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Abstract. The two most important phenomena at the basis of granular media are excluded volume
and dissipation. The former is captured by the hard sphere model and is responsible for, e.g., crys-
tallization, the latter leads to interesting structures like clusters in non-equilibrium dynamical, freely
cooling states. The freely cooling system is examined concerning the energy decay and the cluster
evolution in time. Corrections for crystallization and multi-particles contacts are provided, which
become more and more important with increasing density.
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1. Introduction

Granular media and their interesting behavior has caught a lot of attention in the last
decades, see [1–4]. One reason is their ability to form a hybrid state between a fluid
and a solid: Energy input leads to a reduction of the density due to more collisions and in-
creasing pressure, so that the material can flow, i. e. it becomes “fluid”. On the other hand,
in the absence of energy input, granular materials become denser, i. e. they “solidify” due
to dissipation. The same coexistence of fluid and solid states also happens without energy
input in freely cooling systems, where extremely dilute regions co-exist with very high
density, solid clusters. The basic idea of clustering is that in an initially homogeneous,
freely cooling granular gas, fluctuations in density, velocity, and temperature cause a posi-
tion dependent energy loss. This causes locally inhomogeneous dissipation; pressure and
energy drop inhomogeneously and material moves from “hot” to “cold” regions, leading
to even stronger dissipation in the denser, cold regions. In the dense regime, the particles
contact more frequently so that multi-particle contacts are more likely. Furthermore – not
directly related to multi-particle collisions – crystallization occurs above a specific density.
This makes granular media an interesting multi-particle system with a rich phenomenol-
ogy. However, theoretical approaches from statistical physics are non-classical and appear
often extremely difficult, so that there is still active research directed towards the better
understanding of granular media. In this study, the structure and cluster formation in free
cooling granular media [5–11] is discussed and special attention is given to the high density
regions inside the clusters.
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2. Simulation Details

A granular gas can be idealized as an ensemble of hard spheres in which the energy loss
that accompanies the collision of macroscopic particles is modeled with a single coefficient
of restitution. In the simplest case the particles are identical in size and mass and there are
no inter-particle forces between collisions.

Details about initial and boundary conditions are given in section 2. 2.1. The micro-
scopic dynamics of the motion and the collision of the particles is discussed in section 2. 2.2
and the simulation method is explained in section 2. 2.3. Section 2. 2.4 deals with the in-
elastic collapse, a problematic artefact of the hard sphere model with dissipation.

2.1 Initial and Boundary Conditions

The simulation volume consists of a box with equal side length and periodic boundary
conditions in two dimensions (2D) and three dimensions (3D). An initial state with random
particle positions and velocities is prepared in the following way: The particles first sit on
a regular lattice and get a random velocity with a total momentum of zero. Then the
simulation is started without dissipation �������	� and runs for about ��
� collisions per
particle so that the system becomes homogeneous and the velocity distribution approaches
a Maxwellian. This state is now used as initial configuration for the dissipative simulations.

2.2 Microscopic Dynamics

The particles are idealized as hard spheres; this means that collisions take infinitesimal
time and involve only two particles. Between collisions no forces act upon the particles
and they move at constant velocity. Conservation of momentum leads to the collision rule�������� � � ������ ��� ������ ��� "! � �� ��# �� � �%$ � '& (1)

where a prime indicates the velocities
�� after the collision and � is a unit vector pointing

along the line of centers from particle 1 to particle 2. The relative tangential velocity does
not change during a collision, the relative normal velocity changes its sign and is reduced
by a factor � # � , with the restitution coefficient � . So at each collision, the kinetic energy
of the relative velocity’s normal component is reduced by the factor ()�*� # ��� . The elastic
limit �+�,� implies no dissipation ( (-�.
 ), while �0/1� implies (32�
 .
2.3 Event-Driven Molecular Dynamics

The simulation of hard spheres can be handled efficiently with event-driven molecular
dynamics [12, 13]. The collisions are the events which have to be treated by the algorithm.
Between these collisions the particles move on trivial trajectories and so the algorithm can
easily compute the point of time 4 � � of the next collision of two particles 1 and 2 as
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4 � � �5476�� � # �� � � ! �� � � #98 � �� � � ! �� � � � � # �:� �� � # � �<; � � � � �� � $>= � �� � & (2)

where
�� � � � �� � �:4 6 � # �� � �:4 6 � and

�� � � � �� � �:4 6 � # �� � �:4 6 � are the relative velocities and
positions of the particles at time 4 6 , and

;
is the radius of a particle.

The algorithm processes the events one after another. After a collision the positions and
velocities of the two involved particles are updated, the state of all other particles remains
unchanged. For the two involved particles new events are calculated and the next future
event is stored in the event priority queue for both particles. The next event is obtained
from the priority queue, the new positions and velocities after the collision for the collision
partners are updated, and so on. Neighborhood search is enhanced with standard linked
cell methods [14], where the cell change of a particle is treated as a new event type. The
details of the algorithm can be found in [12, 13, 15].

2.4 Avoiding the Inelastic Collapse with the TC Model

Our model makes use of hard spheres with an infinitely stiff interaction potential. As
a consequence, the contact duration is implicitly zero, matching well the corresponding
assumption of instantaneous contacts used for the kinetic theory [16, 17]. However, due
to this artificial simplification, ED algorithms run into problems when the time between
events 47? gets too small: In dense systems with strong dissipation, 4%? may even tend to-
wards zero – the dramatic consequence is the “inelastic collapse”. This singularity is un-
physical, of course, and a major drawback for numerical simulations, too. But it has been
shown that one can circumvent this artefact of the dissipative hard sphere model with the
so-called TC model in the following way [18]: If two consecutive collisions of a particle
happen within a small time 4A@ , dissipation is switched off for the second collision. The
time 47B can be seen as a typical duration of a contact, and allows for the definition of the
dimensionless ratioC @ �54 @ = 4EDGF (3)

The effect of 4 B on the simulation results is negligible for large � and small 4 B ; for a more
detailed discussion see [8, 18, 19].

There exist other deterministic and random models which prevent inelastic collapse, see
[18] for a discussion and [19] for the kinetic theory solution to this class of models. Since
almost all of them lack a solid theoretical background and physical motivation, we apply
the TC model in the following.

3. Numerical Experiments

The simulation is started from a homogeneous system, prepared as descibed in sec-
tion 2. 2.1. Depending on the dissipation ( , the density H , and the number I of parti-
cles, the system remains in the homogeneous cooling regime for some time, (or for very
low ( , H , and I even forever) until clustering starts and the system becomes inhomoge-
neous. First, we focus on the homogeneous cooling state and discuss the regime where
multi-particle collisions are likely.
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3.1 Kinetic Energy and Collision Frequency
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Figure 1. Decay of the kinetic energy J (Left) and the collision frequency KML (Right)
plotted against scaled time N in a 2D system with OQPSR<TVUXWYPSZ	Z	[	\�U particles, volume
fraction ]^P`_<a b	\ , and different restitution coefficients c . The lines give Eq. (4) andNedgf resp. Eq. (6).

Dissipative collisions lead to a decay of the kinetic energy and the collision frequency,
see Fig. 1. Besides that, these figures show three different regimes:h The homogenous cooling state (HCS), when no clusters have formed yet at short

times, can be described by a mean-field kinetic theory, see [20] and references
therein. The decay of the kinetic energy i is governed by the equation

ikjl�.mn� C � = mo��
��p�Q�E��� C �Vq � & (4)

with the scaled time C �r(e4 =ts �vu 4Ewx�y
��7z . u is the dimension of the system and 4%w{��
��
is the initial Enskog collision rate at time 4p�r
 , where

4Ew��r| } ; =ts �v~ q � u H�� ~ ��H���� � =�� z�F (5)

Here, �1� � m = � u I�� is the so-called “granular temperature” (i.e. twice the kinetic
energy per particle per degree of freedom),

;
the particle radius, H is the volume

fraction, and � ~ is the contact probability. In 2D � � �yHe�����%� #5� H = ����� = �%� # H��E�
and in 3D �<���yH��Y�*�E� # H = � � = �E� # H�� � . The evolution of the collision frequency per
particle with time is given by� @ � C �Y�.4Vq �w ��
��M� mo� C � = mo��
�� & (6)

valid for
u � � and

u �.� .h In the cluster growth regime, the decays of energy and collision rate decrease and
deviate from these laws. The collision frequency strongly fluctuates and the decay of
the kinetic energy slows down. Note that the average collision frequency may even
increase. The deviation from Eq. (4) occurs earlier and is more dramatic for larger
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dissipation ( , i. e. smaller � . However, the cluster growth regime is characterized
by an energy decay i�� C q � , independently of � and

u
[11]. In contrast, the

qualitative behavior of the collision frequency clearly depends on � . The deviation
from the HCS is more distinct for larger dissipation and larger systems.h Finally, in the saturation regime, when the largest cluster in the population has
reached system size, the cooling resembles to the homogeneous cooling state in
so far that i�� C ��� C q � and

� @�� C ��� C q � , even if these quantities show large
fluctuations due to the enormous changes of both energy and collision rate during
cluster-cluster interactions.

3.2 Dense HCS with multi-particle contacts

In dense systems two phenomena can become important:
First, above a certain density ( HG�.
eF � in 2D and H��r
�Fl�v� in 3D), systems of monodis-

perse spheres crystallize. Crystallization leads to order and thus to an enhanced mean free
path between collisions. Therefore, the term H� ~ �yH�� in Eq. (5) has to be corrected via a
so-called “global equation of state” [21]. This issue was discussed extensively for 2D sys-
tems [21, 22], so that we do not go into more details here, we rather refer to the literature,
see [23].

Second, for very high density – corresponding to very small mean free path – there
is a finite chance in assemblies of (real) soft particles, that multi-particle contacts occur.
Therefore, in real systems, the artefact of an inelastic collapse is avoided. (Because every
collision takes a finite time, an infinite collision rate is impossible). The TC model can
be seen as a means to allow for multi-particle collisions in dense systems [18, 19, 24, 25],
where it is known, that multi-particle contacts reduce dissipation [26]. In the case of a
homogeneous cooling system (HCS), one can explicitly compute the corrected cooling
rate (r.h.s.) in the energy balance equation� i = � C � # �v� ��i & 4%@A� & (7)

with the dimensionless time C ��(e4 =ts �v4%w��y
��7z for 3D systems, with ��� � m = ���<I�� . In
these units, the energy dissipation rate

�
is a function of the dimensionless energy i��m = mn�y
�� with the kinetic energy m , and the cut-off time 4 @ . In this representation, the

restitution coefficient is hidden in the rescaled time via ( , so that inelastic hard sphere
simulations with different � scale on the same master-curve. When the classical dissipation
rate i � � � [16] is extracted from

�
, so that

� ��i & 4�@V�Y�`�p��i & 4%@A�%i � � � , one has the correction-
function ����� for 4�@���
 . The deviation from the classical HCS is [19]:

�p��i & 4 @ �p�. �¡t¢+�7£¤�:¥g��� & (8)

with the series expansion £¤�:¥���� # ��F � �<¦<¥0�n
eF 
e����¦ � ¥�� # 
�F 
<
<
�� � ¦<�v¥ � �9§)�:¥�¨�� in the
collision integral, with ¥�� | }©4 @ 4 q �w ��
�� | iª� | } C @ ��
�� | i«� | } C @ [19]. This is close
to the result £¬<®¯� # � ¥ = | } , proposed by Luding and McNamara, based on probabilistic
mean-field arguments [18] – £°¬<® thus neglects non-linear terms and underestimates the
linear part.

Given the differential equation (7) and the correction due to multi-particle contacts from
Eq. (8), it is possible to obtain the solution numerically, and to compare it to the classical
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i�±)jl�²�%��� C � q � solution. Simulation results are compared to the theory in Fig. 2 (Left).
The agreement between simulations and theory is almost perfect in the examined range
of 4 @ -values, only when deviations from homogeneity are evidenced one expects disagree-
ment between simulation and theory. The fixed cut-off time 4 @ has no effect when the time
between collisions is very large 4%w5³´4 @ , but strongly reduces dissipation when the colli-
sions occur with high frequency 4 q �w¶µ�94 q �@ . Thus, in the homogeneous cooling state, there
is a strong effect initially, and if 4 @ is large, but the long time behavior tends towards the
classical decay iQ��i ± � C q � .
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Figure 2. (Left) Deviation from the HCS, i.e. rescaled energy J{·�J�¸ , withJ ¸ Pº¹»T°¼.Nt½�d W . The data are plotted against N for simulations with differentN L ¹:_	½�Pk¾ L ·¿¾EÀÁ¹:_�½ as given in the inset, with c"PÂ_va Z�Z , and OÃPÂ[	_�_	_ . Symbols
are ED simulation results, the solid line results from the third order correction, see
text for details. (Right) J{·�J�¸ plotted against N for simulations with c)P*_<a Z	Z , andO�P²bvTVZ�Ä . Solid symbols are ED simulations, open symbols are MD (soft particle
simulations) with three different ¾7L as given in the inset.

The final check if the ED results obtained using the TC model are reasonable is to com-
pare them to MD simulations, see Fig. 2 (Right) and Ref. [27] for details concerning the
MD simulation. Open and solid symbols correspond to soft and hard sphere simulations
respectively. The qualitative behavior (the deviation from the classical HCS solution) is
identical: The energy decay is delayed due to multi-particle collisions, but later the clas-
sical solution is recovered. A quantitative comparison shows that the deviation of i fromi�± is larger for ED than for MD, given that the same 4A@ is used. This weaker dissipation
can be understood from the strict rule used for ED: Dissipation is inactive if any particle
had a contact already. The disagreement between ED and MD is systematic and should
disappear if an about 30 per-cent smaller 4A@ value is used for ED. The disagreement is also
plausible, since the TC model disregards all dissipation for multi-particle contacts, while
the soft particles still dissipate energy - even though much less - in the case of multi-particle
contacts [26].
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3.3 Cluster Growth

After several collisions per particle, the first deviations from the HCS occur (if the dissi-
pation and the density are large enough). In the following, exemplary snapshots are shown
and the evolution of the cluster size distribution is examined.C �`���tF � C � � �t� C �.Å�
��	�

Figure 3. ED simulation with OQP�Z�Z	[	\�U particles in a system of size Æ"Pn\�U	_ , vol-
ume fraction ]0Pn_<a b	\ , restitution coefficient c{Pn_<a Z , and critical collision frequency¾ dgfL P�T¿_	Ç s d�f . The collision frequency is color-coded: red, green and blue correspond
to collision rates ¾ d�fÈ�É b�\�_ s dgf , 50 s dgf and 10 s dgf , respectively.

The first picture in Fig. 3 is taken short after the initally homogeneous cooling regime,
whereas the next two pictures show the later stages of the cluster growth and the saturation
regime. The particles are colored spots, where the green/red areas in the cluster centers
correspond to particles with collision rate 4 q �D Ê �<
 s q � . This is much smaller than the
critical collision rate 4 q �@ �Ë��
�Ì s q � , so that only a very small number of particles will be
affected by the TC model, in the center of the clusters.

The energy loss of the particles first leads to a reduced separation velocity after collision
and eventually to the formation of clusters. Note that already for very short times, devia-
tions from the homoegeneous regime become evident when one examines the short range
pair-distance probability distribution function. But the definition of a cluster suffers from
the fact that it takes a huge (possibly infinite) number of collisions until the particles could
stay in permanent contact with each other [8]. So we use the following definition: Two
particles belong to the same cluster, if their distance is smaller than ÍÎ�r
�FÏ� particle diam-
eters. The choice of Í is arbitrary and a different choice leads to quantitatively different
results; the key informations do not depend on Í .

The moments ÐnÑ of the cluster size distribution are defined as

Ð Ñ jl� �Ò @�ÓeÔ5Õ Ñ Ò Ô & (9)

where Ò @ denotes the total number of clusters and Ò Ô the number of clusters of size Õ . In
many cases there are a lot of small clusters and one large cluster of size Ò×Ö , which con-
tains a macroscopic fraction � Ö jØ� Ò©Ö = I of the total number I of particles. Therefore,
one also can define reduced moments Ð �Ñ , which do not include the largest cluster. In
Fig. 4(Left) the growth of the clusters can be seen concerning the first moment. After sev-
eral collisions, the particles start to cluster and the moments of the cluster size distribution
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grow until they reach a saturation value (with huge fluctuations). A numerical analysis
reveals that the increase in Ð � (and Ð � ) is mainly due to one large cluster which grows
until it reaches its maximum size. In this final state this cluster contains a macroscopic
fraction � Ö of the particles, see Fig. 4 (Right).
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Figure 4. Growth of the 1st moment of the cluster size distribution Ù f (Left) and
of the fraction of the largest cluster ÚGÛ (Right), plotted against scaled time N in a 2D
system with OªP5Z	Z	[	\�U particles, volume fracion ]�P5_va b�\ , and different restitution
coefficients c .

The onset time of cluster growth and also the final size � Ö of the large cluster depend
strongly on the restitution coefficient � , see Fig. 4 and [11]. At low dissipation rates, for
a long time nothing interesting happens and finally small and strongly fluctuating clusters
appear. High dissipation leads to almost immediate cluster growth and a very large cluster
at last. On the other hand, the system size I does not seem to affect the behavior of the
system provided that I is not too small, see [11].

3.4 Cluster structure

In Fig. 5, zooms into the bottom-right area of the the same system as in Fig. 3 are presented
in the late cluster growth and saturation regime. Here the clusters are very large and one
obtains crystalline, triangular lattice structures with a peculiar distribution of collision rates
as color-coded.C � � 
<
<¦ C �.Å�
��	�

Figure 5. Zooms into the lower right part of the ED simulation from Fig. 3.
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4. Summary

The evolution of freely cooling granular systems can be divided in three regimes:h First, the system is in the homogeneous cooling state. The decay of the kinetic
energy and the collision frequency can be described by simple analytical expressionsi�� C �Y�Q�E�Y� C � q � and

� @M� C ���,�%��� C � q � . The time scale is mainly determined by
the density and the dissipation of the system.h After a few collisions clusters begin to develop and grow and. the collision fre-
quency, which can show large fluctuations because of cluster-cluster collisions, can-
not be predicted anymore. The energy decay is characterized by iÜ� C q � . This
regime shows interesting differences between two and three dimensions see [11, 23].h After many more collisions, many of the clusters merge to one large cluster which
grows until it reaches system size. Then the system is dominated by one large cluster
which contains a macroscopic fraction of the particles in the system. Kinetic energy
and collision frequency still fluctuate, but are governed by the equations i�� C ��� C q �
and

� @M� C �� C q � . This means the evolution in time is similar to the homogeneous
cooling state.

Inside the clusters, density can grow above the crystallization limit (that happens frequently
in 2D but was observed rarely in the 3D systems examined until now). We refered to the
necessary corrections concerning the collision rate (which enters stress and dissipation rate
and also the other transport coefficients). In brief, due to crystallization the collision rate is
decreased relative to the disordered fluid system. Due to the increase in density – but not
necessarily related to crystallization – multi-particle contacts occur. The control parameter
is the ratio of the contact duration and the time between collisions. If collisions occur
rapidly, dissipation is decreased. An analytical expression for 3D systems that corrects the
dissipation rate was given.
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