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We simulate static model sandpiles in two dimensions (2D) and focus on the stresses
inside the pile. In this study tangential forces, e.g. friction, are neglected. We compare
the simplest possible interaction model, i.e. a linear spring and a linear dashpot, with
a nonlinear law based on Hertz’ theory. Furthermore, we present data obtained by a
simulation of frictionless polygons with twelve sides also placed on a triangular lattice.
The stresses depend only slightly on the choice of either interaction law or particle shape.

1 Introduction

One out of many interesting features of granulates ! is the stress distribution in
static arrays of sand. The pressure in a silo filled with grains does not increase
linearly with depth as in the case of a liquid filling. Instead, the stress saturates at
a certain value? due to arching and internal friction. Thus the walls of the silo carry
a part of the materials’ weight. In a pile of sand where no vertical walls are present
the total weight of the pile is carried by the bottom. However, the distribution of
forces under and inside the material is not yet completely understood. Experiments
on piles with many thousands of particles reveal a relative minimum in the vertical
stress at the bottom of the pile, the so-called dip3* In the presence of disorder,
stress chains are observed, i.e. stresses are mainly transported along selected paths,
and the probability distribution of stress spans several orders of magnitude®57

From simple sandpile models, like arrays of rigid particles®? the stress at the
bottom of the pile is calculated to be constant in contrast to experimental obser-
vations. A continuum approach may lead to a dip in the vertical stress if certain
assumptions for the constitutive equations are chosenl® Also a lattice model !!
shows the dip in average over many realizations.

The simplest model granular material, i.e. particles in 2D interacting via linear
springs without friction, includes most of the above mentioned findings as special
cases” Here, we extend the simple linear interaction law 7, to a more realistic non-
linear contact law based on the elastic theory by Hertz,'2 and check how the results
differ. Finally, we compare the different interaction laws with a simulation using
polygonal particles!?

2 Simulation Aspects

In the simulations N particles with diameter dy = 1.5 mm are used. In the lower-
most layer, M = 0, at the bottom we place L immobile particles. We model heaps of
slope 30° by adding Ly; = L — 3M particles for layer M = 1, ..., H®9 respectively.
The number of particles in the pile is thus N9 = FGO (L, — 3(H(30 —1)/2) with
the number of layers H®% =int[(L — 1)/3] + 1.
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The initial velocities and overlaps of the particles are set to zero, and gravity is
slowly tuned from zero to the selected magnitude and the system is simulated until
the kinetic energy is several orders of magnutide smaller than the potential energy.

For the relaxation of the array we use a standard molecular dynamics (MD)
procedure with a fifth order predictor-corrector schemel? Since we are interested
here in static arrangements of particles in the gravitational field, we use strong
viscous damping, in order to reach the steady state quickly. The MD method is
not the best choice for a fast relaxation, however, closing and opening of contacts
is implemented straightforwardly.

There are two forces acting on particle ¢ when it overlaps with particle j, i.e.
when the distance 7;; =| 7; — 7 |< (d; + d;)/2. We use an elastic force

FD = —ke((1/2)(di + dj) — ri7) O+ i1y, (1)

with the spring constant k., acting on particle ¢ in normal direction 7i;; = (7; — ) /73;.
The second force in normal direction is dissipative

PO = pe (@ - 71) (1/2)(di + dj) — 145)°271s5, 2)

accounting for the inelasticity of the contacts. The contact of a particle with an
immobile particle is mimicked by setting the mass of the immobile contact partner to
infinity. In Eq. 2 the constant p. is a phenomenological dissipation coefficient, and
U35 = ¥Uj —U; is the relative velocity of the particles 4 and j. Note that the nonlinear
powers e; and es is not neccessarily the same in Egs. 1 and 2, however, we restrict
ourselves to e = e; = ea = 0 or ¢ = 1/2. The simple linear spring-dashpot model
corresponds to e=0, and the nonlinear Hertz law for spheres!® together with the
damping proposed by Kuwabara and Kono}' corresponds to e = 1/2. Furthermore,
we present some data from simulations of polygonal particles and mark those with
e = 1. The simulation method for polygons is outlined elsewhere. '3 The power
e = 1 is consistent with the interaction law obtained for the edge of a polygon
hitting a side of another polygon.

The quantity we discuss in the following is the stress tensor ¢!7''® which we
identify in the static case with
oy = (1/VO)E safs, 3)

where the indices o and (8 indicate the coordinates, i.e.  and z in 2D. This stress
tensor is an average over all contacts of the particles within volume V@ with the
distance s between the center of the particle and the contact point, and the force f
acting at the contact point.

From a relaxed configuration of particles we calculate the components of the
stress tensor 044, 0,,,04,, and 0,, and define ot = (044 +0,,)/2, 07 = (04 —
0.2)/2, and o* = o,,. If we neglect tangential forces the spherical particles are
torque-free and we observe only symmetric stress tensors, i.e. ¢,, = 0,. The
eigenvalues of o are thus omax,min = 07 +1/(67)% + (¢*)?, and the major eigenvalue
is tilted counterclockwise by an angle

¢ = arctan (M) (4)
Tz
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Figure 1: Half views of the contact network for simulations with linear (left) and nonlinear (right)
interaction laws.

from the horizontal. Throughout this study we use the dimensionless stress
S =20/(pgh) = ol/(mg) with the density p, the mass of the pile m, the width
of the pile [, and the height of the pile h. With this scaling, the sum over the ver-
tical stresses at the bottom S,.(1) gets unity. Furthermore, we use dimensionless
coordinates X = z/l and Z = z/l in horizontal and vertical direction respectively.

3 Comparison of different interaction laws

The situation we address is a homogeneous pile, as assumed in Ref.” Here we use
Ly = 100 particles in row M = 0 and create a 30° pile. The particles in the
lowermost row M = 0 are fixed with horizontal separation dy.

In Fig. 1 we compare the contact network for the two interaction laws defined
above. The piles with linear interaction, i.e. e = 0, and nonlinear interaction, i.e.
e = 1/2, are presented as the left and right half-pile respectively. We observe a
triangular region with diamond-lattice contact network in the center of the pile and
a triangular contact network at the shoulders. Only in a thin layer close to the
surface we find a diamond-lattice tilted outwards from the center. The structure,
i.e. the contact network is the same for both interaction laws, except for some weak
deviations.

In Fig. 2a we plot the components of the dimensionless stress tensor S(1) versus
X = z/l for the lowermost row of mobile particles, M = 1. From bottom to top we
plot the components S,,, Szz, and S,,. Besides small deviations the stress tensor is
the same in all cases e =0, e = 1/2, and e = 1. The ratios of stresses, i.e. S;,/S,,
and S;; /S, are plotted in Fig. 2b and we observe that the ratio of the diagonal
elements is about 1/3 inside the pile, independently from e. The value of 1/3 is
consistent with the theoretical predictions in Refl® for a 60° diamond structure
inside a 30° pile and can also be understood from geometrical arguments: Since
the horizontal contact is open, the stiffness of the material is weaker in horizontal
direction than in vertical direction for a 60° diamond-lattice. In horizontal direction
we find a contribution to the stiffness k. cos60° on a vertical length djsin 60°.
On the other hand, in vertical direction we find a contribution to the stiffness of
ke cos 30° on a horizontal length dy sin 30°. Assuming a homogeneous deformation
we arrive at S, /S, = tan®30° = 1/3.
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Figure 2: (a) Components of the dimensionless stress tensor S(1) at row M = 1 vs. dimensionless

horizontal coordinate X = z/l, for a pile with immobile particles at the bottom, M = 0. The

slope of the pile is 30° and L; = 97. We use linear e = 0, and nonlinear interactions e = 1/2, see

insert. The data with e = 1 correspond to simulations with polygonal particles. (b) Ratios of the
components of S(1) presented in (a) for the corresponding simulations.
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Figure 3: (a) Ratio of the eigenvalues of the stress tensor at row M = 1 vs. X, for the piles
from Fig. 2. (b) The angle ¢ about which the major principal axis is tilted from the horizontal in
counterclockwise direction. (c) The minor and major eigenvalues Smin and Smax-

From the stress tensor S in cartesian coordinates we move now into the principal
axis system, where S is defined by the minor and major Eigenvalues Sy, and Smax
and the angle of orientation ¢ as defined in Eq. 4. We plot the ratio of the eigenvalues
Shin/Smax in Fig. 3a, the angle ¢(1) in Fig. 3b, and the minor and major eigenvalues
in Fig. 3c. Except for boundary effects close to X = 0 and X = 1 we have three
regions which may be identified as the regions with different contact network in Fig.
1. In the center the stresses are almost constant and decrease at the outer part of
the pile until they vanish at the boundary. Except for the center, the stress tensor
is always oriented outwards from the center. The orientation angle ¢ is almost
constant in the outer regions and a transition takes place in the inner region.

4 Summary and Conclusion

We presented simulations of particles arranged as a pile in 2D with a slope of 30°
and measure the stresses inside the pile for different interaction laws. We compare
the simple linear spring e = 0, with a non-linear spring e = 1/2 (based on the
elastic theory by Hertz), and with polygonal particles e = 1. We observe that the
qualitative behavior is almost independent of the interaction law used. The contact
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network, i.e. the fabric or the structure of the pile, is seemingly more important
than the specific interaction law between the particles. The nonlinearity — connected
to the opening and closing of contacts — determines the qualitative behavior of the
stresses in the situation presented here.

In our simplified model without friction we do not observe arching or stress
chains as long as no fluctuations are introduced” With fluctuations in the order
of a few percent of the particle size, the behavior of the system gets much more
complex. In future more detailed studies with friction should be performed and the
sensitivity of the stress distribution on the construction history should be tested.
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