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Abstract
One challenge of todays research on particle systems is the realistic simulation of gran-
ular materials consisting of many thousands of particles with peculiar contact interac-
tions. In this study, molecular dynamics (MD, also called discrete element method,
DEM) is introduced for the simulation of many-particle systems. A wide class of real-
istic contact models is presented, involving dissipation, adhesion, plastic deformation,
friction, rolling- and torsion resistance.
The effect of the contact properties on a simple compaction test is discussed with the
goal to achieve as small as possible packing densities. With contact forces only, pack-
ing volume fractions down to 0.42 can be achieved, while somewhat longer ranged
adhesion forces allow for volume fractions as low as 0.34.
Keywords
granular materials, molecular dynamics (MD), discrete element model (DEM), com-
paction, friction, rolling- and torsion resistance, adhesion, plastic deformation, low
density compaction

1 Introduction
Molecular Dynamics (MD) or Discrete Element Models (DEM) are solving the equa-
tions of motion for all particles in a system, where the contact forces are the only
physical laws that have to be defined beforehand. A straightforward approach towards
the understanding of the macroscopic material behavior of fine granular materials like
powders, by just modeling and simulating all particles in a big system, is not possible
due to the huge number of particles typically involved. Therefore, one has to reduce
the size of the system under consideration, so that a microscopic simulation of all
particles becomes feasible. The goal is to understand the macroscopic flow behavior
from such small scale models – both from simulations and from experiment – and to
provide (macroscopic) constitutive relations for standard tools like the finite-element
method (FEM) suited to deal with large-scale systems. Tools to perform a so-called
micro-macro transition are developed [1], and the goal is to relate the macroscopic
flow behavior to the microscopic contact properties.

For powders, as an example, the particle properties and interaction laws are in-
serted into a discrete particle molecular dynamics and lead to the collective behavior
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of the dissipative, frictional, adhesive many-particle system. From the particle simula-
tion, one can extract, e.g., the coordination number or the pressure of the system as a
function of density. In the following, normal and tangential interactions, like adhesion,
plastic contact deformation, friction, rolling- and torsion resistance are discussed for
spherical model particles. Examples of a compression test are presented for which the
previously defined contact model parameters are varied.

2 The Soft Particle Molecular Dynamics Method
Particle simulations like MD or DEM [1–7] can complement experiments on small
“representative volume elements” (REV). Alternative methods like contact dynamics
(CD) or cell- and lattice gas-methods are not discussed here.

2.1 Discrete Particle Model
The elementary units of granular materials are mesoscopic grains, which deform under
stress. Since the realistic modeling of the deformations of the particles is much too
complicated, we relate the interaction force to the overlap δ of two particles, see Fig. 1.
In tangential direction, some forces also depend on the tangential displacement since
the beginning of the contact, like it is the case for torques, e.g., due to friction or rolling
resistance. Note that the evaluation of the inter-particle forces based on the overlap
may not be sufficient to account for the inhomogeneous stress distribution inside the
particles and possible multi-contact effects. Consequently, the results presented here
are of the same quality as the simplifying assumptions about the force-overlap relations
made.
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Figure 1: (Left) Two particle contact with overlap δ in normal direction. (Right)
Schematic graph of the piece-wise linear, hysteretic, adhesive force-displacement
model in normal direction.

2.2 Equations of Motion
If all forces f i acting on the particle i, either from other particles, from boundaries or
from external forces, are known, the problem is reduced to the integration of Newton’s
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equations of motion for the translational and rotational degrees of freedom:

mi

d2

dt2
ri = f i + mig , and Ii

d2

dt2
ϕi = qi (1)

with the mass mi of particle i, its position ri the total force f i =
∑

c f c
i acting on it

due to contacts with other particles or with the walls, the acceleration due to volume
forces like gravity g, the spherical particles moment of inertia Ii, its angular velocity
ωi = dϕi/dt and the total torque qi.

The equations of motion are thus a system of D + D(D − 1)/2 coupled ordinary
differential equations to be solved in D dimensions, with D = 2 or 3. With tools
from numerical integration, as nicely described in textbooks as [8, 9], this is a straight-
forward exercise. The typically short-ranged interactions in granular media, allow for
further optimization by using linked-cell or alternative methods [8, 9] in order to make
the neighborhood search more efficient. In the case of long-range interactions, (e.g.,
charged particles or van der Waals type forces) this is not possible anymore, so that
either a cut-off or more advanced methods for optimization have to be applied – for the
sake of brevity, we restrict ourselves to the cut-off method below.

2.3 Normal Contact Force Laws
Two spherical particles i and j, with radii ai and aj , respectively, interact only if they
are in contact so that their overlap

δ = (ai + aj) − (ri − rj) · n (2)

is positive, δ > 0, with the unit vector n = nij = (ri − rj)/|ri − rj | pointing from
j to i. The force on particle i, from particle j, at contact c, can be decomposed into a
normal and a tangential part as f c := f c

i = fnn + f tt, where n · t = 0.

2.3.1 Linear Normal Contact Model

The simplest normal contact force model, which takes into account excluded volume
and dissipation, involves a linear repulsive and a linear dissipative force

fn = kδ + γ0vn , (3)

with a spring stiffness k, a viscous damping γ0, and the relative velocity in normal
direction vn = −vij · n = −(vi − vj) · n = δ̇.

This so-called linear spring dashpot (LSD) model allows to view the particle con-
tact as a damped harmonic oscillator, for which the half-period of a vibration around
an equilibrium position with a certain contact force, can be computed [10]. The typical
response time on the contact level is

tc =
π

ω
, with ω =

√

(k/m12) − η2
0 , (4)

the eigenfrequency of the contact, the rescaled damping coefficient η0 = γ0/(2mij),
and the reduced mass mij = mimj/(mi + mj). From the solution of the equation of
a half period of the oscillation, one also obtains the coefficient of restitution

r = v′n/vn = exp (−πη0/ω) = exp (−η0tc) , (5)
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which quantifies the ratio of normal relative velocities after (primed) and before (un-
primed) the collision. For a more detailed discussion of this and other, more realistic,
non-linear contact models, see Ref. [10].

The contact duration in Eq. (4) is also of practical technical importance, since the
integration of the equations of motion is stable only if the integration time-step ∆tMD

is much smaller than tc. Note that tc depends on the magnitude of dissipation: In the
extreme case of an overdamped spring, tc can become very large (which would render
the contact behavior artificial [19]). Therefore, the use of neither too weak nor too
strong dissipation is recommended.

2.3.2 Adhesive, Plastic, Hysteretic Normal Contact Model

Here we apply a variant of the linear hysteretic spring model [10–12], as an alternative
to the frequently applied spring-dashpot models. This model is the simplest version
of some more complicated nonlinear-hysteretic force laws [11, 13, 14], which reflect
the fact that at the contact point, plastic deformations may take place and attractive
(adhesive) forces exist. The adhesive, plastic (hysteretic) force-law can be written as

fhys =







k1δ for loading, if k2(δ − δ0) ≥ k1δ
k2(δ − δ0) for un/reloading, if k1δ > k2(δ − δ0) > −kcδ
−kcδ for unloading, if − kcδ ≥ k2(δ − δ0)

(6)

with k1 ≤ k2, see Fig. 1. During the initial loading the force increases linearly with
the overlap δ, until the maximum overlap δmax is reached (which has to be kept in
memory as a history parameter). The line with slope k1 thus defines the maximum
force possible for a given δ. During unloading the force drops from its value at δmax

down to zero at overlap δ0 = (1 − k1/k2)δmax, on the line with slope k2, so that δ0

resembles the plastic contact deformation. Reloading at any instant leads to an increase
of the force along the line with slope k2, until the maximum force is reached; for still
increasing δ, the force follows again the line with slope k1 and δmax has to be adjusted
accordingly.

Unloading below δ0 leads to negative, attractive forces until the minimum force
−kcδmin is reached at the overlap δmin = (k2 − k1)δmax/(k2 + kc). This minimum
force, i.e., the maximum attractive force, is obtained as a function of the model pa-
rameters k1, k2, kc, and the history parameter δmax. Further unloading leads to at-
tractive forces fhys = −kcδ on the adhesive branch with slope −kc. The high-
est possible attractive force, for given k1 and k2, is reached for kc → ∞, so that
fhys
max = −(k2 − k1)δmax. Since this would lead to a discontinuity at δ = 0, it is

avoided by using finite kc.
The lines with slope k1 and −kc define the range of possible force values and de-

parture from these lines takes place in the case of loading and unloading, respectively.
Between these two extremes, unloading and reloading follow the line with slope k2.
Possible equilibrium states are indicated as circles in Fig. 1, where the upper and lower
circle correspond to a pre-stressed and stress-free state, respectively. Small perturba-
tions lead, in general, to small deviations along the line with slope k2 as indicated by
the arrows in Fig. 1.

A non-linear un/reloading behavior would be more realistic, however, due to a lack
of detailed experimental informations, the piece-wise linear model is used as a com-
promise. One reasonable refinement, which accounts for an increasing stiffness with
deformation, is a k2 value dependent on the maximum overlap. This also implies rela-
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tively small and large plastic deformations for weak and strong contact forces, respec-
tively. The model, as proposed recently [15], requires an additional model parameter,

δ∗max =
k2

k2 − k1

φf

a1 + a2

2
, (7)

with the dimensionless plasticity depth, φf , defined relative to the average radius. If
the penetration is larger than a fraction φf of the (average) particle radius, the constant
stiffness k2 is used 1. For smaller penetration, k2(δmax) interpolates between k1 to k2:

k2(δmax) =

{

k2 if δmax ≥ δ∗max

k1 + (k2 − k1)δmax/δ∗max if δmax < δ∗max

, (8)

and k2 in Eq. (6) is replaced by k2(δmax) from Eq. (8).
While in the case of collisions of particles with large relative velocities and thus

deformations, dissipation takes place due to the hysteretic nature of the force-law, rea-
sonably strong dissipation of small amplitude deformations is achieved by adding the
viscous, velocity dependent dissipative force from Eq. (3) to the hysteretic force, such
that fn = fhys + γ0vn.

In summary, the adhesive, plastic, hysteretic normal contact model contains the
five parameters k1, k2, kc, φf , and γ0 that respectively account for loading-reloading-
stiffness and plastic deformation, adhesion, plastic overlap-range of the model, and
viscous dissipation .

2.3.3 Long Range Normal Forces
Medium range van der Waals forces can be taken into account in addition to the hys-
teretic force such that fn = fhys + γ0vn + fvdW with, for example, a Lennard-Jones
Potential, leading to the force as function of distance:

fvdW(r) = −(4ε/r0)
[

6(r0/r)7 − 12(r0/r)13
]

. (9)

In order to have a continuous force-displacement relation and to limit the range of the
force, usually, a cut-off is introduced, so that

fvdW = fvdW(r) − fvdW(rc) , for r < rc , (10)

and fvdW = 0 elsewhere. The new parameters necessary for this force are an energy
scale ε, a typical length scale r0 and the cut-off length rc. As long as rc is not too large
as compared to the particle diameter, the methods for short range interactions still can
be applied to such a medium range interaction model – only the linked cells have to be
larger than twice the cut-off radius. When r0 is smaller than the particle diameter, the
repulsive part of the force becomes irrelevant due to the repulsive contact model.

2.4 Tangential Contact Force Laws
For the tangential degrees of freedom, there are three different force- and torque-laws
to be implemented: (i) friction, (ii) rolling resistance, and (iii) torsion resistance. For
friction, the relative tangential velocity of the contact points,

vt = vij − n(n · vij) , (11)
1Note that a limit to the slope k2 is needed for practical reasons. If k2 would not be limited, the contact

duration could become very small so that the time step would have to be reduced below reasonable values.
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is to be considered for the force and torque computations in the following subsections,
with the total relative velocity of the particle surfaces at the contact

vij = vi − vj + ain × ωi + ajn × ωj . (12)

Thus, the frictional force and torque are active when the two particles are rotating in
parallel. The forces on the contacting particles are equally strong, but opposite, i.e.,
f t

j = −f t
i, while the corresponding torques are parallel but not necessarily equal in

magnitude, i.e., qfriction
i = −ain × f i, and qfriction

j = (aj/ai)q
friction
i . Note that

forces and torques together conserve the total angular momentum, see Ref. [10].
For rolling resistance, the rolling velocity

vr = −ain × ωi + ajn × ωj , (13)

is to be considered, which activates torques when two particles are rotating anti-parallel
with spins in the tangential plane. These torques act against rolling and are equal in
magnitude and opposite in direction, i.e., q

rolling
i = −q

rolling
j = aij n × fr, with the

reduced radius aij = 2aiaj/(ai+aj), and the quasi-force f r. This quasi-force is equal
for both particles and does not act on the center of mass so that the total momentum
(translational and angular) is conserved.

For torsion resistance, the relative spin along the normal direction

vo = (ai n · ωi − aj n · ωj) n , (14)

is to be considered, which activates torques when two particles are rotating anti-parallel
with spins parallel to the normal direction. These torsion torques are also equal in
magnitude and directed opposite in direction, i.e., qtorsion

i = −qtorsion
j = aij f o, with

the quasi-force fo that also does not change the translational momentum, but results in
torques that conserves the total angular momentum.

The implementation of the tangential force computations for f t, f r, and fo as
based on vt, vr, and vo, respectively, is assumed to be identical, i.e., even the same
subroutine is used, however, with different parameters as specified below. The differ-
ence is that friction leads to a force in the tangential plane (changing both translational
and angular momentum), while rolling- and torsion-resistance lead to a quasi-forces in
the tangential plane and the normal direction, respectively, changing angular momen-
tum only. For more details on tangential contact models, friction, rolling and torsion,
see Refs. [17, 18].

2.4.1 Frictional Tangential Contact Model

The tangential force is coupled to the normal force via Coulombs law, i.e. f t ≤ µsfn,
where for the limit case one has dynamic friction with f t = µdfn. The dynamic
and the static friction coefficients follow, in general, the relation µd ≤ µs. The static
situation requires an elastic spring in order to allow for a restoring force, i.e. a non-zero
remaining tangential force in static equilibrium due to activated Coulomb friction.

If a repulsive contact is established, and thus one has fn > 0, the tangential force
is active. In the presence of adhesion, Coulombs law has to be slightly modified in
so far that fn is replaced by fn + kcδ. With other words, the reference criterion for
a contact is no longer the zero force level, but it is the adhesive, attractive force level
along −kcδ. Coulombs law in the presence of adhesion thus reads f t ≤ µs(fn + kcδ)
for the static case and f t = µd(fn + kcδ) for the dynamic, sliding case.
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If a contact is active, one has to project (or better rotate) the tangential spring into the
actual tangential plane, since the frame of reference of the contact may have rotated
since the last time-step. The new tangential spring is:

ξ = ξ′ − n(n · ξ′) , (15)

where ξ′ is the old spring from the last iteration. This action is relevant only for an
already existing spring; if the spring is new, the tangential spring-length is zero anyway,
however, its change is well defined even for the first, initiation step. In order to compute
the changes of the tangential spring, a tangential test-force is first computed as the sum
of the tangential spring force and a tangential viscous force (in analogy to the normal
viscous force)

f t
0 = −kt ξ − γtvt , (16)

with the tangential spring stiffness kt, the tangential dissipation parameter γt, and vt

from Eq. (11). As long as |f t
0| ≤ fs

C , with fs
C = µs(fn + kcδ), one has static friction

and, on the other hand, if the limit |f t
0| > fs

C is reached, sliding friction is active with
magnitude fd

C = µd(fn + kcδ). (As soon as |f t
0| becomes smaller than fd

C , static
friction is active again.) In the former, static case, the tangential spring is incremented

ξ′ = ξ + vt ∆tMD , (17)

to be used in the next iteration in Eq. (15), and the force f t = f t
0 from Eq. (16) is

used. In the latter, sliding case, the tangential spring is adjusted to a length which is
consistent with Coulombs condition

ξ′ = −
1

kt

fd
C t , (18)

with the tangential unit vector, t = f t
0/|f

t
0|, defined by Eq. (16), and thus the mag-

nitude of the Coulomb force is used. Inserting ξ′ from Eq. (18) into Eq. (16) leads to
f t

0 ≈ fd
Ct−γtvt. Note that f t

0 and vt are not necessarily parallel in three dimensions.
However, the mapping in Eq. (18) works always, rotating the new spring such that the
direction of the frictional force is unchanged and, at the same time, limiting the spring
in length according to Coulombs law. In short notation the tangential contact law reads

f t = f tt = +min
(

fC , |f t
0|

)

t , (19)

where fC follows the static/dynamic selection rules described above. The torque on a
particle due to frictional forces at this contact is qfriction = lci × f c

i , where lci is the
branch vector, connecting the center of the particle with the contact point.

The four parameters for the friction law are kt, µs, φd = µd/µs, and γt, accounting
for tangential stiffness, the static friction coefficient, the dynamic friction ratio, and
tangential viscosity, respectively. Note that the tangential force described above is
identical to the classical Cundall-Strack spring only in the limits µ = µs = µd, i.e.,
φd = 1, and γt = 0. The sequence of computations and the definitions and mappings
into the tangential direction can be used in three dimensions as well as in two.

2.4.2 Rolling Resistance Contact Model

The three new parameters for rolling resistance are kr, µr, and γr, while φd is used
from the friction law. The new parameters account for rolling stiffness, the static rolling
“friction” coefficient, and rolling viscosity, respectively. In the subroutine called, the
rolling velocity vr is used instead of vt and the computed quasi-force f r is used to
compute the torques, qrolling, on the particles, see above.
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2.4.3 Torsion Resistance Contact Model

The three new parameters for rolling resistance are ko, µo, and γo, while φd is used
from the friction law. The new parameters account for torsion stiffness, the static tor-
sion “friction” coefficient, and torsion viscosity, respectively. In the subroutine, the
torsion velocity vo is used instead of vt and the projection is a projection along the
normal unit-vector. The computed quasi-force f o is then used to compute the torques,
qtorsion, on the particles.

2.5 Background Friction
Note that the viscous dissipation takes place in a two-particle contact. In the bulk
material, where many particles are in contact with each other, this dissipation mode is
very inefficient for long-wavelength cooperative modes of motion [16, 19]. Therefore,
an additional damping with the background can be introduced, so that the total force
on particle i is

f i =
∑

j

(

fnn + f tt
)

− γbvi , (20)

and the total torque

qi =
∑

j

(

qfriction + qrolling + qtorsion
)

− γbrωi , (21)

with the damping artificially enhanced in the spirit of a rapid relaxation and equilibra-
tion. The sum in Eqs. (20) and (21) takes into account all contact partners j of particle
i, but the background dissipation can be attributed to the medium between the parti-
cles. Note that the effect of γb and γbr should be checked for each simulation in order
to exclude artificial over-damping.

3 Compaction Simulation Results
In this section, a compression test is presented, where the particles are positioned on
a square-lattice in a cubic system with periodic boundary conditions, in order to avoid
wall effects. The system is first allowed to evolve to a disordered state, by attributing
random velocities to all particles. The density is then increased by slowly increasing
the particle size while the system volume V = L3, with L = 0.025m, is kept constant,
and reporting density and energies.

3.1 Model Parameters
The systems examined in the following contain N = 1728 particles with equal radii a.
In the simulation, the radii change according to the relation

da

dt
= ga , (22)

with the growth rate ga = 2.10−7 ms−1, if not explicitly specified. The growth is
stopped when a target volume fraction ν = NV (a)/V is reached, with the particle
volume V (a) = (4/3)πa3. The particle mass m(a) = ρV (a), with the material density
ρ, changes with the radius during the growth period.
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Property Symbol Values t-rescaled
Time Unit tu 1 s 1 µs
Initial particle radius a0 0.5 µm
Growth rate ga 0.2 µm/s 0.2 m/s
Particle radius a(t) = a0 + gat
Material density ρ 2000 kg/m3

Elastic stiffness k = k2 10−7 kg/s2 105 kg/s2
Plastic stiffness k1/k 0.2
Adhesion “stiffness” kc/k 1.0
Friction stiffness kt/k 0.2
Rolling stiffness kr/k 0.2
Torsion stiffness ko/k 0.2
Plasticity depth φf 0.05
Coulomb friction coefficient µ = µd = µs 1
Dynamic to static Friction ratio φd = µd/µs 1
Rolling “friction” coefficient µr 0.1
Torsion “friction” coefficient µo 0.1
Normal viscosity γ = γn 2 10−13 kg/s 2 10−7 kg/s
Friction viscosity γt/γ 0.25
Rolling viscosity γr/γ 0.25
Torsion viscosity γo/γ 0.25
Background viscosity γb/γ 0.10
Background viscous torque γbr/γ 0.05
Lennard Jones energy ε 0. 10−15 J 0. 10−3 J
Lennard Jones distance r0/(2a) 0.5
Lennard Jones cut-off rc/(2a) 1.5

Table 1: The microscopic material parameter values used if not explicitly specified.
The third column contains those values that are different due to rescaling of the unit of
time, i.e., when seconds are read as µs.

A typical set of material parameters is given in table 1. The choice of numbers and
units is such that the particles correspond to micro-meter sized, (overly) soft aluminum
spheres. The stiffness magnitude (this is not the material bulk modulus, but a contact
property) used thus appears much too small for this material – however, dependent
on the volume fraction (or the external) pressure, the material deformation (overlap)
can be realistic if the simulations are performed so slow that rate effects are small and
overlaps are not becoming too large. A simple rescaling of time brings the material
parameters into the reasonable range – see rightmost column in table 1.

Using the parameter k = k2 in Eq. (4) leads to a typical contact duration (half-
period) tc ≈ 2.27 10−4 s, for a normal collision with γ = 0. Accordingly, an integra-
tion time-step of tMD = 2 10−6 s is used, in order to allow for a ‘safe’ integration of
contacts. Note that not only the normal “eigenfrequency” but also the eigenfrequencies
in tangential and rotation direction have to be considered as well as the viscous re-
sponse times tγ ≈ m/γ. All of the eigenfrequencies should be considerably larger than
tMD, whereas the viscous response times should be even larger, so that tγ > tc > tMD.
The discussion of all the effects due to the interplay between the model parameters is
far from the scope of this paper, however.
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3.2 Compression simulations
When compressing the system (by growing the particles) the first quantity of interest
is the density (volume fraction) ν. For a set of frictionless hard spheres, the maxi-
mum volume fraction is νmax ≈ 0.74, when all spheres are optimally arranged on a
crystal lattice. Random packings can reach volume fractions between 0.63 and 0.69,
dependent on the degree of local crystallization. When friction is switched on and also
the other force laws are used, much smaller volume fractions between 0.55 and 0.58
are expected as indicated by the difference between open and solid symbols in Fig. 2
(Left).

Before the results of the compression simulations are discussed, one has first to de-
cide on a criterion whether a packing is stable and quasi-static or not. In the following,
the ratio of kinetic to potential energy is used, e = Ekin/Epot, and the densities are
reported when e = 1, 10−1, 10−2, and 10−3, as given in the inset of Fig. 2. Since the
particles are continuously growing, the system has no chance to become static at the
lowest density (relaxation times are extremly large at this point). However, the decay
of e close to this point is very rapid and indicates at least the possibility of a static,
stable packing configuration. A more detailed study of alternative boundary conditions
is in progress 2.

For fixed friction coefficient, µ = 1, increasing rolling- and torsion-coefficients
lead to lower densities. For the higher values of µr and µo, reorganization can appear
more violently during ongoing compaction, leaving the system with somewhat higher
density. For fixed finite rolling- and torsion coefficients, µr = µo = 0.1, the density
is close to the reference without tangential forces and torques. With increasing friction
coefficient µ the density drops. But the highest values of µ ≥ 0.5 do not necessarily
lead to lower densities, as one could have expected. Again, the more violent reorgani-
zation events could be responsible.
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Figure 2: (Left) Densities (volume fractions) at which the energy ratio reaches the
values e as given in the inset. The parameters are given in table 1, only the values of
rolling- and torsion-coefficients are varied while mu = 1 is kept constant. The lines
are a guide to the eye and the solid points are the reference data for µ = µr = µo = 0.
(Right) Rolling and torsion-coefficients are µr = µo = 0.1 and the friction coefficient
µ is varied. Lines and solid points are the same as in the left panel.

2The simple approach of a system that is compressed by pressure controlled walls does not work, since
the packing becomes then inhomogeneous: very low density in the center, higher density at the walls and
very high densities in the corners.
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From various simulations with different material parameters (data not shown), one
can conclude that higher viscosity parameters lead to faster relaxation – too high vis-
cosity on the other hand leads to spurious effects. As long as the growth rate was small
enough, the achieved low densities were comparable in magnitude, with no evident de-
pendency on the viscosity parameters. Note, however, that all viscosities were active –
in normal, tangential, rolling, and torsion direction as well as for the background damp-
ing. The relative magnitude of the viscosities, as given in table 1, is found reasonable;
however, a more systematic study might reveal a better, more realistic, combination of
viscosity values.

Based on the variation of the friction-, rolling-, and torsion-coefficients, the lowest
volume fraction to be expected for a stable packing can be extrapolated from Fig. 2
(Left) to be about νmin ≈ 0.42. Too small friction coefficients are always related to
rather high densities. On the other hand, extremely high friction-coefficients do not
necessarily lead to lower densities due to a different reorganization dynamics. A test
simulation with µ = µr = µo = 10 did not lead to lower densities as one could have
hoped.

3.3 Compaction with long range force
In order to achieve even lower densities as in the previous subsection, all parameters
from table 1 are used, only the Lennard-Jones energy parameter is varied using the
values ε = 10−21, 10−20, 10−19, 10−18 m2 kg s−2. The potential energy now also
involves the longrange potential and is thus not an adequate criterion for comparison to
the kinetic energy. From the kinetic energy, the simulation with ε = 10−20 m2 kg s−2

seemed to relax most rapidly. The minimal density found was νmin ≈ 0.34 – further
detailed studies about the value where the packing remains stable are necessary.

A qualitative comparison of the packing structures in Fig. 3 shows somewhat larger
holes in the packing with long range forces (visible due to the dark particles in the
back). A more quantitative analysis using the pair-correlation function reveals that a
considerable fraction of particles that are close to each other without longrange forces
stick together when long range forces are active. More detailed parameter studies are
in progress.

Thus with some attractive long range force, the minimal packing density can be
considerably decreased relative to the lowest densities achieved with contact forces
only. However, very strong attractive forces do not necessarily lead to better relaxation
behavior. Therefore, more detailed studies under better controlled conditions will be
necessary to achieve stable configurations with extremely low density and to better
understand the compaction and reorganization dynamics.

4 Conclusion
The present study is a summary of the soft particle force models involving elasticity,
plastic contact deformation, adhesion, friction, and rolling- as well as torsion resis-
tance. A set of parameters is given and several criteria and rules for parameter selec-
tion are discussed. Using friction and rolling-/torsion-resistance, stable static packings
could be reached with densities (volume fractions) somewhat above νmin ≈ 0.4. When
also an attractive, longer ranging force was added, the minimal possible density was
below νmin ≈ 0.34, however, in this case the criterion for a static, stable configuration
has to be improved.
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Figure 3: Snapshots from simulations without (Left) and with (Right) longer ranged
attractive forces at volume fraction ν = 0.34. The left packing is not yet stable at
this density whereas the right packing is. The greyscale indicates the distance from the
viewer – more distant particles are darker. The lines indicate the (periodic) boundary of
the system; note that dark particles at the system boundaries are visible due to the pe-
riodic boundary conditions – not due to holes in the system. (Bottom) Pair correlation
functions for the simulations with (LR) and without (SR) longrange forces.

Even though molecular dynamics particle methods are a helpful tool for the under-
standing of granular systems, the quality of the results depends strongly on the contact
models used. The set of contact models presented here, besides many model assump-
tions, still involves a large number of parameters. Some of them are less important for
physical properties and behavior of the system than others – the latter, most relevant
parameters have to be identified and their interplay has to be better understood.

The qualitative particle-modeling approach of the early years has now developed
into the attempt of a quantitative predictive modeling of the diverse modes of complex
behavior in granular media. The quantitative comparison with experiments and vali-
dation of the models is the task for the near future. The measurement of low packing
fractions in adhesive, frictional fine powders is one of the possible experiments to be
examined in more detail – a challenge for particle contact modeling.
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