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Recent simulations have predicted that near jamming fdecidns of spherical particles, there will be a
discontinuous increase in the mean contact nunibeat a critical volume fractiong.. Above @, Z and the
pressureP, are predicted to increase as power lawspia @.. In experiments using photoelastic disks we
corroborate a rapid increase that @ and power-law behavior abovg for Z andP. Specifically we find
power-law increase as a function@f- ¢ for Z — Z with an exponen around 0.5, and fdP with an exponent
Y around 1.1. These exponents are in good agreement withationd. We also find reasonable agreement
with a recent mean-field theory for frictionless particles.

PACS numbers: 64.60.-1,83.80.Fg,45.70.-n

A solid, in contrast to a fluid, is characterized by me-tified in experiments. Hence, it is crucial to test these pre-
chanical stability that implies a finite resistance to stead  dictions experimentally. In the following, we present esipe
isotropic deformation. While such stability can originfittem mental data foZ andP vs. ¢, based on a method that yields
long-range crystalline order, there is no general agreépren accurate determination of the of contacts and identifiesspow
how mechanical stability arises for disordered systemsh su laws inZ andP for a two-dimensional experimental system of
as molecular and colloidal glasses, gels, foams, and granulphotoelastic disks. By measuring bd®handZ, we can also
packings [1]. For a granular system in particular, a key guesobtain a sharper value for the critical packing fracti@nfor
tion concerns how stability occurs when the packing fragtio the onset of jamming, and we can test the model of Henkes
@, increases from below to above a critical valpdor which ~ and Chakraborty.
there are just enough contacts per partidefo satisfy the The relevant simulations have been carried out predomi-
conditions of mechanical stability. In recent simulati@ms  nantly for frictionless particles. For real frictional piafes
frictionless systems it was found thatexhibits a disconti- there will clearly be some differences. For instance, in the

nuity at @ followed by a power law increase fqr> @ [2—  isostatic limit,Z equals 4 for frictionless disks, whereas for
5]. The pressure is also predicted to increase as a power-lafiictional disks,Z is around 3, depending on the system de-
aboveq. tails [8]. Other predictions such as specific critical expats

A number of recent theoretical studies address jammingnay also need modification. However, one might hope that
and we note work that may be relevant to granular systemshe observed experimental behavior, in particular ciitia
Silbert, O’Hern et al. have shown in computer simulationsponents, might be similar to that for frictionless particié
of frictionless particles [2—4] that: a) for increasigy Z  the frictional forces are typically small relative to thermal
increases discontinuously at the transition point fromozer forces. Indeed, in recent experiments, the typical intairg
to a finite numberZ;, corresponding to the isostatic value frictional forces in a physical granular system were foumd t
(needed for mechanical stability); b) for both two- and &ire be only about 10% of the normal forces [9].
dimensional systemg, is expected to continue increasing as  Fig. 1a shows a schematic of the apparatus. We use a
(9— @)P aboveq, wherep = 0.5; c) the pressure?, is ex-  bidisperse mixture (80% small and 20% large particles) of
pected to grow abovex as(¢— q)¥, wherep = ar —11in  approximately 3000 polymer (PSM-4) photoelastic (birefri
the simulations, and s is the exponent for the interparticle gent under stress) disks with diameter 0.74 cm or 0.86 cm.
potential. More recent simulations by Donev et. al. for hardThis ratio preserves a disordered system. The disks have
spheres in three dimensions found a slightly higher value foYoung’s modulus of 4 MPa, and a static coefficient of friction
B, B~ 0.6, in maximally random jammed packings [5]. Itis of 0.85. The model granular system is confined in a biaxial
interesting to note that a model for foam exhibits quite Emi  test cell (42cnx42cm with two movable walls) which rests
behavior forZ [6]. Henkes and Chakraborty [7] constructed on a smooth Plexiglas sheet. The displacements of the walls
a mean field theory of the jamming transition in 2D based orcan be set very precisely with stepper motors. The linear dis
entropy arguments. These authors predict power-law gtalinplacement step size used in this experiment igrdOwhich
for P andZ in terms of a variable, which is the pressure is approximately M05D, whereD is the average diameter of
derivative of the entropy. By eliminating, one obtains an al- the disks. The deformatianper particle is less than 1% in the
gebraic relation betweePandZ — Z. from these predictions, compressed state. The setup is horizontal and placed betwee
which we present below in the context of our data. crossed circular polarizers. It is imaged from above witl8an

While the simulations agree among themselves at leastiP CCD color camera which captures roughly 1200 disks in
qualitatively, so far, these novel features have not been-id the center of the cell, enabling us to visualize the stre&s fie
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FIG. 1: (a) Schematic cross-section of biaxial cell expenit(not

to scale). Two walls can be moved independently to obtain-a de 40
sired sample deformation. (b) Examples of contacts andcjest

that are either close but not actually in contact, or costadith very 30
small forces. Circles show true contacts, squares show églparent
contacts. (c) Image of a single disk at the typical resotutib the
experiment. (d) Sample image of highly jammed/comprestate s
and (e) almost unjammed state. 10
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within each disk (Fig. 1). We then obtain good measurements (P_(pc
of the vector contact forces (normal and tangential = foiail
components) [9]. FIG. 2: Average contact number and pressure at the jammamg tr

; - sition. Top and bottom panels sh@w Z. andP vs ¢— ¢, respec-
We also use the particle photoelasticity to accuratelyrdete tively, with rattlers included (stars) or excluded (diardsh Dashed

mine the presence or absence of contacts between particleoﬁTOI full curves in the top panel give power-law fits— go)B with

In numerical studies one can use a simple overlap criteriof — 9 495 and 0.561 for the case with and without rattlers, respec-
to determine contacts: a contact occurs if the distance baively. Full curve in the lower panel gives the fip— @)% with

tween particle centers is smaller than the sum of the particly = 1.1; dashed line shows a linear law for comparison. Inget:

radii. However, in experimental systems, a criterion baseds ¢for a larger range ip.

solely on the patrticle centers is susceptible to relatilaige

errors which include false positives (Fig. 1b - squares)els w

as false negatives (circles). As seen in Fig. 1b, the camtact The averag& can be computed either by counting only the

through which there is force transmission appear as sourderce bearing disks or by counting all the disks including ra

points for the stress pattern. Further details are giveheén t tlers which do not contribute to the mechanical stabilityhef

supplementary material, section I. system. We consider as rattlers, all the disks which hae les
We use two protoc0|s to produce different packing frac-than 2 contacts. For the number of rattlers beyond the transi

tions: we either compress the system from an initially stres tion point we find an exponential decrease vgth ¢; hence,

free state, or decompress the system until the end state is ekdivergence in the number of rattlersgatis not indicated by

sentially a stress-free state. The results for both préscre ~ the data.

the same within error bars aboge below jamming, the data We next compute the Cauchy stress tensor for each disk,

for Z obtained by compression are a few percent below those;; = % > (Fixj +Fjxi); P, is the trace of this tensor. Here,

for decompression. Below, we will present decompressiorA is the Voronoi area for the given disk, and the sum is taken

data. Figures 1d,e show the initial highly stressed statke anover contacts for a given disk. We then compute the average of

the end state after decompression, respectively. Afteln eadhe pressure over the ensemble of disks in the system. For the

decompression step, we apply tapping to relax stress in théata presented below, we performed two sets of experiments:

system. This could be seen as roughly analogous to the awne with a larger range,8390< ¢ < 0.8650, and also larger

nealing process invoked in some simulations. Two images arstep size Ag = 0.016, and — after the jamming region was

captured at each state: one without polarizers to detertihéne identified — a second set at a finer scale wilBdD745< @ <

disk centers and one with polarizers to record the stress.  0.853312, with a step sizé&gp= 0.000324.



The inset in Fig. 2 shows data f@rover a broad range of Ty ] ]

. : a) overlap
@ (with rattlers—stars; without-squares). These data show a (o3l _
significant rise inZ at the jamming transition. While this rise L
is not sharply discontinuous, it occurs over a very smalgjean £0.02 _

in @. At higherg, the variations of the curves are similar with o) L

and without rattlers. At loweg, their behavior differs: The 0.01- i
values of Z drop lower for the case with rattlers. The pressur L ,
P(o— @) in Fig. 2 shows a flat background below jamming, 0 -~
and then a sharp positive change in slope at a well defpned 0 06;‘ T
The pressure is not identically zero below jamming for samil ~"L b) pressure .
reasons that the jump iais not perfectly sharp, as discussed 0.05~ B
below. = 0.04- -
To compare these experimental results to predictions aboyg 0.03— 7
@, We carry out least squares fits 6f Z. andP to ¢— . 0.02- -
These fits depend on the choicegf which has some ambi- 0.01 4
guity due to the rounding; the data allow a range from around olm N
0.840 to 0.843. In facty, can be determined in several ways: 5_2,\(:) ‘ cohta(;t ndmbér R
the point wheréeZ reaches 3, the point wheRebegins to rise 5 h
above the background, etc. (cf. supplemetary material). We 4.8- ]
show results of these fits in Fig. 2, starting with the upper - 1
panel, which shows power-law fi€ — Z;) 0 (¢— @)P. The N 46 E
fitted exponen depends on the choice @f but the variation 4.4 |
is small without rattlers, @94 < 3 < 0.564, and somewhat 4.21- 7
larger with rattlers, B63< 3 < 0.525. The details for sev- ar 7]
eral different specific fits are given in the supplementary ma O.‘82 ‘ O‘.84 ‘ 0.‘86 ‘ O.‘88 ‘ 6_9 ‘ 0‘_92‘ 6_94
terial, section Il. The poinf, = 0.84220 wherd® rises above 0

the background level is used in Fig. 2, and yields a consis-
tent fit for bothP andZ. The point where reaches 3 forthe  pg, 3: Results from new computer simulations. For all gigs=
case without rattlers agrees with the previous case to mithi.84005. (a) Average overlap per particle in units of the meatige
0@ = 0.0005, and the exponents are quite similar. Comparingadius is linear ing— @. (b) P obtained from the Cauchy stress
with the simulations for frictionless particles, we findtioar  tensor (CIFCleS) and the force on the walls (squares) yadigfower
values off ~ 0.55 for the data without rattlers are larger than 'aw (¢—@)* with ¢ = 1.13; dashed line shows a linear law for
the value of 0.5 reported in [2, 3], but smaller than those otcomparéson (C¥ (rattlers included) exhibits a power lai— Z; [
Donev et. al. [5] obtaining 0.6 in 3D. In contrast, for a model( %" with Zo = 3.94 andp = 0.5015.
of frictional disks under shear, Aharonov and Sparks [10] ob
tain the much lower value of 0.36. However, a direct com-
parison is not possible to the present case of jamming unddtoundaries. Sincep = Ap/A, whereA, is the (presumably
isotropic conditions. fixed) area occupied by the diskB,= @dP/d¢. Then,B O
Figure 2 shows the variation &with @in the lower panel, (®— @)¥*, which gives a weak pressure variatiorBxibove
indicating a clear transition &t = 0.8422+ 0.0005. For this ~ ®. \We note that anomalous results for the bulk modulus have
choice ofq, Pincreases aB [ (¢— @)% with = 1.1+0.05 been observed in acoustical experiments by Jia, and dstuss
aboveq.. This value ofy pertains to a fit over the full range bY Makse et. al. [11], where the bulk modulus neavaried
@ > @ of Fig. 2; a larger exponent would be obtained if the fit faster withP than was previously expected because of changes
range were limited to very close t@. This value is close to inZ.
the valuey) = 1.0 found [2, 3] for a linear force law, and this  SinceP in Fig. 2 corresponds closely to expectations for a
linear law is indicated as a dashed line in Fig. 2. One expectinear force law, we performed a computer simulation for a
such a linear force law (with a logarithmic correction) fdeal  polydisperse system of 1950 particles with a linear foree la
disks, but direct mechanical calibration of the force lantf®  (k, = 10°N/m) without friction; details can be found in [12].
cylinders is closer t@*/2 (see supplementary material). This In Fig. 3 the results are shown for a larger range in density
rather high exponent for the force law is attributable to thethan done in earlier studies. All the data in Fig. 3 can bedfitte
small asperities, which influence the force law for small de-with a single value for the transition density@f= 0.84005.
formations. However, the photoelastic response is ddikcta While the average overlap per particle (equivalent of the de
only for > 150um, and for sucld's, the force law is close to  formationd for physical particles) is clearly linear ig, the
locally linear ind. pressureP is not: P increases faster than linear with an ex-
From theP vs. @ data, we can also obtain the bulk modulus, ponent close to the one found in the experimehtis also
= —A0P/0A, whereA is the area enclosed by the systemconsistent with a power-law exponent close to 0.5. With the
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small. It is visible in Fig. 1e, where a weak array of force

3.5 m | chains tends to slant from lower left to upper right. Among

3f  |P.=1 other reasons, the anisotropy can be induced by wall frictio

Fitting Parameters: due to the confining lateral boundaries of the biaxial appara

25 Z =3.04+0.108 tus.
2t We conclude by noting that these experiments, the first of
o gl =1.3+0.15 . L. .

a c which we are aware, demonstrate the critical nature of jam-

o 157 ming in a real granular material. Our results take advansége

the high accuracy in contact numbéthat is afforded when
the particles are photoelastiZ. shows a very rapid rise at a

0.5 packing densityp. = 0.8422. The fine resolution in density
or allows us to see that the transition is not as sharply digzont
uous under the present experimental conditions as in the com
03% 3 35 4 15 puter simulation. Aboveg, Z andP follow power laws in
Z @— @ with respective exponenfsof 0.5 to 0.6 andp ~ 1.1.

The values for botlfy and ) are consistent with recent sim-
FIG. 4: Pressure vs. Z; Experimental data and a fit to the mafdel ulation results forfrictionlessparticles. In addition, we find
Henkes and Chakraborty [7]. In this fit, the const@rtefined inthe  reasonable agreement with a mean field model of the granu-
textis treated as an adjustable parameter. The other fiir@meter |5 jamming transition, again for frictionless particl&hese
IS Z. results suggest that effects of friction on jamming areljike
modest, although perhaps not ignorable. That jamming in the

rattlers includedZ at g, Z; — 3.94, is slightly below the iso- experiment occurs over a narrow, but finite rang® seems
static value of 4 for a frictionless system of disks mostly to be caused by small residual shear stresses that are

To connect with the predictions of Henkes and Chakrabort)i/nduced by interactions with the .walls confinin_g. the sample
[7], we considerP— P, vs. Z. The prediction from their (not the base supporting the particles). The ability of alsma
Eq. (10) is equivalent tdP — Ps)/Ps = u — [(4u? + 1)¥/2 — amount of shear to affect the jamming transition is interest

1)/2, whereu = C(Z — Z¢) and C = ¢/ac is a system- ing, and points to the need for a deeper understanding of the

dependent constant. Thusjs a measure of the grain elas- effects of anisotropy.

ticity, ande = O corresponds to completely rigid grains. Also,  1hiS work was supported by NSF-DMR0137119, NSF-
o is the critical value for. In fitting to this form, we may ~DMR0555431, NSF-DMS0244492, the US-Israel Binational

sonable although not perfect agreement with this predictio thank E. Aharonov, B. Chakraborty, D. J. Durian, M. van
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static valueZ, = 3.
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