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Abstract — We propcse away to oltain averaged macroscopic
guantities like density, momentum flux, stress and strain from
"microscopic’ numericd simulations of particles in a two-
dimensiona ring-shea-cdl. In the steady-state, a shear zore is
found, abou six particle diameters wide, in the vicinity of the
inner, moving wall. The velocity decays exporentialy in the
shea zone, particle rotations are observed, and the stress and
strain-tensors are highly anisotropic and, even worse, nd co-
linear. From combinations of the tensorial quantities, ore can
obtaini, for example, the bulk-stiffness of the granulate and its
shea moduus.

1. INTRODUCTION

The description d the behavior of particulate materials relies on constitutive eguations, functions
of stress strain, and aher physica quantities describing the system. It is rather difficult to extrad
maaoscopic observables like the stressfrom experiments, e.g. in atwo-dimensional (2D) geometry
with phdo-elastic material, where stressis visualized via aossed pdarizers [6, 7]. The dternative
is, to perform discrete dement simulations [2, 4 and to average over the microscopic quantities in
the simulation, in order to oltain some averaged macroscopic quantity. The averages over scdar
guantities like density, velocity and particle-spin are straightforward, bu for the stress and the
deformation gradient, orne finds dightly different definitionsin the literature [3, 811].

In the following, we will briefly introduce the boundary condtions for our model system, before
presenting the averaging procedure. Kinematic and dynamic quantities of the system are obtained
from the simulation data and some material properties are determined as combinations of the
observables.

2. MODEL AND AVERAGING STRATEGY

In the following, a two-dimensional (2D) Couette-shear-cell is used, fill ed with hidisperse disks of
diameter d and height h, a snapshat of the system is displayed in Fig. 1. The system is dowly
sheaed by turning the inner ring courter-clockwise dou once per minute.
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Fig. 1. Snapshot from the model system. (Left) Stresschains - dark particles feel |ow pressure, light particles
are strongly compressed. (Right) Contact network - ead contact is plotted asaline.

The inner and the outer ring have aradius of R=0.1034m and R,=0.2526m, respedively. In the
experiment, the height of the system is h=0.006 m and it is fill ed with dlightly smaller disks of
diameters ds =7.42 mm and d=8.99 mm, in order to avoid crystalization. The results presented in
this gudy stem from threesimulation with N=Ngs+ N, particles. These simulations, referred to as (1),
(2), and (3) in the following, with N(1)=2555+399, N(»=2545+394, and N(3=2511+400, correspond
to an area wverage, or volume fradion d v(;)=0.8194,v»=0.8149,and v(3=0.8084,respectively.
The angular frequency of the inner ring is Q=217T=0.1s~ and the simulation is performed urtil
t=120s; for the averaging, thefirst rotation is disregarded. For more detail s e Ref. [9].

The averaging procedure, as applied in the following, can be formalized for any quantity Q,
kegoing in mind that we first average over ead particle and then attribute afraction d each particle
—andthus afraction d Q - to the correspondng averaging volume. An alternative gproach, i.e. to
use the fraction d the center-center line of the particles instead of the volume [5], is nat applied
here. Written as aformula our ansatz reals

1 , <
Q=<Q">=\7p%wv"va", with Q* =% Q, D

where QP is the pre-averaged particle quantity and Q° the fradion attributed to contact ¢ of
particle p which has CP contads. The factor wy” is the weight correspondng to the fradion d the
particle volume VP which lies inside the averaging volume V. Due to the symmetry of the system,
rings at radia distance r from the center and width Ar can be used, so that V=2mhrAr. The first
important quantity to measure is the volume fraction

1
V== WP, 2
V pD/
obtained by using QP°=1, and dsregarding the sum over the mntads. The volume fraction is

related to the massdensity via p(r)= p°v, with the material's density p°=1060 lg m™, paralleling the
experiments [6, 7,9]. The next quantity of interest is the mean momentum flux density

w:\%ZV\(,"\/”v”, 3
pov

obtained with QP=vP, the velocity of particle p. We cheded that v;, the radial component of the
velocity vedor, is approximately zero, in ac®rdance with the assumption d a steady state



cylindrical shear situation. In Fig. 2, the density v and the velocity v, are plotted against the
distance from the center r.
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Fig. 2: Snapshot (Left) Density v and (Right) scaled tangential velocity v/ Qr, with the angular velocity
Qr of asolid body rotating with the inner ring, plotted against the distance from the center r. The different
symbols and lines correspond to different densities and we used 60 intervals for binning, here.

We identify the shear zone with those parts of the system with large v, Like in the experiments,
the material is dilated in the shear-zone near the inner, rotating wall and also in the vicinity of the
outer boundary, whereas it is densified in the central part (due to mass conservation and the fixed
volume boundary conditions). Particles are layered close to the walls, as indicated by the periodic
wiggles in density, but no order effects are visible in the inner parts of the system. The velocity
decays exponentially from the inner ring over two orders of magnitude, before it reaches some
noise-level. The qualitative picture does not vary with the density; however, if the density would be
reduced further below the value of simulation (3), the innermost particles would lose contact with
the moving inner wall and the system would freeze.

3. FABRIC, STRESSAND ELASTIC DEFORMATION

The fabric tensor, which describes the directed probability distributio to find a contact, involves
the contact normal vectors n°, related to the so-called branch vectors I”=(d"/2) n® from the center of
particle p with diameter d” to its contact ¢, so that

1 o
F=— VP n°0On°®
v 2, N2 @

when using VP=rth(d’/2). The tensor F is normalized so that its trace tr(F)=vC, with the mean
coordination number C. The deviator of the fabric is a measure for the anisotropy of the contact
network [9].

The static component of the stress tensor [8, 9] is defined as the dyadic product of the force ¢
acting at contact ¢ with the corresponding branch vector, where every contact contributes with ist
force and its branch vector, if the particle liesin the averaging volume

1 CP e .
g=g Wy oo, (5)
Y,
and the dynamic component of the stress tensor,

dg:\%iw\,"\/pppvpmvp, (6)
pLv



has two contributions: (i) the stressdue to velocity fluctuations aroundthe mean and (ii) a stress
due to the mean mass transport in angular diredion. In Fig. 3, the static and the dynamic
contributions are plotted. In ou system, the diagonal elements of the static stress are dmost
constant, whereas the off-diagonal elements decay proportional to r 2. The angular velocity in the
shea zone strongly contributes to the stress due to mass flux, hcwever the dynamic stressis
usually much small er than the stetic stress
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Fig. 3: Comporents of the static stress(Left) and the dynamic stress(Right), and the fluctuation
cortribution pv¢2, plotted against the distancefrom the center r. Note the different verticd axis saling.
Only the dense simulation (1), solid symbadls, is compared to the dilute one (3), open symbals.

Finally, the dastic deformation gradient [9,1Q is defined as

E:nhELZVWZApC |pcmm )

where A™=5n° is the deformation vedor of contact ¢, with the deformation &°, and A=F ! is the
inverse fabric tensor. The dastic deformation gradient is a measure for the mean reversible
deformation d the material and thus for the energy stored in the wmpressed granulate. In the
following, we extrad some material properties from the quantiti es defined above.

In Fig. 4 the rescded stiffness and some shea moduus of the granulate ae plotted against the
traceof the fabric. Furthermore, the orientations of the tensors F, o, and € are plotted against the
distancefrom the inner ring. The data for the bulk moduus from different simulations coll apse on a
master curve, except for the aeas close to the walls. The data for the shea moduus show a non-
linea increase with tr(F); the denser system diverges at larger values than the dilute system,
however, the data are strongly scattered. The most remarkable result is the fad that the orientations
@r of the tensors are not co-linear, where @r is defined as the orientation d the "major eigenvedor”,
i.e. the egenvector correspondng to the major eigenvalue of T, with resped to the radial diredion.

In Fig. 5,the mean total particle spin, w, as obtained from the spin density

1
Vo = — VPw?
v 2, ®)
is plotted, together with the continuum spin W;, and the excess or eigen-spin, oo*:wvvr@ as
functions of r in the few innermost layers. We remark that the rotation d the particles is a stable
eff ect, independent of the density, at least in the range of densities examined here. The particlesin
the innermost layer rotate dockwise and in the next layer, a amunter-clockwise spin is evidenced;
the particlesin the innermost sheared layers roll over each ather.
Note that both the deformation rate D,, and the continuum spin W, are obtained by addition and
subtradion, respectively, of the velocity gradient's off-diagonal elements
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where we mmpute the partial derivative with resped to r from the data of v, directly.
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Fig. 4: (Left) Granulate stiffness2ne/k,=tr(o)/tr(¢), plotted againgt tr(F). (Midde) Scded granulate shear
resistance 2nG/k,=dev(o)/dev(€), plotted against tr(F). (Right) Orientation d the fabric-, stress, and strain-
tensors (from top to batom). Here 150 binning intervals are used.
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Fig. 5: (Left) Total particle spin w, which consists of the cntiuum spin W;, (Midde) and an excess
eigen-spin  (Right). Different symbals correspondto different densities; 150 hinning intervals are used.

4. DISCUSSION

In summary, we used numericad simulations of disks in a shear-cdl and oliained kinematic and
dynamic quantities by averaging over rings around the center. In agreement with experiments, a
shea-zone with exporentialy decying shea velocity is observed at the inner, moving wall. Ahead
with shea goes osme dilation d the material and alternating eigen-rotation d the particles.

One dso observes that the isotropic parts of fabric, stress and strain are wnneded via the
materia's bulk moduus which is propationa to the wordination number density, i.e. the trace of
the fabric tensor multiplied by the volume fradion. In a similar picture, the shea moduus $ows
nonlinea behavior, a divergence d large @mntad densities, and strong scatter, al indicaing
additional effects not acounted for by an isotropic dastic theory. Furthermore, the stress, strain-
and fabric tensors are not co-linear, i.e. the material is an-isotropic and thus canna be described by
a dasscd isotropic dasticity theory and orly two material paramters.

Understanding the cnnedion between stressand strain and the influence of an anisotropic fabric
is subjed of current research. Furthermore, we study the influence of static friction and aher
microscopic material parameters on the physics of the shear-cell. In addition, the cnrection



between the shea and the particle agen-rotations is an open iswue in the framework of a micro-
polar description.
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