The validity of “molecular chaos” in granular flows
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We investigate with numerical simulations the validity of the assump-
tion that the velocities and positions of colliding particles are uncorrelated
(“molecular chaos”) in systems of dissipative particles. This assumption is
an essential part of all theories which are based on kinetic theory. We com-
pare two simulational techniques: an “event driven” method which calculates
exactly the collisions of each particle, and a Monte-Carlo method which as-
sumes molecular chaos. This comparison isolates effects depending on particle
correlations. In freely cooling granular media, the event driven simulations
dissipate energy more slowly, due to a violation of molecular chaos: the im-
pact parameter is not uniformly distributed. Examination of the structure
function shows that the two methods yield distributions of mass which are
similar long length scales, but very different at small length scales.

PACS numbers: 46.10.+z, 51.10.4y, 05.60.+w, 05.40.4j

I. INTRODUCTION

In the last years, granular media have attracted a lot of attention [1]. Dissipative, many-
particle systems, far from equilibrium are another description of this fascinating granular
“state of matter”. For their description classical kinetic theories have been extended to
account for dissipation and rather high densities (see for example refs. [2,3] and references
therein). However, most of the classical and advanced approaches for a theoretical descrip-
tion of granular flow are based on the assumption of molecular chaos — the assumption that
the velocities and positions of all colliding pairs of particles in a gas are uncorrelated. In a
gas, the errors introduced by this assumption are small. In dense granular flows, correlations
between colliding particles may be important, leading to qualitative changes in behavior.
Therefore, we examine the validity of the molecular chaos assumption in granular flows by
comparing event driven (ED) “hard sphere” simulations to those performed with the Di-
rect Simulation Monte Carlo (DSMC) method. The ED method is capable of reproducing
velocity correlations — even in the limit of rather large densities, whereas DSMC assumes
molecular chaos. Comparison of these two models could guide theoreticians, because if the
two methods give different results, then the breakdown of molecular chaos is significant.
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II. SIMULATION METHODS

The system we study in the following is a periodic square in two dimensions (2D), where
each side has length L. Due to the periodic boundaries we need not specify wall interactions.
Inside the system we have N particles of diameter d, so that the volume fraction is calculated
as Vo = N7 (d/2)?/L?. The particles dissipate energy during each collision and there is no
energy input, so that the total energy decreases monotonically.

A. ED simulation method

In the event driven (ED) method the particles follow a linear trajectory, until a collision
occurs. The duration of a collision is implicitly zero. We introduce dissipation on contact in
normal direction via the restitution coefficient . The limits » = 1 and » = 0 correspond to
elastic and completely inelastic collisions respectively. The optimized serial algorithm used
here, was proposed by Lubachevsky [4]. For details concerning the interaction model used
in the ED method see refs. [5,6]. Since the ED method readily handles the excluded volume
constraint of the particles, we use it to check the validity of molecular chaos.

B. DSMC simulation method

Direct simulation Monte Carlo (DSMC) is a method first proposed by Bird for the
simulation of rarefied gas flows [7], and was also used for liquid-solid flow simulations (see
Ref. [8] and references therein). One of the algorithm’s advantages is its suitability for
parallelization. It is also faster than ED.

In DSMC the evolution of the system is integrated in time steps 7. At each time step
every particle is first moved without interaction with other particles. The particles are then
sorted into spatial cells with length L. and volume V, = Lz. The quantity L. is set to one
half of the mean free path, but never smaller than two bead diameters. The time step 7 is
chosen small enough to assure that even the fastest particle needs several time steps to cross
a cell. Between particles in the same cell stochastic collisions take place. The rules for this
collisions are taken from kinetic theory. First we choose
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collision pairs in each cell. N, is the number of particles in the cell, v,,, 1S an upper limit
for the relative velocity between the particles, o = 2d is the scattering cross section of discs.
To get vqa: We sample the velocity distribution from time to time and set v,,,, to twice
the maximum particle velocity found. In order to account for the actual relative velocities
we apply an acceptance-rejection method: For a pair of particles ¢+ and j the collision is
performed if
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where Z is independent uniformly distributed in the interval [0,1]. This method leads to a
collision probability proportional to the relative velocity of the particles.

Since the collision takes place regardless of the position in the cell, we have to choose an
impact parameter b in order to calculate the post collision velocities. The impact parameter
is defined as
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where 7 is the angle between (v; —vy) and (r; —rs). For central collisions b = 0, and b = d for
grazing collisions. Following molecular chaos, b is drawn from a uniform distribution in the
interval [—d, d]. The rest of the collision scheme is identical to the event driven procedure,
so that the normal component of the post collision velocity is @™ = —r#™, whereas the
tangential component remains unchanged.

To get better results at higher densities we changed the DSMC method in two respects.
First we increased the number of collisions M, in equation (1) by replacing the volume V,
of a cell with the effective free volume V., — Vj, where V{ is the volume the particles in that
cell would need in a random close packing with packing fraction 0.82 in 2D [9]. Second we
added an offset of d to the particle distance along the direction of the momentum transfer
[10].

III. COMPARISON OF ED AND DSMC SIMULATIONS

In this section we present two simulations, starting with the same initial condition, using
the same parameters, but carried out with the two different methods ED and DSMC. In ED
the probability distribution may deviate from the case expected for molecular chaos, whereas
DSMC always uses the function P(b/d) = 1. The simulation involves N = 99856 = 3162
dissipative particles in 2D with restitution coefficient » = 0.8 in a periodic quadratic system
with volume fraction V, = 0.25. In order to reach an equilibrated initial condition, the
system is first allowed to evolve with » = 1 for about 10 collisions per particle, so that
a Maxwellian velocity distribution and a rather homogeneous density distribution exists.
Then, at t = Os, dissipation is set to » = 0.8 and the quantities of interest are calculated as
functions of time.

A. The cooling of granular materials

In the homogeneous cooling state [11-14] we expect that the energy K (t) of the system
decays with time and follows the functional form
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is a function of the initial energy o = /2K (0)/N'm, the particle diameter d, the restitution
coefficient r, the volume fraction Vp, with s,(Vy) = (1 — V;)?/(1 — 7V,/16). Inserting the
corresponding parameters 1 — 72 = 0.36, s,(V;) &~ 0.63158, d = 0.001m, and ¥ = 0.2047m/s,
we have #;' = 23.24s71.

B. Simulation Results

In Fig. 1(a) we present the normalized kinetic energy K (¢)/K(0) as a function of the
normalized time t/t,.
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FIG. 1. Normalized kinetic energy vs. normalized time from an ED and a DSMC simulation in
2D with N = 99856, V, = 0.25, and r = 0.8. The dotted line represents Eq. 4.

At the beginning of the simulation we observe a perfect agreement between the theory
for homogeneous cooling and the simulations. At t/ty &~ 2 both simulation methods show
substantial deviations from the homogeneous cooling behavior, and only at ¢/t; ~ 10 we
evidence a difference between ED and DSMC. After that time, the kinetic energy obtained
from the DSMC simulation is systematically smaller than K(¢) from the ED simulation.
We relate this to the fact that the molecular chaos assumption of a constant probability
distribution of the impact parameter b is no longer valid. Since dissipation acts only at the
normal component of the relative velocity, DSMC dissipates more energy than ED as soon
as the number of central collisions is overestimated. To verify this assumption we take a
closer look at the impact parameter and its probability distribution in section IV.

IV. THE IMPACT PARAMETER

One basic assumption connected to molecular chaos is a uniform probability distribution
of the impact parameter. We define P(b/d) to be the probability distribution of b and
normalize it such that [; d(b/d)P(b/d) = 1. We find from ED simulations with elastic



particles the normalized probability distributions P(b/d) = 1 in 2D and P(b/d) = 2b/d in
3D, as expected for the case of molecular chaos.

A. The inhomogeneous probability distribution

The ED simulation of Fig. 1 leads to P(b/d) = 1 for short times only. For larger times
we observe an increasing (decreasing) probability of grazing (central) collisions. In Fig. 2
we present data of the probability distribution at different times during the simulation. As
obvious from the data, more and more grazing collisions occur with increasing simulation
time. Evidently, the assumption of a homogeneous probability distribution of the impact
parameter is violated.
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FIG. 2. Normalized probability distribution of the contact parameter from an ED simulation in
2D with NV = 99856, V,, = 0.25, and r = 0.8 at different times.

B. The reason for the breakdown of molecular chaos

One can imagine at least two possible reasons for the deviation of P(b/d) from the
constant value. The first is, that P(b/d) might be a function of the density, and that due
to density fluctuations, the form of P(b/d) changes. Thus we calculate P(b/d) in smaller
systems with N = 240, » = 1, and different volume fractions, ranging from very dilute to
extremely dense systems. From Fig. 3(a) we learn that P(b/d) is not sensitive to the density,
as long as the system is elastic. The stronger fluctuations for low density come only from a
comparatively worse statistics. The second reason for P(b/d) to deviate from unity might be
dissipation. In Fig. 3(b) the restitution coefficient is varied for fixed Vy = 0.7495. For weak
dissipation, i.e. 7 > 0.9, the distribution is homogeneous. For stronger dissipation r» = (.80
we find, as in the previous subsection, an increasing probability of grazing contacts.
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FIG. 3. (a) Normalized probability distribution of the contact parameter from ED simulations
in 2D with N = 240, » = 1, and different V,. (b) Normalized probability distribution from ED
simulations in 2D with N = 240, V,, = 0.7495 and different r.

The assumption P(b/d) = 1 is true in elastic systems for arbitrary density. For inelastic
systems, P(b/d) is constant for sufficiently weak dissipation but is no longer fulfilled for
strong dissipation. The breakdown of molecular chaos is not due to high density. Further-
more, dissipation alone is not the reason for an inhomogeneous probability distribution, since
the dissipation must be strong enough to cause the inhomogeneous distribution.

The remaining question is, why we observe this increasing probability of grazing contacts.
Looking in more detail at the simulations in Fig. 3(b), we observe that the inhomogeneous
distribution for » = 0.8 is connected to shear motion of the particles, whereas no visible
shear motion occurs for » > 0.9. The shear motion, can be understood as the geometrical
reason for the higher probability for grazing contacts.

V. THE STRUCTURE FACTOR

One difference between ED and DSMC simulations is the handling of excluded volume by
the two methods. While the ED method models hard spheres with a well defined excluded
volume, the DSMC method models point particles and excluded volume is introduced by the
approximations described in subsection II B. As expected we obtain dramatic differences in
the particle-particle correlation function g(r): At large times ED simulations lead to a g(r)
with a rich structure for short distances, indicating a rather close packing of monodisperse
spheres. In contrast, the DSMC simulations show no short range correlations between
particle positions throughout the whole simulation.

We would like to know if this difference has consequences at longer length scales. The
formation and growth of large clusters [12-14] is quantified by g¢(r) at large r, or equiva-
lently, the structure factor S(k) at small k. We calculate S(k) by a direct FFT of the two
dimensional density. Before we apply the FF'T we map the particles onto a M x M lattice,
where M is the closest power of 2 that gives a lattice box size of about one diameter.



We plot the structure factors obtained by ED in Fig. 4(a) and those obtained by DSMC
in Fig. 4(b). Different symbols correspond to different times. We observe an increase of
S(k) for short wavenumbers k& < 25, until the structure factor ceases to change for ¢t > 20.
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FIG. 4. (a) Structure factor obtained from the ED simulations of Fig. 1 as function of the
wavenumber k = L/\, with wavelength A and system size L. (b) Structure factor obtained from
the corresponding DSMC simulation.

The structure factor agrees reasonably well for both simulation methods, and for large
enough times it does not change further. This proves that the DSMC simulation is capable
to reproduce the more realistic, but computationally more expensive, ED results that ac-
count for the excluded volume by construction. Even without short-range correlations, the
information about large wavelengths is well reproduced by DSMC simulations.

VI. CONCLUSION

We performed numerical experiments using ED and DSMC simulations. While for ED no
assumptions about the collisions parameter are made, DSMC assumes a constant probability
distribution. This is one part of the molecular chaos assumption often used in kinetic
theory. We find that it is valid for arbitrary density and weak dissipation. For sufficiently
strong dissipation the probability of grazing collisions increases. This can be understood
by the existence of shearing motion, where many particles graze, rather than colliding with
uncorrelated relative velocities.

Even with no short range correlation in DSMC, both methods agree well with respect
to long range correlations quantified by the structure factor. This indicates that kinetic
theories can succeed in describing the formation and growth of clusters, even though the
assumption of molecular chaos is not satisfied. Furthermore, the faster DSMC method can



be used to study cluster formation in larger or three dimensional systems. We are optimistic
that DSMC can be used to study other problems in granular materials, but more study is
needed to be sure.
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