontal in counterclockwise direction. For
¢ < 0 we observe a constant angle in the outer part — consistent with the fixed principal axis (FPA)
theory by Wittmer et al. (1996) — and a transition region in the center. We observe FPA only for
negative ¢ when we also find arching. In contrast, for ¢ > 0 we observe a slow continuous variation
of ¢(1) over the whole pile. In Fig. 20(b) we plot the ratio of the principal axis § = Smin/Smax and
observe an almost constant value in the outer region of the pile, whereas in the inner part the ratio
is strongly ¢ dependent. From a detailed comparison of the contact network and the stress tensor we
may correlate several facts: First, the ratio of the principal axis, s, seems to determine whether the
contact network is a triangular or a diamond structure, the latter with one open contact. For ¢ = 0
and for ¢ = —1/750 the triangular contact network is formed if s is large. Second, the direction of the
diamonds is correlated to ¢, i.e. the tilted diamond lattice (for negative ¢) is observed if the major
axis is tilted sufficiently from the horizontal.

8.3 Polydisperse Particles

Starting from a monodisperse 30° pile with bumpy bottom and L; = 97, we change the particle size
of each particle slightly to the diameter d; = do(1+r?), where 7 is a random number homogeneously
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Figure 20: (a) The angle of the major principal axis of the stress, ¢(1), in row M =1 vs. X, from
the simulations in Fig. 19, from Luding (1997). (b) The ratio $ = Smin/Smax of the principal stresses
plotted against X from the simulations in (a).
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Figure 21: Dimensionless vertical stress S,,(1), in row M = 1, vs. X for a 30° pile with bumpy
bottom and L; = 97 from Luding (1997). The particle diameter is homogeneously distributed in the
interval [do(1—7/2),do(1+7/2)]. The values of rq are ry = 2/3000 (a), rq = 2/300 (b), and rqy = 1/30
(c). The dashed line gives the result with no disorder r4 = 0 and L; = 97. The solid line gives the
result of one representative run and the dotted line with symbols correspond to an average over 40
runs for (a), or 100 runs and three particles for (b) and (c).

distributed in the interval [—74/2,74/2]. We present the vertical stress in Fig. 21, for simulations
with r4 = 2/3000 (a), 2/300 (b), and 1/30 (c). We plot the result of one run (solid line) and compare
it with the monodisperse case (dashed line) and the average over 40 runs (a) or 100 runs (b) and
(¢) (symbols). The fluctuations in stress increase with increasing r4. In fact we observe fluctuations
much larger than the total stress for the monodisperse pile. With increasing r; the shape of the
averaged vertical stress changes in the center from a hump [see r4 = 2/3000], to a dip [see rq =
1/30]. The averaged stress in Fig. 21(c) is similar to the stress obtained (after many averages) from
a cellular automaton model for the stress propagation in the presence of randomly opened contacts,
see also Hemmingsson et al. (1997).

In Fig. 22 we give the contact network of one run as presented in Fig. 21(c). The line thickness
indicates the magnitude of forces active at a contact. Each line represents the normal direction of one
contact and each particle center is thus situated at the meeting point of several lines. Note that some
particles inside the pile have no contacts to their above neighbors, i.e. they are situated below a small
arch. Measuring the probability distribution of the forces, we observe results in agreement with the
theoretical predictions by Liu et al. (1995), and the numerical findings by Radjai et al. (1996), at least
for large forces. The probability to find large stresses decreases exponentially with the magnitude of
the stress and is greater for rq4 = 1/30 than for r4 = 2/300, corresponding to stronger fluctuations.
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Figure 22: Contact network of one pile from Fig. 21(c). The line thickness indicates the magnitude
of the contact force, from Luding (1997).

8.4 The role of the contact network

In this section, we present simulations of static 2D piles made of almost monodisperse spheres. With
this simplified model we reproduce theoretical predictions which were based on the assumption of a
homogeneous contact network in the whole pile and perfectly rigid particles. Furhtermore, we report
phenomena and stress states which could not be observed with a given contact network.

One fact is that arching and the dip in the vertical stress at the bottom are not necessarily
due to solid friction, see Liffman et al. (1994), Edwards and Mounfield (1996). If the contact network
varies within the pile, stresses different from the theoretical predictions on a regular network are
observed. Correlated to arching, the orientation of the stress tensor is fixed — at least in the outer
part — and the contact network is symmetric about the center but not translational invariant when
changing from the left to the right half of the pile. The orientation of the major principal axis and the
ratio of the two principal values of the stress tensor are correlated with the structure of the contact
network. We observe diamond lattices, either vertical or tilted by 60 degrees outward from the center,
if the major principal stress is almost vertical or tilted outwards, respectively. However, if the major
and minor principal axes are comparable in magnitude a triangular lattice with closed contacts is
obtained, rather than a diamond lattice. Together with the tilted contact network, i.e. strongly tilted
principal axis, we evidence in some cases arching and a small vertical stress beneath the center of the
pile. If the contact network is tilted outwards, stresses are preferentially propagated outwards; this
may be regarded as a reason for arching and for the dip.

Randomly varying the size of the particles, we find that already tiny polydispersities destroy
the regular contact network. Due to the small fluctuations in particle size the particles are still
positioned on a triangular lattice even when the contacts are randomly open. For a random network
we also find the so called stress chains, i.e. selected paths of large stresses, and the stress fluctuations
are larger or of the order of the mean stress. The stress chains - or better the stress network - is
also disordered. When averaging over many realizations of the stress network a dip in the vertical
stress at the bottom is obtained if the size fluctuations are sufficiently large. Note that the transition
from a homogeneous network to the stress chains is controlled by the ratio of particle overlap é§ and
size fluctuation rgzd but not by the size fluctuations alone. The particle overlap is a function of the
particle stiffness and of the local stress § o« o/k,,.

Since we were able to find most of the phenomenology expected in a sandpile in an oversimplified
regular model system without friction, we conclude that the role of the contact network (or the fabric)
is eminent. Nevertheless, friction and small polydispersity may play a different role in more general
situations with physical sandpiles.



9 Plastic deformation and shear bands in dense packings

The plastic yield criterion of granular material is quite different from that of metals because, on one
hand, it linearly depends on pressure (Mohr-Coulomb) and, on the other hand, because under shear a
dilatation along an angle 1) is observed. The yield plane of plasticity is well described by the relation,
see Byerlee (1968)

T =c+ tan(d)op, (23)

where 7 and o, are the shear and the normal stresses on the yield plane and the material constants
¢ and c¢ are the “friction angle” and the cohesion, respectively. In general, the plasticity is “non-
associate”, i.e. the angle of dilatancy 1 under shear is different from ¢.

Using an explicit Lagrangian technique similar to FLAC (Fast Lagrangian Analysis of Con-
tinua), see Cundall (1989) an elasto-plastic medium was used by Poliakov et al. (1994), Poliakov and
Herrmann (1994). The horizontal boundaries were pulled apart with small, constant velocity Ve
while the vertical boundaries were moved towards each other with the same velocity V., so as to
assure volume conservation. The yield condition of Eq. (23) was used. Besides the above mentioned
material constants ¢, ¢ and ¥ one can also vary the elastic moduli or Lamé constants A and u. The
simulations are performed on a grid which in its undeformed state is a square lattice of unit lattice
constant with one additional diagonal resulting thus in a triangulation. The numerical technique has
an intrinsic time step At. Measuring length in units of the grid spacing and time in units of At, the
velocity Vi, = 107° is imposed per grid element.

In Fig. 23 we see snapshots from the evolution of the system with different mesh (lattice)
sizes L but the same physical parameters. These results are shown after such a long time that the
overall number of shear bands does not change with time (however the positions and activities of
single shear zones is not constant). The local changes of the second invariant of the strain rate:

e=¢én= \/(5',(x —Eyy)?/4 + €2, determine the grey scale in Fig. 23.
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Figure 23: Snapshot of the second invariant e of the strain rate for systems of different size (a) 50x50
(b) 100x100 (c) 200x200 (d) 300x300 for ¢ = 40°, ¢» = 0, ¢ = 0, A = pu, Poisson ratio v = 0.25
and R = pV;/(uVoe) = 1072 with pressure p and velocity of sound V;, from Poliakov et al. (1994),
Poliakov and Herrmann (1994). The central insert gives the direction of the wall motion.
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Figure 24: Log-log plot of the length distribution, measured in grid spacing, for a system of size
300 x 300 for the same physical parameters as in Fig. 23, from Poliakov et al. (1994), Poliakov and
Herrmann (1994). The line indicates a slope of m = 2.1

This means that the dark regions correspond to strong changes either in the direction or in the
magnitude of the motion of the material. The white regions are elastic. We see that spontaneously
shear bands are formed in which the plastic deformation occurs. These bands form an angle 45° —
#/2 < 0 < (45° —1/2) with respect to the horizontal which is consistent with a bifurcation theory, see
Vermeer (1990), Vermeer and de Borst (1984). They have varying length and their position changes
in time. Since our initial setup was completely homogeneous the random positions of the shear bands
are due to minute effects in the round-off of the floating point numbers in the computer.

It has been observed that the pattern formed by the shear bands essentially only depends on
the dimensionless parameter R = pV,/(uVhe) where p is the confining pressure, V; the velocity of
sound, p the Lamé constant and V4. the externally imposed velocity of the boundary. This can be
checked numerically by varying p, the elastic modulus and the size of the sample. With decreasing R
shear bands are located closer to each other. The scale invariance of the shear bands can be analyzed
by changing the lattice size L or equivalently the resolution of the system. The geometrical fractal
dimension of the shear band network is dy = 1.82 £ 0.1 for R = 10~°. The same result is obtained
from the box-counting analysis of a single picture with the highest resolution, see Poliakov et al.
(1994), Poliakov and Herrmann (1994).

The spontaneous appearance of a fractal set of shear bands starting out from a rather homo-
geneous situation suggests the existence of self-organized criticality, see Bak et al. (1987). Each shear
band might be seen as a single internal avalanche on which the system can release stresses through
larger displacements. Let us also look at the distribution of the length of shear bands. Numerically
it can be obtained using a search routine like the “burning” algorithm, see Herrmann et al. (1984).
In Fig. 24 we see a log-log plot of this distribution. For lengths smaller than the width of the bands
the data are not useful. Beyond that we see a power-law decay with an exponent of m = 2.1 + 0.2.
This value is in reasonable agreement with length distributions measured on sand, see Sornette et al.
(1991).

There is some resemblance between fracture of rocks and shear bands in granular media. It is,
however, important to point out a crucial difference between the two: for cracks the most stressed
regions are at the tips while the shear bands have their strongest strain rates in the center.

As another example of how a powerful tool discrete simulations can be, we present in Fig. 25
an example of shear banding under plane shear. The horizontal shear band becomes visible, when
one marks those particles which rotated most (greyscale in the figure).



Figure 25: Dense array of polygonal particles under shear in horizontal direction. At top and bottom
the system is connected to rigid plates that shear against each other at fixed velocity in the direction
indicated by the arrows. A constant normal (vertical) load is imposed and in the horizontal direction
periodic boundaries are used. The greyscale indicates those particles which rotated away from their
initial orientation by more than 3°, from Tillemans and Herrmann (1995).

10 Summary and Conclusion

The analogy of molecular systems for which Molecular Dynamics simulations were originally conceived
gave us the incentive to describe within a thermodynamic formalism the fluctuations arising from
the constant flux and dissipation of energy that drives the kinematic behavior of a granular material.
By separating the dissipative degrees of freedom (friction and plasticity) from the conservative ones
(translation, rotation, elasticity) we define a “granular ensemble” coupled to a “dissipation bath”
which is in fact the one in which experimental and numerical measurements are usually performed.
With a rather simple description of a granular medium as an ensemble of inelastic spherical particles
with shear friction we have shown that many interesting rheological properties can be reproduced.
Various types of convection can occur on a vibrating plate which are strongly influenced by the influ-
ence of the walls. In dilute vibrated systems, we observe density and velocity distributions differing
from the classical case of an elastic gas. Vibration can also lead to size segregation as connected to
convection inside the bulk. When materials flow inside silos, density waves appear which can be ex-
plained as a consequence of dissipation: Due to the inelastic collisions between particles an instability,
see Goldhirsch and Zanetti (1993), Savage (1992), tends to form clusters of high density (light regions
in Fig. 10). These clusters self-organize into a critical state giving a power law spectrum of the pres-
sure on the walls. The density dependence of the viscosity as predicted by the kinetic gas theory builds
up waves of low density (dark regions in Fig. 10). We see that simply introducing dissipation to a gas
of particles produces several phenomena, that occur simultaneously in granular materials. Looking in
much more detail at the reasons for the density fluctuations, we find pressure waves causing dynamic
arches which allow “cracks” to open. In regions of large anisotropic stresses the material is not nec-
essarily frustrated. The surfaces are coupled via friction when the confining stress is large and sliding
occurs when the stress is small. This may lead to visible spin-order in packings of identical spheres.
When examining the growth of a sandpile made of two different species, we find stratification, i.e. the
segregation of the two particle species on lines parallel to the free surface. We reproduce this type
of pattern with a simple numerical model that accounts for dissipation, friction, and particle inertia.
Inside a sandpile we examined the stress distribution. We correlate the anisotropy and direction of
the stress tensor to the contact network of the granular material and evidence arching as a result of



a specific arrangement of the fabric. Already tiny variations in particle-size lead to the stress-chains
usually found in polydisperse arrays. This is due to the fact that size-disorder as small as the typical
deformation of the grains is sufficient to create overall stress fluctuations with the same statistics as for
larger size-disorder. Finally we examined shear zones using a Lagrangian technique for elasto-plastic
materials and mentioned a MD method that accounts also for the non-spherical shape of the particles.

We have seen that the appearance of large computer power has pushed very strongly the un-
derstanding of granular materials. On the one hand it is now possible to track down simultaneously
the trajectories of each individual grain out of millions of particles. Although those numbers are
still much too small for most technical applications, a RVE (Representative Volume Element) can be
simulated in three-dimensions which is a basic tool to numerically access the constitutive behaviour
one would insert into a continuum theory. This kind of micro-macro-approach is crucial for soil
mechanics and the study of consolidated granular systems. The new techniques of taking into ac-
count realistically millions of particles also allow insight into completely new phenomena. These are
completely out of the range of the continuum theory but still of collective nature. Some have been
presented in the present review article, like anomalous scaling or size segregation under vibrations,
fluctuations in hopper flow, spin self-organization and arching phenomena in pipe flow, and peculiar
stress distributions in static granular media.

The rapid evolution of novel algorithms also allows to simulate a much larger number of particles by
simplifying the details of the collisions. We have presented in fact several examples of this strategy
like the DSMC method or the one-dimensional models for stratification during the growth of a sand
pile. Much progress can be expected in making such simplified algorithms more realistic without
loosing their descriptive power.

The progress in the understanding of collective phenomena during the past 30 years in statistical
physics has also boosted the understanding of granular materials. So, for instance, do critical phe-
nomena give a natural framework in the understanding of the scaling loss of vibrated beds, the
intermittency in hopper and pipe flow, avalanche statistics, and the distribution of forces inside a
packing. Simple toy models known as self-organized criticality (SOC) give us the basic mechanism
that produces the power laws in the spectrum of the density of outflowing hoppers or in the acoustic
signal of a deformed packing. Modern concepts in physics, as non-linear dynamics and disordered
systems, are very useful to understand better the dynamics of the compaction of a granular packing
under vibrations.

The present situation allows to predict that the evolution will go on and a more and deeper
understanding of the strange effects in granular systems will be achieved within the next decade by
the fruitful collaboration of engineers and physicists.
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