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I. SUPPLEMENTARY METHODS ror in averag€e is around 3.5% for rather low, and around
1.5% for highenp.

In this supplement, we provide experimental details which b- Calibration of the Force Law A direct mechanical
we discuss in the context of Fig. 1. A key point concerning?a“prat'()” for the particles using a digital force gagehievsn
the experiments is the use of photoelasticity (stressdedu I Fig. S1: The dotted curve shows a force IBvI 5%/2. A
birefringence) to obtain vector forces at interparticlatasts. ~ lin€ar fit describes the calibration data well ®r> 250um
This technique has the added advantage of determining ihich is comparable to the surface roughness of the cylsder
good accuracy whether a contact is present or not. The photoela_\snc response is detectable for displacerttetts

a. Photoelastic Method and Determination of Contacts€xceed the right end of the gray bardet- 150um. In the ef-

A stressed photoelastic particle (in our case, a disk) wheffctive range for the photoelastic techniqae; 150um, the
viewed through crossed circular polarizers, shows a patterf0rce vs. displacement curve is reasonably well descrilyed b
of light and dark bands. The light rays traversing the patari @ Straight line.

ers and a particle (along the axial direction of the disk)ehav
an intensityl = losir?[(o1 — 02)C]. Here, theo; are the prin-
ciple stresses within the particlg;is a constant that depends
on the the thickness and properties of the disk, and on the
wavelength of the light [1]. Given a set of contacts for a disk ~ 0-8
and forces at these contacts, the specific photoelastierpatt H
is determined. Here, we take advantage of the fact that a two-_g gl
dimensional description for the stresses is appropriats: A £
suming that the contact forces are well-approximated agoi =
like, the Boussinesq solution gives the stresses withiile

[2]. For these experiments, we solve the inverse problem: we
have the light intensities of the photoelastic pattern inith 0.2~
disk, and we find the contact forces. We use an automated |
computer algorithm which uses the vector contact forces as | g.-®-
nonlinear least-squares fit parameters. The fitting pragedu 0
minimizes differences between the experimentally measure
intensity pattern for a disk and the intensity pattern thadla

be obtained for a given set of contact forces [3]. FIG. S1: Calibration of the contact for€efor a representative disk

In order to improve the discrimination between false andpushed against a hard surface by a displace®e€nite experimental
true contacts we employ a two step process. The first step irflata (squares) are fitted by the power - 2.52N (5% (dotted)
volves obtaining possible contacts based on the distareses b2"d by the linear law = 2.56N (5 0.16) (full curve). Here, all
tween disk centers: if the particle centers are wiin0.1D, ~ €ngths are given in mm. The gray bar indicates the rougmigse
whereD is the mean center-to-center distance of a particleY/Nde" surface. Photoelastic response is reliably dabée to the

. . . . . . fight of this bar.
pair, the disks are considered to be in potential contacis Th
estimate of contacts is markedly improved by utilizing the
photoelastic stress images at various exposure times ¢br ea
state, such that eventually most of the force transmittong ¢
tacts can be seen. As seen in Fig. 1b, the contacts through Il.  SUPPLEMENTARY TABLE
which there is force transmission, appear as source points
for the stress pattern. This effect can be quantified by mea- c. Details of the Fitting Procedure For the fit of the data
suring the intensity and the gradient square of the intgnsitwith the power lawZ — Z; = a(@— @)? we examine a range
(G? = |01 where the gradient is taken in the plane of theof values forg. and obtain the exponents for the power-law
disk) around the contact [4]. A true, force bearing contacffits given in Table Sl. Heray is selected, and;, andf3 are
can be distinguished by employing appropriate threshalds ithe fitting parameters. For the case without rattlrsanges
intensity and inG?. The thresholds in intensity and @ are  from 0.49 to 0.56, and. ranges from 2.40 to 3.08. For the
useful in capturing contacts with very small forces, silmse  case with rattlersp shows more variation (0.36 - 0.52), and
guantities are higher near force bearing contacts. Thediral the errors inZ; are larger. For the entire range @fthe root
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Without Rattlers

With Rattlers

Zc

RMSE

Z

RMSE

0.84058§

2.397+£0.135

B
0.517£0.064

0.049

1.198+0.310

B
0.502£0.093

0.109

0.84075

2512+0.138

0.547+0.073

0.051

1.071£0.359

0.460+0.090

0.103

0.841772

2.632+0.151

0.494+0.077

0.045

0.9747+0.458

0.363+0.083

0.080

0.84204

2.858+0.127

0.564+0.086

0.045

1.183+0.413

0.367+0.079

0.072

0.84220

2.838+0.171

0.533+0.102

0.046

1.490+0.427

0.405+0.096

0.072

0.84234

2.916+0.133

0.556+0.093

0.046

1.7444+0.298

0.445+0.088

0.075

0.84269

3.003+0.124

0.563+0.095

0.043

1.989+0.267

0.469+0.092

0.071

0.84301

3.075+0.120

0.560+0.095

0.041

2.280+0.235

0.525+0.108

0.072

TABLE SI: Power-law exponents and critical contact numhmb&ined as fitting parameters, at various critical packiagtions. The RMSE
gives the root mean squared errors for the fits. The indiaatedrtainties in bot&., andp are obtained from the 95% confidence interval of
the best-fit parameter values.

mean squared errors (RMSE) are larger for the case with rat-0.051), indicating that power-law fits are consistentltdre
tlers (0.071 - 0.109), than for the case without rattler64Q. when rattlers are excluded.
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