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I. SUPPLEMENTARY METHODS

In this supplement, we provide experimental details which
we discuss in the context of Fig. 1. A key point concerning
the experiments is the use of photoelasticity (stress-induced
birefringence) to obtain vector forces at interparticle contacts.
This technique has the added advantage of determining to
good accuracy whether a contact is present or not.

a. Photoelastic Method and Determination of Contacts
A stressed photoelastic particle (in our case, a disk) when
viewed through crossed circular polarizers, shows a pattern
of light and dark bands. The light rays traversing the polariz-
ers and a particle (along the axial direction of the disk) have
an intensityI = Iosin2[(σ1−σ2)C]. Here, theσi are the prin-
ciple stresses within the particle;C is a constant that depends
on the the thickness and properties of the disk, and on the
wavelength of the light [1]. Given a set of contacts for a disk,
and forces at these contacts, the specific photoelastic pattern
is determined. Here, we take advantage of the fact that a two-
dimensional description for the stresses is appropriate. As-
suming that the contact forces are well-approximated as point-
like, the Boussinesq solution gives the stresses within thedisk
[2]. For these experiments, we solve the inverse problem: we
have the light intensities of the photoelastic pattern within a
disk, and we find the contact forces. We use an automated
computer algorithm which uses the vector contact forces as
nonlinear least-squares fit parameters. The fitting procedure
minimizes differences between the experimentally measured
intensity pattern for a disk and the intensity pattern that would
be obtained for a given set of contact forces [3].

In order to improve the discrimination between false and
true contacts we employ a two step process. The first step in-
volves obtaining possible contacts based on the distances be-
tween disk centers; if the particle centers are withinD±0.1D,
whereD is the mean center-to-center distance of a particle
pair, the disks are considered to be in potential contact. This
estimate of contacts is markedly improved by utilizing the
photoelastic stress images at various exposure times for each
state, such that eventually most of the force transmitting con-
tacts can be seen. As seen in Fig. 1b, the contacts through
which there is force transmission, appear as source points
for the stress pattern. This effect can be quantified by mea-
suring the intensity and the gradient square of the intensity
(G2 = |∇I |2 where the gradient is taken in the plane of the
disk) around the contact [4]. A true, force bearing contact
can be distinguished by employing appropriate thresholds in
intensity and inG2. The thresholds in intensity and inG2 are
useful in capturing contacts with very small forces, since these
quantities are higher near force bearing contacts. The finaler-

ror in averageZ is around 3.5% for rather lowφ, and around
1.5% for higherφ.

b. Calibration of the Force Law A direct mechanical
calibration for the particles using a digital force gage is shown
in Fig. S1: The dotted curve shows a force lawF ∝ δ3/2. A
linear fit describes the calibration data well forδ > 250µm
which is comparable to the surface roughness of the cylinders.
The photoelastic response is detectable for displacementsthat
exceed the right end of the gray bar atδ ≈ 150µm. In the ef-
fective range for the photoelastic technique,δ > 150µm, the
force vs. displacement curve is reasonably well described by
a straight line.
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FIG. S1: Calibration of the contact forceF for a representative disk
pushed against a hard surface by a displacementδ. The experimental
data (squares) are fitted by the power lawF = 2.52N(δ1.54) (dotted)
and by the linear lawF = 2.56N (δ− 0.16) (full curve). Here, all
lengths are given in mm. The gray bar indicates the roughnessof the
cylinder surface. Photoelastic response is reliably detectable to the
right of this bar.

II. SUPPLEMENTARY TABLE

c. Details of the Fitting ProcedureFor the fit of the data
with the power lawZ−Zc = a(φ− φc)

β we examine a range
of values forφc and obtain the exponents for the power-law
fits given in Table SI. Here,φc is selected, andZc, andβ are
the fitting parameters. For the case without rattlers,β ranges
from 0.49 to 0.56, andZc ranges from 2.40 to 3.08. For the
case with rattlers,β shows more variation (0.36 - 0.52), and
the errors inZc are larger. For the entire range ofφ, the root
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φc Without Rattlers With Rattlers
Zc β RMSE Zc β RMSE

0.84058 2.397±0.135 0.517±0.064 0.049 1.198±0.310 0.502±0.093 0.109
0.84075 2.512±0.138 0.547±0.073 0.051 1.071±0.359 0.460±0.090 0.103
0.84172 2.632±0.151 0.494±0.077 0.045 0.9747±0.458 0.363±0.083 0.080
0.84204 2.858±0.127 0.564±0.086 0.045 1.183±0.413 0.367±0.079 0.072
0.84220 2.838±0.171 0.533±0.102 0.046 1.490±0.427 0.405±0.096 0.072
0.84236 2.916±0.133 0.556±0.093 0.046 1.744±0.298 0.445±0.088 0.075
0.84269 3.003±0.124 0.563±0.095 0.043 1.989±0.267 0.469±0.092 0.071
0.84301 3.075±0.120 0.560±0.095 0.041 2.280±0.235 0.525±0.108 0.072

TABLE SI: Power-law exponents and critical contact numbersobtained as fitting parameters, at various critical packingfractions. The RMSE
gives the root mean squared errors for the fits. The indicateduncertainties in bothZc, andβ are obtained from the 95% confidence interval of
the best-fit parameter values.

mean squared errors (RMSE) are larger for the case with rat-
tlers (0.071 - 0.109), than for the case without rattlers (0.041

- 0.051), indicating that power-law fits are consistently better
when rattlers are excluded.
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