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We study a homogeneously driven granular gas of inelastic hard particles with rough surfaces subject to
Coulomb friction. The stationary state as well as the full dynamic evolution of the translational and rotational
granular temperatures are investigated as a function of the three parameters of the friction model. Four levels
of approximation to the (velocity-dependent) tangential restitution are introduced and used to calculate transla-
tional and rotational temperatures in a mean field theory. When comparing these theoretical results to numerical
simulations of a randomly driven mono-layer of particles subject to Coulomb friction, we find that already
the simplest model leads to qualitative agreement, but only the full Coulomb friction model is able to repro-
duce/predict the simulation results quantitatively for all magnitudes of friction. In addition, the theory predicts
two relaxation times for the decay to the stationary state. One of them corresponds to the equilibration between
the translational and rotational degrees of freedom. The other one, which is slower in most cases, is the inverse
of the common relaxation rate of translational and rotational temperatures.

PACS numbers: 45.70, 47.50+d, 51.10.+y, 47.11.+j

I. INTRODUCTION

Granular media are collections of macroscopic particles
with arbitrary shape, rough surfaces, and dissipative inter-
actions [1–4]. Many phenomenona are well reproduced by
model granular media, where spheres are used instead of
other, possibly more realistic shapes. In order to study such
model systems, kinetic theories [4–16] and numerical simu-
lations [4, 15, 17–23] have been applied for special bound-
ary conditions and a variety of interesting experiments have
been performed, see for example [24–28]. The dynamics of
the system is usually assumed to be dominated by instanta-
neous two-particle collisions. These collisions are dissipative
and frictional, and conserve linear and angular momentum
while energy is not conserved. In the simplest model, one de-
scribes inelastic collisions by a normal restitution coefficient� only. However, surface roughness and friction are important
[10, 13, 20–22, 29], since they allow for an exchange of trans-
lational and rotational energy and influence the overall dissi-
pation. In the standard approach [5, 10, 22], surface roughness
is accounted for by a constant tangential restitution coefficient��� , which is defined in analogy to � in the tangential direction.
A more realistic friction law involves the Coulomb friction co-
efficient � [17, 30–32], so that the tangential restitution �������
	
depends on the impact angle � , i.e. the angle between the con-
tact normal and the relative velocity of the contact points.

Recently, Jenkins and Zhang [14] proposed a kinetic the-
ory for frictional, nearly elastic spheres in the limit of small
friction coefficient � . They introduced an effective coefficient
of normal restitution by approximately relating the rotational
temperature to the translational one. Thereby the kinetic the-

ory for slightly frictional, nearly elastic spheres has the same
structure as that for frictionless spheres. Also for small � ,
Goldhirsch et al. [16] showed that an infinite number of spin-
dependent densities is needed to describe the dynamics of fric-
tional spheres and that the distribution of rotational velocities
is non-Gaussian. A mean field theory for three dimensional
cooling systems of rough particles with Coulomb friction was
proposed in [13] and found to be in very good agreement with
computer simulations for a wide range of parameters. A sys-
tematic theoretical study of driven systems over the whole
range of dissipation and friction parameters is not available
to our knowledge.

In the following, we propose a mean-field (MF) theory
of homogeneously driven rough particles that accounts for
Coulomb friction (i.e. a non-constant � � ) on different levels of
refinement. The most accurate description parallels the three-
dimensional (3D) results [13] for freely cooling systems. In
addition, we present different levels of approximation to the
full model and discuss their shortcomings in MF theory. The
homogeneous driving used here is the same as in other recent
studies of driven systems [15, 29].

To test our analytical results we have performed numerical
simulations of a randomly driven mono-layer of spheres, us-
ing an Event Driven (ED) algorithm [21, 22, 29, 33]. One key
result is that, via � � ����	 , all parameters of the collision model
affect the evolution of the translational and rotational degrees
of freedom (temperatures) of the system. Only the full MF
theory is able to quantitatively predict the system behavior for
the whole parameter range.

The model system is introduced in section II. The dis-
tribution of impact angles, as affected by translational and
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rotational degrees of freedom, is computed in section III.
The standard approach with constant tangential restitution is
briefly reviewed, before we introduce three levels of approx-
imation and the full MF theory in section IV. In section V
we discuss the stationary state and and in section VI the dy-
namic evolution towards the stationary state. In both sections
we compare the predictions of full MF theory and its approx-
imations to simulations. Finally we present a summary and
conclusions in section VII.

II. MODEL

The model system contains 
 three-dimensional spheres
of diameter ��� , mass � , and moment of inertia � interacting
via a hard-core potential. The particles are confined to a two-
dimensional (2D) square with periodic boundary conditions.
The linear box size is � and the area (volume) ������� . The
moment of inertia can be expressed using the shape factor��� � ���� ��� (1)

For spheres with a homogeneous mass distribution � ���! #" .
Inelasticity and roughness are described by a coefficient of
normal restitution � , the Coulomb friction law with coeffi-
cient of friction � , and a coefficient of tangential restitution ���
which depends on � , � , and the impact angle � for sliding con-
tacts, or on a maximum tangential restitution �#$� for sticking
contacts, when some “tangential elasticity” becomes impor-
tant. In a collision of two particles %&�(' and � with positions)+* , contact normal ,-� � )�.
/0) � 	  � ��� 	 , angular velocities 1 *
and relative translational velocity 2 . � �-2 .3/ 2 � (see Fig. 1),
their velocities after the collision are related to the velocities
before the collision, through a collision matrix [20, 32, 34]
which is derived from the conservation laws for linear and an-
gular momentum, energy/dissipation balance, and Coulomb’s
law. This three parameter model is able to reproduce the ex-
perimental measurements on colliding spheres of various ma-
terials [30, 35].

A. Collision rules

The collision rules are most transparent when written in
terms of the relative velocity of the contact point in the center-
of-mass reference frame4 �52 .6/ 2 � / � � 1 .87 1 � 	69 , � (2)

We decompose 4 � 4;:<754 � into its normal and tangential
components with respect to , , 4=: � � 4?> , 	 , and 4 � � 4@/64
: .
The change of normal momentum of particle 1, denoted byACBED :#F

is the same as for smooth particlesACB D :#F � / � �G �� 	�� ' 7 ��	 4 : � (3)

The change of tangential momentumACBGD � F � / �� 7 ' � � ' 7 � � 	 4 � (4)
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FIG. 1: Schematic drawing of two-particle contact in the center of
mass reference frame. Shown are the relative velocity H of the con-
tact points, the impact angle I of the contact points, and the angleIKJML between the relative translational velocity of the particles and
their contact normal.

is, in general, a function of the impact angle � . Coulomb fric-
tion can be expressed [34] in terms of a coefficient of tangen-
tial restitution ��������	 �-NPORQES �UT� ����	�VW� $�YX V (5)

which is a function of the impact angle � between 4 and , .
Here �U$� is the coefficient of maximum tangential restitution,
with / '[Z �U$� Z\' to ensure that energy is not created. The
quantity � T� ���
	 is determined using Coulomb’s law�UT� ���
	 � / ' / � 7 '� � � ' 7 �U	^]�_�`+�aV (6)

with the impact angle b; ��dc � Zeb so that ]�_!fK� � 43> ,g ^h 4 h is
always negative [20, 30, 32]. Here, we have simplified the tan-
gential contacts in the sense that exclusively either Coulomb
friction applies, i.e.

APi D � F �j� APi D :�F , or constant tangential
restitution with the maximum tangential restitution coefficient�U$� . Coulomb friction is effective when the relative tangential
velocity is large, whereas tangential restitution applies for low
tangential velocities.

Note that in the general case 2
k�lnm3� / � � 1 . 7 1 � 	+9 ,po�rq ,
so that the angle �s. � between the contact normal , and the
relative translational velocity 2 . � �r2 . / 2 � is different from
the impact angle � of the contact points, see Figs. 1 and 2. In
the following we will refer to � when we talk about the impact
angle.

B. Driving model

The driving of a granular material can be realized by mov-
ing walls, see Ref. [1] and references therein, corresponding
to a local heating [36–38], or the system can alternatively be
driven by a global homogeneous, random energy source in
different variations [11, 12, 29, 39–42]. We choose homo-
geneous translational driving here and modify the velocity of
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FIG. 2: Tangential restitution t�u as function of the impact angle I for
different values of the coefficient of friction v .

particle % at each time of agitation w such that2
x* � w 	 �y2 * � w 	 7{zU| k�} * � w 	 (7)

where the prime on the left hand side indicates the value after
the driving event. Measuring masses in units of the particle
mass � , the driving velocity z�| k sets the time (velocity) scale
and defines the driving temperature ~ | k � �p� z �| k . The com-
ponents of the vector } * � w 	 , � *�� � � w 	 and � *�� � (t), are uncorrelated
Gaussian random numbers with zero mean and variance� � *�� �K� w 	 ��� � ��� w�x 	W������� ��� * ��� ��� � � w / w�x 	@V (8)

where � * � and � ��� are Kronecker deltas and � � w / w x 	 is the
Dirac delta function. The stochastic driving rule in Eq. (7)
leads to an average rate of change of temperatureA ~� A w&��� | k V�� O `�� � | k8��� | k�~ | k V (9)

after every driving time-step
A w8�j�=� .| k .

C. Simulations

We have performed simulations of a randomly driven
mono-layer of spheres, using an Event Driven (ED) algorithm
[20, 21, 29, 43], and compared the results with the MF pre-
dictions, see also Refs. [11, 13, 29, 41, 42]. Every simulation
is equilibrated without driving with � ��' and in the smooth
surface limit ��$� � / ' . Then inelasticity, friction and driv-
ing are switched on, according to the rules defined above. The
problem of the inelastic collapse characteristic of the ED algo-
rithm [44, 45], is handled by using normal restitution coeffi-
cients dependent on the time elapsed since the last event [46–
48]. The frequency of driving is chosen such that it is larger
than or comparable to the typical collision frequency per par-
ticle, both initially and in steady state. Varying the driving

frequency to much larger values did not affect the simulation
results, whereas the use of a much smaller driving rate caused
different results due to the slow input of energy.

III. IMPACT-ANGLE PROBABILITY DISTRIBUTION

In the following we shall discuss various levels of approx-
imation to the collision rules given in Eqs. (5) and (6). One
possibility to simplify the collision rules is to consider tan-
gential restitution averaged over all impact angles � , thereby
reducing the problem to one with a constant coefficient of tan-
gential restitution. For that purpose we need to know the prob-
ability distribution of impact angles.

The assumption of “molecular chaos” implies a homoge-
neous distribution of the collision parameter ������� f O�Q � . �
which is simply related to the angle � . � between the relative
translational velocity 2 . � and the contact normal , according
to ]�_!f�� . � ��2 . � > ,� ^h 2 . � h , see Fig. 1. Hence the probabil-
ity distribution of f ORQ � . � is constant,

i x. � �Mf ORQ � . � 	¡  ' . (The
“prime” indicates probability functions of the sine or the co-
sine of the angle.) A uniform probability

i x implies for the
distribution of the angle

i . � ���^. � 	 � / ]�_¢f¢�^. � , so that graz-
ing contacts appear less probable than central collisions when
a fixed interval £ �+. � is considered. The uniform

i x. � ��f O�Q �s. � 	is in agreement with our numerical data, see Fig. 3.
In general, the impact angle � between the relative velocity

of the contact point 4 and the contact normal , is different
from the angle �s. � between the relative translational velocity2 . � and the contact normal , , as displayed in Fig. 1. The
two angles are identical only in the case of smooth particles
or in the limit of vanishingly small rotational velocities. In
the general case we compute

i x �M]�_¢f���	 by averaging over all
binary collisionsi x ��]�_¢f��
	 �(¤@�P¥ ]�_!fK� / 4a> ,h 4 hg¦�§?¨�© �ª� � (10)

This average can only be computed approximately. We as-
sume that the translational and rotational velocities of the col-
liding particles are distributed according to Gaussians with a
temperature ~ mMk for the translational and a temperature ~ k�lWm for
the rotational velocities. Within this approximation the above
average is given explicitly by

i x �M]�_!f^��	 �¬«G­ � ­ ]�_¢f�� / 4=® ,¯ 4 ¯�°�°« � ' 	 (11)

with the phase space integral

« ��±²	 ��³µ´¢¶ . ´¢¶ � � 2 . � > , 	;·P� / 2 . � > , 	 � � h )¸. � h / �#� 	�±¹V
where ± � ±e� ¶ . V ¶ � 	 , and the phase space element´¢¶ � ��´ � � � ´ � z#� ´�º �U» � $6¼�½¾�¿ D �nÀÂÁ�Ã F » �ÅÄ�Æ ½¾�¿ D �nÀ�ÃªÇÈÁ F
for ÉÊ��' V � .
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FIG. 3: Plots of the probability distribution of I from simulations
(symbols) and from Eq. (12) with Ë values from the simulations.
The arrows indicate the corresponding I!Ì , while the parameters are
(a) t¡ÍÏÎ#Ð ÑÂÒ , vÊÍÏÎ�Ð Ò and variable tÂÓu , and (b) t¡ÍÏÎ#Ð ÑÂÒ , t�Óu ÍÏÎ�Ð Ô
and variable v .

The remaining integrals can be computed analytically,
yielding the following expression for the impact angle distri-
bution

i ���
	 � / � ' 7eÕ  ��	�]�_!f��� ' 7rÖ Õ  �Â×Â]�_!f � ��	�Ø ¿ � � (12)

Here we have introduced the ratio of rotational and transla-
tional temperatures Õ � ��~ k�lWm  U~ mMk and recall � ���K � ����� 	 .
The probability distribution

i ����	 is compared to the results
of our simulations in Fig. 3; reasonably good agreement is
observed. With increasing rotational velocities, contacts with
large Ù � (small � ) become more and more frequent due to the
increasing rotational contribution. On the other hand, colli-
sions with vanishing Ù � (large � ) become less probable, since
the rotational contribution leads to a net increase of Ù � .

IV. DIFFERENTIAL EQUATIONS IN MEAN FIELD
THEORY APPROXIMATIONS

In the following we present different approximations for
frictional particles, referred to as models A-E. Model A is the
well known model using constant coefficients of normal and
tangential restitution, cf., e.g., [5, 10]. Model E implements
Coulomb friction as introduced by Walton [17]. While model
A is the mean field solution for rough particles with a con-
stant coefficient of tangential restitution, model E is the mean
field solution for particles with Coulomb friction. Models B
through D are approximations to model E that may be simpler
to deal with but have significant shortcomings.

The starting point of our mean-field approach is the theory
of Ref. [10] for a freely cooling gas of rough particles with
a constant coefficient of tangential restitution ( � � �ÛÚ�Ü�ÝßÞ�w � ,corresponding to the limit �áàãâ ). The theory is based on a
pseudo–Liouville–operator formalism and on the assumption
of (i) a homogeneous state, (ii) independent Gaussian prob-
ability distributions of all degrees of freedom, i.e. all com-
ponents of the translational and the rotational velocities, and
(iii) the assumption of “molecular chaos”, i.e. subsequent col-
lisions are uncorrelated. The agreement with simulations is
very good as long as the above assumptions are valid [21].

The main outcome of this approach is a set of coupled time
evolution equations for the translational and rotational MF
temperatures ~ m�k and ~ k�lnm [10] which can be extended to also
describe arbitrary energy input (driving) [15, 29, 42]. Given
the random driving temperature ~ | k and an energy input rate� | k , as defined above, one just has to add the positive rate of
change of translational energy � | k , see Eq. (9), to the system
of equations [29].

A. Model A: Constant tangential restitution t�u�Íät�Óu
We recall the results of the mean field theory for the model

with a constant coefficient of tangential restitution which is
obtained from the general case in the limit �Ïàåâ (see Eqs.
(14) in Ref. [21]). The system of coupled equations reads in
2D:ææ � ~Åm�k � w 	 �r� | k 7 çéèê/�ë ~ Ø ¿ �m�k 7eì ~ . ¿ �m�k ~¸k�lnm�í Vææ � ~¸k�lnm � w 	 � � ç�èRì x ~ Ø ¿ �m�k /{î ~ . ¿ �mMk ~Åk�lWmêí � (13)

Note the choice of signs which lead to positive coefficients.
Based on more physical arguments, ë quantifies the dissipa-
tion of translational energy, ì and ì x correspond to the in-
terchange of energy between the translational and rotational
degrees of freedom, and î describes the dissipation of rota-
tional energy. The coefficient ç sets the time-scale of the sys-
tem, i.e. the collision rate (per particle) ï � . � � 'U �� 	 ç ~ . ¿ �m�k ,
with ç � ð�^ñ b��óò Ù ��ô � ò 	 � (14)

Here Ù ��ô � ò 	 denotes the pair correlation function at con-
tact. In the approximation proposed by Henderson [5, 49–52],



5Ù ��ô � ò 	 � � ' /\õ ò  �'Âö 	  � ' / ò 	 � , it depends only on the 2D
volume fraction of the granular gas ò �pb
�K�Â
< �� . The four
constants ë , ì , ì x and î read in this limitë � ë�÷?7eë�ø�ù V ëg÷ � � ' / � �ú V (15)ë�ø�ù � �üû�ý� � ' / û#ý 	@V (16)ì x+� ì � ìgø�ù � �üû �ý� � V�þ Qs£ (17)î � î�ø�ù � �ÿû�ý� � ¥ ' / û�ý� ¦ � (18)

It is useful to define a function

û ��� � 	�� � �K� ' 7 � � 	� �M� 7 ' 	 V���_�� qdZ û ��� � 	 Z �� 7 ' c ' V (19)

which has to be evaluated at constant tangential restitution� � � �U$� in the limit �Eàóâ
û ý � � û ��� $� 	 � �K� ' 7 �U$� 	� ��� 7 ' 	 � (20)

B. Model B: Simplified mean tangential restitution t u Í���t u��nJML
A first step beyond the above theory with a constant û¢ý �û ���U$� 	 , is the replacement of �Â�����
	 by its average� � � � � �	� ¿ � ´ � i ���
	�� � ���
	 � (21)

The integral over � from b; �� to b , has to be split into two
parts, one corresponding to the range b; #�Pc � c � ý for which
there is Coulomb sliding with �Â� given by Eq. (6), and a sec-
ond part corresponding to the range � ý Z � Zpb , for which
there is sticking with constant �Â� � �U$� (see Fig. 2). The criti-
cal angle � ý is given byÚ � � / ]�_�`K� ý � �K� ' 7 �U$� 	� �M� 7 ' 	�� ' 7 ��	�
 q � (22)

To simplify the computation, we use the approximationi ���
	
� i . � ���
	 � / ]�_!f
����	 , such that� � � � . � � / ' 7���� .� � ' 7 ��	 ���RQ � Ú 7 � 	 � (23)

with the abbreviation � � ��� ' 7 Ú � � (24)

The averaged coefficient of tangential restitution
� � � � . � must

be inserted into û in Eq. (19). Thus we obtain the same set of
coefficients as in Eqs. (15)-(18) with û!ý replaced byû . � � û � � � � � . � 	 � û ýÚ �RQ � Ú 7 � 	 � (25)

In this approach, only the average value of ��� is considered
and fluctuations of ��� with � are neglected. Furthermore the
difference between � and �+. � has been ignored in the aver-
aging procedure. In contrast to model A this is the simplest
model to incorporate the coefficient of Coulomb friction � ,� � � � . � � � � � � . � � � 	 .

C. Model C: Mean tangential restitution t u Í���t u���� Ë��
In model C we again replace �Â�����
	 by its average but use the

correct impact angle probability distribution function
i ���
	

from Eq. (12) in the averaging procedure. The result is anÕ -dependent averaged coefficient of tangential restitution� ���W�U� Õ 	 � / ' 7 � 7 '� ' 7 �ú � � 9 (26)��Q � � � � � / Ú 	 � � ���� / � 7 Ú � � 	� � �� / � / Ú � � 	 � � � �� 7 � / Ú � � 	 �
with � �   � � � Õ 	6� � ' 7eÕ  �@V (27)��   �� � Õ 	6� �!� ' 7 � � Ú � V (28)

and � defined in Eq. (24). Note that
�

is an implicit function
of time through Õ . For Õ àyq (

� à ' ) Eq. (26) reduces to
Eq. (23) – as expected. For Õ à â (

� à â ) there is no
friction and

� ���W��� Õ 	 à / ' .
We formally get the same differential equations (13) but

with non-constant coefficients ë � ë � Õ 	 , ì x � ì � ì � Õ 	 ,
and î � î � Õ 	 which are obtained by replacing û!ý byû � � � � �U� Õ 	W	 in Eqs. (15)-(18). These coefficients are implic-
itly time dependent via Õ .

1. Constant tangential restitution limit

In the limit �Ïàyâ , Ú à q . In that case model C reduces
to model A.

2. Weak friction limit

For �Eà q , Ú�à â we recover smooth spheres with
� �Â�W� à/ ' . A series expansion to lowest order in � (equivalent to

lowest order in Ú � . ) of Eq. (26) reads� � � �U� Õ 	 � / ' 7 � 7 '� � ' 7 ��	 � �#" h���Q � � 	 h 7 �RQ � � 	 7��Q ¥ � û�ý' 7 � ¦%$ 7'& � � Ø 	@V (29)

expressed in terms of
�

and � .
As long as

�
stays finite (which is the case for a driven

system) the leading order is thus �@h(�RQ � � 	 h for small � . For� à ' , Eq. (29) yields the same result as Eq. (23) in leading
order in Ú � . .

3. Comparison of model B and model C

Due to the implicit nature of model C it is rather difficult
to work out its predictions, e.g., for the ratio of tempera-
tures. Therefore, we present here the mean tangential resti-
tution from models A, B, and C in Fig. 4. Note that

� � � � for
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model C depends not only explicitly on � but also implicitly
through Õ . To keep the discussion simple, we present results
only for some constant, representative values of Õ . The mean
restitution for large Õ is smaller (or equivalently, the corre-
sponding � is larger) than for small Õ . Models B and C be-
come indistinguishable in the limit Õ à q , as expected.
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FIG. 4: Expected mean tangential restitution, ��t u)� , as function of the
friction coefficient v for models A, B, and C. The parameters used
are t¡ÍeÎ�Ð ÑÂÒ , t Óu Í+*�Ð Î (for A, B) and different ËeÍ+*�Ð Î , Î#Ð ÔÂÎ , andÎ�Ð,*�Ò (model C: solid lines from right to left).

D. Model D: Variable (simplified) tangential restitution t�u � IKJML-�
In this section and in the following one, we discuss a co-

efficient of tangential restitution which depends on � . Model
D is defined by approximating �.��� . � , which is strictly true
only for Õ à q or �5à q (or equivalently ��$� à / ' ). We
again obtain the same differential equations (13) for ~ k�lnm and~ m�k with the coefficientsë � ë0/ � ë�÷?7�Ö ë�ø�ù@7Ïë21 ×  �� Ø V (30)ì � ì3/ � Ö ì ø�ù?7eì 1�×  �� Vì xÅ� ì x/ � Ö ì ø�ù?7eì x 1 ×  �� Ø Vî � î4/ � Ö î�ø�ù?7 î 1�×  �� V
and � defined in Eq. (24). The terms that originate from
Coulomb sliding are denoted by an asterisk and are given ex-
plicitly by ì 1 � û �ý Ú��� �K� � 7 ' 	 � V (31)ì x 1 � � �#� 7 ' 	 ì 1�Vë 1 � û�ý Ú �  �� / � ì 1�V;þ Qs£î51 � � û . � / û�ý / � ì%1 	  � � ��	3V
expressed in terms of � [cf. Eq. (24)], û ý [cf. Eq. (20)], û .[cf. Eq. (25)], and � [cf. Eq. (1)]. The terms ì 1 and ì x 1 are
strictly positive, while the dissipation correction terms ë 1 and

î 1 , in principle, can change sign. Note also that ì 1 and ì x 1
are not identical here. All coefficients depend on the system
parameters only. They are constants in time – in contrast to
model C (and E as will be shown later).

1. Constant tangential restitution limit

In the limit �jà â , one has Úaà q , i.e. �-à ' , and all
correction terms 6 ë 1 V ì 1 V ì x 1 V î 187 à q so that one obtains
Eqs. (13)-(18). Note in particular that the coefficients ì9/ andì x/ are equal only in the limit �Eà â [10].

2. Weak friction limit

In the limit �µà q ( Úäà â , �(àüÚ ), the lowest order
expansion in Ú � . leads to an approximation of the coefficients
in Eqs. (30), where we have used û!ý  UÚ��5� � ' 7 �U	  �� :ì / � û#ý� ' 7 �� � 7'&.: � �<; V (32)ì x/ � '� ¥ ' 7 �� ¦ � � � 7=&>: � Ø ; Vë / � ë ÷ 7 ' 7 �ú � 7=& : � �?; Vî / � '� � ' 7 �� � ¥ h���Q � � 	 h 7 �RQ ¥ ú û#ý' 7 � ¦ / � û�ý� ¦7'& : � ��; �

From Eqs. (32), we learn that ì x/ is second order in � ,
whereas ì / is first order in � , reflecting an asymmetry in the
energy transfer rates. On the other hand, ë2/ � ë�÷ is almost
constant, whereas î@/ depends on � logarithmically which is
an artifact of our approximation � . �BA � , see Eq. (35) below.

E. Model E: Variable (exact) tangential restitution t uC� ID�
The final step of refinement of the MF theory is to use �������
	 ,

instead of � � ��� . � 	 , to compute the coefficients. This is the full
mean field theory. The calculation is similar to the one for
3D in [13] and is presented in appendix A. We obtain the
following coefficients, to be inserted into Eqs. (13),ë �FEë3/ � Õ 	 � ëg÷@7 è ëgø�ù�7 Eë 1 íHG �� Ø (33)ì �IEì /¸� Õ 	 � è ì ø ù@7 Eì 1 íHG �� Øì x¸�IEì x/ � Õ 	 � è ì ø�ù@7 Eì x 1 íHG �� Øî �JEî /�� Õ 	 � è�î ø ù@7 Eî 1 íHG �� Ø V
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with
�� ,
�

and Ú defined in Eqs. (28),(27) and (22), respectively.
The new correction terms are in detail:Eì 1 � / û#ý Ú �  � � ��	8V (34)Eì x 1 � � � �� 7 ' 	�� û�ý Ú � � 	 �� �K� �� 7 ' 	 �Eë 1 � / � ­ Eì 1 7 Eì x 1 ° V&þ Qs£Eî 1 � / � � Eì 1 V
with � and

�
as introduced in Eqs. (1) and (27). Interestingly,

we find now a negative Eì 1 together with positive coefficientsEì x 1 and Eî 1 ; only Eë 1 can be both positive and negative. Like
in model C but in contrast to models A, B, and D, here the
coefficients are implicit functions of time, again.

In conclusion, models D and E appear similar in shape but
there are several striking differences: (i) The division by � and� Ø in model D is in contrast with the division by

�� Ø in model
E, (ii) the term ì 1 in model D is always positive, while

�ì 1
in model E is always negative, (iii)the sign of î 1 in model D
is not determined a-priori, while the term

�î 1 is always posi-
tive, (iv) among the correction terms of model E, only

�ì 1 is
independent of Õ , and (v) the more refined theory appears in
a simpler form, especially the term

�î 1 .
1. Constant tangential restitution limit

The limit of constant tangential restitution can be reached
by taking the limit �\à â . In this case Údà q , ��Ïà ' and
thus all additional coefficients Eë 1 , Eì 1 , Eì x 1 , and Eî 1 vanish
such that Eqs. (13)-(18) are recovered.

2. Weak friction limit

In the limit �Ïà q ( ÚYàyâ ,
��äà � Ú ) an expansion to the

lowest order in � leads to an approximation of the coefficients
in Eqs. (33) when we remember that û!ý  UÚ¡� � ' 7 ��	 �; �� :EìB/ � Õ 	 � / '� � � Ø ' 7 �� � 7=&>: � Ø ; V (35)Eì x/ � Õ 	 � '� ¥ ' 7 �� ¦ � � � 7=& : � Ø ; VEë3/ � Õ 	 � ëg÷6/ � ­ EìB/ � Õ 	 7 Eì x/ � Õ 	 ° 7'& : � Ø ; VEî4/ � Õ 	 � / � � EìB/ � Õ 	 7�&!: � Ø ; �
Since

� � � � Õ 	 approaches one in the weak friction limit,
both EìB/ � Õ 	 and Eî4/ � Õ 	 are proportional to � in leading order.
To lowest order in � , Eq. (35) predicts Eë3/ � Õ 	 � ëg÷@7�& � � 	 ,
i.e. proportional to � ý , while Eì x/ � Õ 	 is proportional to �ß� .

For �LKã' , Eqs. (13) with (35) simplify to´´#w ~ m�k � w 	 � � | k /äç ~ Ø ¿ �m�k ­ . � ÷ ½M 7'& � � 	 ° V (36)

which means that in the limit of low friction the differential
equations for ~Åm�k and ~¸k�lnm decouple. In the non-driven case
this leads to surviving rotational energy (not show), similar to
Refs. [13, 16].

V. STEADY STATE

Before discussing the approach to the stationary state in the
next chapter, we first elucidate the stationary state and com-
pare results of our simulations to various levels of refinement
of the mean field theory.

A. Analytical results

By imposing

ææ � ~ON m�PWmm�k �µq and

ææ � ~ON m�PWmk�lnm �µq one gets the
steady state values of the rotational and the translational tem-
peratures. For models A, B and D, the coefficients in the dif-
ferential equation do not depend on Õ (or

�
). Therefore the

solution is simply

~ N mQPnmk�lWm � Õ N mQPnm ~ N mQPnmm�k Vaþ Qs£¹~ N mQPWmm�k �¹¥ � | kç�R ¦ � ¿ Ø V (37)

with Õ N m�PWm � ì x  î Vaþ Qs£ R � ë-/²ìdÕ N mQPnm V (38)

as discussed in more detail for all models in the following.

1. Model A

For model A, the steady state ratio of rotational to transla-
tional energies is Õ N m�PWm � � û ý� / û�ý (39)

and the energy dissipation factor isR � ' / � �ú / û�ý� � ' / û ý 	 / û Øý� ��� / û#ý 	 � (40)

Note here again that model A does not contain any depen-
dence on the coefficient of friction � .

2. Model B

Model B evolves from model A, by just replacing û!ý byû . � � 	 � � û�ý  UÚ 	 ��Q � Ú 7 � 	 from Eq. (25) in the above two
Eqs. (39) and (40), so that, e.g.,Õ N mQPnm � � û .� / û . � �K� û�ý  �Ú 	 �RQ � Ú 7 � 	� / � û ý  �Ú 	 �RQ � Ú 7 � 	 �

In the limit of small ��K ' , the leading order terms areÕ N mQPnm ��� ' 7 ��	 �@h���Q��@h  #� and R � . � ÷ ½M 7'& � �@h(�RQ¡�@h 	 .
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3. Model D

From model D, the following, more complex terms are ob-
tained:Õ N m�PWm/ � ì x/î4/ � Ö ìgø�ù@7eì x 1 ×Ö î�ø�ù?7eî 1 × '� � �/8S�. � ' 7 �U	 �@h(�RQ��@h
and R / � ë3/�/äì3/KÕ N m�PWm/ �/8S�. ' / � �ú 7'& � � 	@V
so that, asymptotically for �TKy' , model D leads to behavior
similar to that of model B.

4. Model E

Formally, we can write down Eqs. (37) for model E, too.
Instead of using Eqs. (38), Õ N mQPWm must be extracted (numer-
ically) from Eq. (A22) where the left hand side vanishes in
the stationary case. It can be show analytically that there is
always a unique solution – in contrast to the freely cooling
case [13]. With the solution for Õ N mQPWm at hand, Eq. (A19)
(with a vanishing left hand side) can be written in the form~ N mQPnmm�k � :�UWV ÃX Y ; � ¿ Ø again where R is a nonlinear function
of Õ N m�PWm whose particular form can be easily seen from Eq.
(A19).

5. Models C and E for small v
For models C and E the coefficients in the differential equa-

tions do depend on Õ , so that the steady state values have to be
computed numerically for a general choice of parameters. An-
alytical results can only be achieved in the limit �.Kã' , where
we can use the expansions of the coefficients introduced in
sections IV C and IV E.

For model C we obtain to lowest order in � , the dissipation
factor R � ë�÷ and, using û � � � û�ý  #� 	 �RQ¡Ú ,Õ N mQPnm �/8S�. � û �Ú[Z ' 7 ¥8û �Ú � ¦ � 7 �� ­ û �Ú ° � �/8Sd. ' 7 �� �@h(�RQ � � 	 h �

(41)

For model E we find again R � ë ÷ and

Õ N m�PWm �/8S�. � û ýÚ�Z ' 7 ¥ û ýÚ � ¦ � 7 � � ­ û ýÚ ° � �/8S�. � ' 7 �U	 � V
(42)

very similar in shape to the result from model C, besides the
logarithm ��Q�Ú that is hidden in the definition of û � . This leads
to the qualitative difference in asymptotic behavior between
models C and E: The correct asymptotic behavior for small �
is Õ N mQPnm4\ � . Note again that the more refined model E leads
to a simpler analytical result than the approximated model C.

6. Discussion

The expansions for small �]K ' show that the result forÕ N mQPnm based on model E, see Eq. (42), disagrees with all other
models. In model E we find that Õ N mQPnm vanishes linearly as��à q , whereas models A-D predict a slower decrease, en-
coded in the �@h���Q¡�@h dependence. Models A and B have the
same analytical form for Õ N mQPnm if expressed in terms of û#ý for
model A and in terms of û . for model B. Similarly, models
C and E have the same functional dependence on û , if û � is
used for model C and û#ý for model E. The comparison of the
models for arbitrary values of � will be given in the next sub-
section, where we also present the results of our simulations
and compare them to the predictions of the various mean field
models.

B. Comparison with simulations

In this subsection, the steady state predictions from our
models are confronted with the numerical simulation results.
Note that we present results for rather high densities and dissi-
pation, where our assumptions about homogeneity of the sys-
tem and the Gaussian shape of the velocity distributions is not
strictly true anymore. However, we want to stress the point
that the present theory is astonishingly close to the numeri-
cal simulation with experimentally relevant parameters even
when the most basic assumptions are somewhat questionable.

1. Variation of t Óu
In Figs. 5 (a-c), the stationary rotational and translational

temperatures and their ratio Õ are compared for � � q � ^ " ,�-�µq � " and different values of ��$� ; note that the data in (a)
and (b) are scaled with the expression for �G�rq . The symbols
correspond to simulation data, with the error bars showing the
standard deviation from the mean values. The lines corre-
spond to different refinements of the theoretical approaches,
i.e. models A, B, D, and E.

For � $� � / ' , the simulations agree with all theoretical
predictions; for ��$� � ' , large discrepancies are evident. The
more refined a model used, the better the quality of agree-
ment. The qualitative behavior of the data is best captured by
model E, and we relate the remaining quantitative deviations
to the fact that the simulations involve rather high density òand comparatively strong dissipation � .

2. Variation of v – translational temperature

In Fig. 6 we plot the translational temperature in the same
way as in Fig. 5(a), but now, we keep the values �#$� ��q � ú (a)
and �U$� � ' � q (b) fixed and vary � . Furthermore, we com-
pare data for � �(q � ^�^ and � �(q � ^ " in one plot and observe
satisfactory agreement between simulation results and the full
mean field theory, model E. (The predictions from models A
and B are only shown for � �-q � ^�^ .)
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FIG. 5: Simulation results (symbols) and theory (lines) for the pa-
rameters _ÏÍµÎ#Ð `�Ô , aãÍb*�*�Î<c�Ò , t�Í�Î�Ð ÑÂÒ , and v-ÍµÎ#Ð Ò , plot-
ted against the maximum tangential restitution t Óu . (a) Transla-
tional temperature d4egfihjffik , and (b) rotational temperature d4elfihjfknmjf , plot-
ted against t Óu , and scaled by d elfihjffik � vCÍ{Î<� , the mean field value for
smooth particles. (c) Ratio of rotational and translational tempera-
ture Ë , plotted against t Óu .

For (realistic) values of ��$� �rq � ú , see Fig. 6(a), one obtains
a transition from the � �pq limit to the �eà â value of the
kinetic energy, over three orders of magnitude in � , whereas
for �U$� � ' � q , see Fig. 6(b), the kinetic energy first decays
with � but then increases again to the stationary state temper-
ature of smooth particles, since no energy is dissipated due to

tangential friction for �Gàóâ and ��$� ��' � q .
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FIG. 6: Translational temperature d egfnhjffnk scaled by the mean field
value for smooth particles d egfihjffik � v{Í Î?� , plotted against v , for the
parameters as in Fig. 5. The tangential restitution coefficients are
fixed to (a) tÂÓu Í�Î�Ð Ô , and (b) tÂÓu Í�*�Ð Î . Data with normal resti-
tution t Í\Î#Ð ÑÂÑ (solid symbols and thick lines) and tgÍ\Î�Ð Ñ�Ò (open
symbols and thin lines) are compared.

Here, we remark that model A, with � � � �U$� and the
limit �µà â is inadequate to model the � -dependency of
the data, it only gives the �pàÿâ limit, as expected. Ap-
proach B only shows qualitative agreement with our simula-
tion data, whereas theory D shows good quantitative agree-
ment for small � . The agreement seems better for weak nor-
mal dissipation � � q � ^�^ , as compared to the cases with� � q � ^ " . The deviations between simulations and model
D in the intermediate range of � are due to values of Õ of the
order of unity, for which the assumption � . � � � is not true,
as pointed out above.

For weaker normal dissipation � , one obtains a stronger
reduction of the translational temperature in the range of
strongest total dissipation (around � � q � ú ). This is due to
the comparatively stronger contribution of tangential dissipa-
tion. However, as in the previous subsection, the agreement
between simulations and model E is satisfactory, especially
for � àã' .
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3. Variation of v – rotational temperature

In Fig. 7 we plot the ratio of rotational and translational
temperature in the same way as in Fig. 5(c), but now, like in
Fig. 6, we keep the values ��$� �Ûq � ú (a) and �U$� � ' � q (b)
fixed and vary � . Also here, we compare data for � ��q � ^o^and � � q � ^ " in one plot. For the values of ��$� examined
(see Fig. 7) one observes a smooth transition of Õ over about
three orders of magnitude in � , from the value Õ ��q (in the
limit �p� q ) to the value Õ � �U$� (in the limit �éàÿâ ).
Note that the observation Õ � � $� is coincidence, since the
correct asymptotic result for large � is Õ �(� � ' 7 ��$� 	  � ^ /" � $� 	 . Again, the agreement between simulations and model
E is impressive.
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FIG. 7: Ë plotted against v , for the same parameters as in Fig. 6. The
tangential restitution coefficients are again fixed to (a) t Óu Í{Î#Ð Ô , and
(b) t Óu Í�*�Ð Î .

All models agree qualitatively in the large � -limit, even
though the quantitative agreement with simulations is again
best caught by model E, as can be seen in Fig. 8.

The remaining question is the asymptotic behavior for very
small � , as can be viewed in Fig. 9, and as discussed theoret-
ically in subsection V A. The quantitative behavior of Õ for
small � is tested by a power law fit of the numerical values, ac-
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rt
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FIG. 8: Deviation from equipartition, *qpGË , plotted against the in-
verse friction coefficient, vsr J , for simulations from Fig. 6(b). Note
the double-logarithmic scale of this plot.

cording to an expression Õ �j����t . The fit gives u²� ' � q!q � ú 	 ,for � ��q � ^o^ , �U$� ��q � ú V ' � q and u5��q � ^o^ � ú 	 , for � �pq � ^ " ,�U$� �éq � ú V ' � q . Thus the asymptotic behavior is proportional
to � , in excellent qualitative and quantitative agreement with
the prediction of model E.
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FIG. 9: Ratio of rotational and translational temperature, Ë , plotted
against v , for some simulations from Fig. 6(b). Note the double-
logarithmic scale of this plot.

VI. APPROACH TO STEADY STATE

A. Close to steady state

Provided the system is sufficiently close to steady state,
we can linearize the set of Eqs. (13) around ~ N mQPWmm�k and ~ N mQPnmk�lnm .
This is particularly simple for models A, B, and D, where
the coefficients in the differential equation do not depend on



11Õ and hence can be solved analytically for the stationary
state. We set ~Åm�k � w 	 � ~ N mQPWmm�k � ' 7 ��~Åm�k � w 	W	 and ~¸k�lnm � w 	 �~ N mQPnmk�lWm � ' 7 ��~ k�lnm � w 	n	 and obtain the linearized dynamic equa-
tions´´#w ��~Åm�ke� ç ~ N mQPWmm�kwv ¥
x � ë 7 ì�ì x� î ¦ ��~Åm�k 7 ìdì xî ��~¸k�lnmzy V´´!w ��~¸k�lWm � � çYî ~ N mQPnmmMk 6���~Åm�k / ��~¸k�lnm 7 � (43)

This set of linear equations is easily solved to yield two relax-
ation rates { . and { � . In a stable stationary state they must
be positive and they are. We present here only results for
the simplest model (A) and postpone the general discussion to
the next paragraph, where the full dynamic evolution towards
steady state will be examined.
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FIG. 10: Relaxation rates |ÅJ(} L , close to steady state for tgÍ\Î#Ð ÑÂÒ as
a function of t Óu .

In Fig. 10, we plot the two relaxation rates as a function
of �U$� for a fixed value of � � q � ^ " . In the limit of smooth
spheres one of the rates vanishes because the rotational en-
ergy is conserved in that limit. For ��$� A / q � ð ú the two
rates are equal and for increasing �#$� the difference between
the two rates increases monotonically with �#$� , such that for
perfectly rough spheres the larger rate is about fourteen times
the smaller one. Such a pronounced separation of time scales
is familiar from the cooling dynamics of the same model, see
[13]. There it was shown that the ratio of translational to ro-
tational energy, Õ , relaxes fast to its stationary value, whereas
both the translational as well as the rotational energy decay
on the same, much longer time scale. This point will be dis-
cussed in a more general setting (model E and relaxation from
an arbitrary initial condition) in the subsequent paragraph.

B. Full Dynamic Evolution

In Fig. 11, the full dynamic evolution of the translational
and rotational temperatures with time is shown for two simu-
lations with 
 � '#'�q¢�#" , ò �éq � q ð ö#ö , � �µq � ^ " , ��$� � ' � q ,

and different values for the coefficient of friction. In both situ-
ations, the agreement between simulations and the numerical
solution for the full MF theory, model E, is good – not only
concerning the limiting values and the asymptotes, but also
the time dependence during the two regimes (i) equilibration
between ~ mMk and ~ k�lWm , and (ii) approach to final steady state.

 0.1

 1

 0.001  0.01  0.1  1

T
 / 

T
 (

0)

t/τ

(a)

Ttr
Trot

theory tr
theory rot

 0.1

 1

 0.001  0.01  0.1  1

T
 / 

T
 (

0)

t/τ

(b)

Ttr
Trot

theory tr
theory rot

FIG. 11: Evolution of temperatures with rescaled time, with ~ r J Í� *���c?�(�qd fik � Î?� J��nL , for simulations with a Í�*�*�Î<c�Ò , _ Í(Î�Ð Î��?��� ,t¡Í{Î#Ð ÑÂÒ , t�Óu Í'*ÂÐ Î , and (a) vÊÍ�� , (b) v<Í{Î#Ð Ò .
VII. SUMMARY AND DISCUSSION

In summary, a dynamic MF theory for the full time evolu-
tion of the translational and rotational temperatures of a ho-
mogeneously driven two-dimensional granular gas has been
presented. Particle collisions were modeled using the Wal-
ton model [17], i.e. with normal dissipation, tangential resti-
tution (sticking) and Coulomb friction (sliding). The Walton
model can be formulated in terms of a coefficient of tangen-
tial restitution, which depends on the impact angle � . Using a
Pseudo-Liouville operator we have computed the distribution
of impact angles as well as the mean field dynamics and steady
state values of the translational and rotational temperatures.
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In addition to the complete mean field theory of the Walton
model (“model E”), we discussed three levels of approxima-
tion in order to simplify the differential equations of the time
evolution. The crudest approximations including Coulomb
friction (“model B” and “model C”) assume that an effective
constant tangential restitution exists and can be computed by
averaging over the angular distribution of impact angles. For
model C this averaged coefficient depends on the current val-
ues of the translational and rotational temperatures and thus on
time. Even simpler is model B where the rotational contribu-
tion to the impact angle is neglected, leading to a coefficient of
tangential restitution that only depends on global system pa-
rameters. The closest approximation (“model D”) to the full
mean field theory (“model E”) keeps the dependence of � � ���
	
on the impact angle � but, like for model B, the contribution
of the rotation of the particles to the impact angle is neglected.

The predictions of the increasingly refined models of fric-
tional dissipation as well as the full MF theory have been
compared to simulations of a randomly driven mono-layer
of spheres using an Event Driven algorithm. Emphasis has
been put on the stationary state which is characterized by two
temperatures, ~¸m�k and ~¸k�lWm , one for the translational and one
for the rotational degrees of freedom. Guided by the MF ap-
proach we discovered a rich phenomenology like a non-trivial
dependence of the stationary state temperatures on the model
parameters. For example, the translational temperature is non-
monotonic as a function of maximal tangential restitution �#$�
and also non-monotonic as a function of Coulomb friction � ,
provided ��$� is sufficiently large.

All models predict steady state values of the translational
and rotational temperatures, which are considerably improved
as compared to the model without friction (“model A”), which
assumes constant tangential restitution (see Figs. 6 and 7). All
approximations A-E agree in the limit of large friction, where
the tangential restitution becomes independent of the impact
angle (see Fig. 2). Qualitative agreement between models B-
D and simulations is achieved also for intermediate values of� . However in the limit �¬à q all approximations break
down and only the complete mean field solution (“model E”)
is in agreement with the simulations (see Fig. 9). In particular
model E predicts the linear dependence of the ratio of tem-
peratures, Õ � ~¸k�lnmn �~Åm�k , on the friction coefficient � that is

observed in the simulations and was used in Ref. [14] to derive
an approximate kinetic theory of frictional particles.

Sticking contacts become more important relative to sliding
contacts for fixed � and decreasing ��$� . In this regime models
B and D seem reasonable, but lead to poor quantitative agree-
ment as �U$� approaches ' . The full mean field theory (“model
E”) leads to reasonable agreement for all values of � $� . For
weak dissipation, � à ' , the agreement is very good – for
stronger dissipation, we relate the deviations to the failure of
both the homogeneity assumption and the molecular chaos as-
sumption made.

Linearizing the dynamic MF equations around the steady
state leads to an eigenvalue problem with two relaxation rates,
one of them being related to the equilibration between the
translational and the rotational degrees of freedom, while the
other one controls the approach of the system to its steady
state. For strong coupling, the former process is much faster,
so that there is a clear separation of time scales, which has
been discussed already for a freely cooling system in the ab-
sence of driving.

In conclusion, realistic Coulomb friction turned out to be a
subtle problem as only the full mean field theory of the Walton
model predicts the effects of friction for all values of � and�U$� . All simplifications are both qualitatively and quantita-
tively wrong in some parameter range. Our studies can easily
be extended to three dimensional systems or more complex
ones, like e.g. a polydisperse mixture of frictional particles
with different material properties. Other driving mechanisms
could be employed as well.
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APPENDIX A: DERIVATION OF THE DIFFERENTIAL
EQUATIONS FOR MODEL E

The details of the derivation of the coefficients in Eqs. (33)
and (34) for model E in Sec. IV E will be shown. The calcu-
lations are performed using a Pseudo-Liouville operator for-
malism [13, 21, 53]. They are very similar to the ones in three
dimensions [13]. First, we briefly recall the Pseudo-Liouville
operator formalism.

Let the vectors of position, translational and rotational ve-
locity of a particle É , in a two-dimensional plane (

�
, � ) with

only vertical spin ( � ), be defined as )+� � ��� ��� � Vn� �Â� � V q 	 ,2 � � � z#��� � V z#��� � V q 	 , and 1 � � � q V q V º � 	 .
The time evolution of a dynamic variable ë � w 	 that depends

on time only through the positions and velocities of 
 parti-
cles, can be determined by means of a pseudo-Liouville oper-
ator � � for w 
 q ë � w 	 �+����� � %j� � w 	 ë � q 	 � (A1)

The pseudo-Liouville operator � � consists of three parts� � ��� ý 7 �q�� 7 � U� . The last part, � U� , describes the homo-
geneous driving, the first one, � ý , describes the free streaming
of particles � ý � / %������;. 2 � >��#� ¾ V (A2)

and the second one, � �� � .�@� �)��;� ~ ���� describes hard-core
collisions of two particles~ ���� �5% � 2 ���K>��)^��� 	�·P� / 2 ���K>��)^��� 	 � � h )^��� h / ��� 	�� � ���� / ' 	 � (A3)

The operator � ���� replaces the linear and angular momenta of
the two particles É and � before collision by the correspond-
ing ones after collision, according to Eqs. (3) and (4). ·P� � 	 is
the Heaviside step–function, and we have introduced the no-
tation )¸��� � )^� /ä)�� and �)^��� � )^���  sh )^��� h . Equation (A3) has
the following interpretation: The factor 2 ����>��)^��� gives the flux
of incoming particles, while the · - and � -functions specify
the conditions for a collision to take place. A collision be-
tween particles É and � happens only if the two particles are
approaching each other which is ensured by ·P� / 2 ��� >o�) ���M	 . At
the instant of a collision the distance between the two particles
has to vanish when two particles touch, which is expressed by� � h )^��� h / ��� 	 . Finally, � � ���� / ' 	 generates the change of linear
and angular momenta according to Eqs. (3) and (4).

The ensemble average,
� ���R� � � , of a dynamic variable, ë , is

defined by� ë ��� � ³ ´!¶s� � q 	 ë � w 	 � ³ ´¢¶�� � w 	 ë � q 	
�j³ �����;. � ´ � � � ´ � z#� ´#º � 	 � � w 	 ë � q 	 � (A4)
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Here � � w 	 ������� � / %j�4 � w 	 � � q 	 is the 
 -particle distribution
function, whose time development is governed by the adjoint�4 � of the time evolution operator � � . Differentiating equa-
tion (A4) with respect to time yields´´!w � ë ��� � ³ ´!¶s� � q 	 ´´!w ë � w 	 � ³ ´¢¶�� � q 	 %j� � ë � w 	�j³µ´!¶s� � q 	 ���¡� � %j� � w 	 %)� � ë � q 	�j³µ´!¶s� � w 	 %j� � ë � q 	 � � %)� � ë � � � (A5)

The observables of interest are the averaged energies per
particle, or, more specifically, the granular temperatures for
the two-dimensional system

~ mMk � �£¢ m�k
 � '
 �����=. � � h 2 � h �'� ~¸k�lnm � � ¢ k�lnm@� '
 �����=. �� h 1 � h � (A6)

and the total kinetic energy ¢ � ¢ m�k 7 ¢ k�lnm . To make the
temperatures dimensionless we may choose to measure mass
in units of the particle mass, and velocities in units of the driv-
ing velocity z ý defined in Eq. (7).

Assuming a homogeneous density distribution and Gaus-
sian velocity distributions the 
 -particle distribution function
is given by� � w 	 \ ��?¤Å� ·P� h )^��� h / ��� 	 ���¡� v / ¥ ¢ m�k~ mMk � w 	 7 ¢ k�lnm~ k�lWm � w 	 ¦ y V

(A7)
where the product of Heaviside functions accounts for the ex-
cluded volume. Hence we get two coupled differential equa-
tions for the time evolution of the translational and rotational
energies´´#w ~Åm�k � w 	 � ´´#w � ¢ m�k ��� � � %j� � ¢ m�k ��� �r� | k 7 � %j� �� ¢ m�k ���'� ´´!w ~ k�lWm � w 	 � ´´#w � ¢ k�lnm � � � � %j� � ¢ k�lnm � � � � %j� �� ¢ k�lWm � � �

(A8)

The averages on the right hand sides can be calculated as fol-
lows. These calculations are almost identical for the transla-
tional and rotational energies, so we will show in detail the
time derivative of ~ mMk � w 	 only.� %j� �� ¢ m�k � � � � '� � ������ %È~ ���� ¢ m�k � �

� '�#
 �����;. �� �,�;.¥i¦§ ¾ � � ³ ��� �;. ´ � � � ´ � z � ´#º � � � ) V 2 V 1 	�9%ê~ ���� � h 2 � h � 7 h 2 � h � 	
(A9)

We have used that the binary collision operator %ê~ ���� yields
zero acting on any variable other than the ones of the two par-
ticles involved in the collision. Defining

´¢¶ � � ��� �;. ´ � � �Â´ � z ��´#º
� ��)�� � ·P� h ) � � h / ��� 	U9�����T¨ / �� ���;. ���~Åm�k � w 	 h 2 � h � / �����;. ��U~¸k�lnm � w 	 h 1 � h ��©
(A10)

and using the definition of %ê~ . �� we can write� %)� �� ¢ m�k ��� � / 
 / '� 	 ´!¶ ³ ´!¶ � �) . � > 2 . � 	 � � h ) . � h / �#� 	#9·P� /ª�)s. � >«�2 . � 	�� � . �� / ' 	 � � � h 2 . h � 7 h 2 � h � 	
The change of energy

A ¢ m�k � � $ � � � . �� / ' 	�� h 2 . h � 7 h 2 � h � 	 that
results from a collision of particle 1 and 2 depends only on the
phase space variables of particle 1 and 2. Since we assume
spatial homogeneity this change of energy can only depend
on the relative distance vector )+. � � � )^.�/{) � as well as the
relative translational and rotational velocities 2 . � � �r2 .�/ 2 �
and 1 . � � � 1 .@7 1 � . Further, we assume instantaneous col-
lisions. Therefore the change of energy can only depend on
the direction of the distance vector �) . � � ��¬ � � ½¯ ��¬ � � ½ ¯ . Now we
can perform the integrations over those particles that are not
involved in the collision. The integrals over ´���2 Ø ����� ´!��2 �and ´!��1 Ø ����� ´¢��1 � are simple Gaussians. To integrate over´¢� ) Ø ����� ´¢� ) � we introduce two more two-dimensional inte-
grals ³ ´ �<­ . ´ �<­ � � � � ­ .�/²)s. 	 � � � ­ � /²) � 	@V
over two-dimensional � functions, �#� � ) 	 � ��� ��� � 	 � ��� � 	 , Us-
ing the definition of the pair correlation functionÙ � h ­ . / ­ � h 	� � � �	 �®� �;. ´!� � � ®�)�� � ·P� h ) � � h / �#� 	 �U� � ­ .�/²)s. 	 �U� � ­ � /²) � 		 �®� �;. ´ � � � ®�)�� � ·P� h ) � � h / �#� 	 V
where � is the area of the system, we obtain� %j� �� ¢ m�k ��� � / 
 / '�#� � ¥ ���b�~ mMk � w 	 ¦ � ¥ ��Ub�~ k�lnm � w 	 ¦³ ´ � Õ . ´ � Õ � ´ � z . ´ � z � ´ � º . ´#º � Ù � h ­ . � h 	U9�����T¨ / $ � � h 2 . h � 7 h 2 � h � 	~ m�k � w 	 / Ä� � h 1 . h � 7 h 1 � h � 	~ k�lWm � w 	 © 9� �­ . � > 2 . � 	 � � h ­ . � h / �#� 	�·P� / �­ . � > �2 . � 	 A ¢ m�k �
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Since the change of energy
A ¢ m�k depends only on ­ . � � �­ . / ­ � , 2 . � , and 1 . � , we introduce the variables) � � ­ .6/ ­ � V 2 � � 2 . / 2 �ñ � V 1 � � 1 . 7 1 �ñ �­ � � ­ . V°¯-� � 2 . 7 2 �ñ � V²±¬� � 1 . / 1 �ñ � � (A11)

The Jacobian of this transformation is ' . The expression to
integrate over is independent of ­ such that integration over´ � Õ yields the area � . We write ) in polar coordinates ���UV-³¸	
and can integrate over ´ � . Then, we choose the coordinate
system for integrations over ´ � z such that the unit vector �)
points in the � -direction. That means we can replace �) by the
unit vector in the � -direction �´^� and integrate over ´ ³ which
simply yields ��b . For readability, we use now the unit vector�, instead of �´ � . The integrals over ´¢�Â� and ´¡µ are Gaussians,
so that we obtain� %j� �� ¢ m�k � � � / ��b ñ �g� Ý ý Ù � �#� 	 ¥ ��Ub�~Åm�k � w 	 ¦ ¥ ���b�~Åk�lWm � w 	 ¦

¬½ 9
³ ´ z . ´ z � ´#º¶�����T¨ / $ � Ö z �. 7Ïz �� ×~ m�k � w 	 7 / Ä� h º h �~ k�lnm � w 	 © 9� �, > 2 	&·P� /L�, >·�2 	 A ¢ m�k V

with the number density Ý ý � � � 
 / ' 	  �� � 
Ê #� .
To solve the integrals above we need to take a look at the

change of energy�� A ¢ m�k � � � � . �� / ' 	�� h 2 . h � 7 h 2 � h � 	� � h 2 x. h � 7 h 2 x� h � 	 / � h 2 . h � 7 h 2 � h � 	D Ø F � D M F� ú û � û / ' 	�� h 2@h � / � �, > 2 	 � 	/ � ' / � � 	�� �, > 2 	 � 7 � �#� û 	 � h �, 9 1Ch �7 ú � û � � û / ' 	3� �, 9 1 	 > 2
(A12)

with û and � � ����	 given by Eqs. (19) and (6). Keep in mind
that 2 and 1 have been defined as 2 � �¬2 . �  ñ � and 1 � �1 . �  ñ � . The difference in calculation for models D and E
comes into play at this step [For model D, at this point of the
calculation, we would express 2 in polar coordinates � z V�� . � 	
and insert û � û ��� . � 	 instead of û � û ���
	 “assuming” that�'�é� . � . That way all integrals become Gaussians and can
easily be solved. In particular, the integrals over the last term
in Eq. (A12) vanish.], however, we will now go on with model
E. To perform the integrations over 2 and 1 we substitute10¸ � � ñ � � �, 9 1 	 � � ñ �6º V q V q 	4 � � ñ � � 2 7 � � �, 9 1 	n	CV (A13)

thus introducing the relative velocity of the contact point 4 as
defined in Eq. (2). The vector 1 ¸ points in the

�
-direction

(due to our choice of coordinates) and h 1 ¸ hÅ�¬h 1 . � h , so that2 k�lnm �p�!1 ¸ . The Jacobian of this transformation is � �@¹½ . In

terms of these new variables
A ¢ m�k reads�� A ¢ m�k3��� û � û / ' 	
: h 4 h � / � �, >�4 	 �<;/ ' / � �� � �, >�4 	 � 7 �#� û 4�> 1 ¸ V (A14)

and we get� %)� �� ¢ m�k � � � / �ñ b ��Ý ý Ù � �#� 	 ¥ �ú ~Åm�k � w 	 ¦ ¥ �ú ~¸k�lnm � w 	 ¦
¬½ 9

³�´ � ÙY´�º ¸ � �, >�4 	&·P� /L�, >D�4 	 ����� ¥ / � �a���ú ~¸k�lnm � w 	 h 1 ¸ h � ¦ 9�����.¨ / �ÛS�h 4 h � / ��� 4a> 10¸ 7 ���!h 10¸¡h � Xú ~ m�k � w 	 © A ¢ m�k �
(A15)

Next, we express 4 in polar coordinates � Ù VW��	 where � is not
the usual angle between 4 and �´^� but instead – as needed for
incorporating Coulomb friction – the angle between 4 and �,
(i.e. the angle between 4 and �´s� , i.e., 4 � � / Ù f O�Q �&V Ù ]�_!fK��	 ).
Expression (A14) reads now�� A ¢ mMk ��� û � û / ' 	 Ù � f O�Q � � / ' / � �� Ù � ]�_!f � �/ �#� û Ù¢ºW¸ f O�Q ��V (A16)

(note that û � û ��]�_�`^�
	 in the Coulomb friction case) and� %j� �� ¢ m�k ��� � / �ñ b �gÝ ý Ù � ��� 	 ¥ �ú ~ m�k � w 	 ¦ ¥ �ú ~ k�lnm � w 	 ¦
¬½ 9¹ ½ �³ º ½ ´ �>»³ ý ´�Ù »³� » ´#ºW¸�Ù � ]�_¢f�� ����� ¥ / � �a����º@�¸ú ~ k�lnm � w 	 ¦ 9����� ¥ / �ú ~+mMk � w 	 S Ù � 7 ���!Ù¢º ¸ f O�Q � 7 � � º �¸ X ¦ A ¢ m�k �

Now we define ¼ � � Ö �a�K�Â ú × Ö '� U~ m�k � w 	 7 �  �~ k�lnm � w 	ê× , ½ � ���� f O�Q �  Ö ú ¼Y~ mMk � w 	ê× and substitute ¾ � � ñ ¼ � º ¸ 7 ½?Ù 	 forº ¸ . This leads to Gaussian integrals over ¾ and Ù . Using� � � ��' 7 À�ÃªÇÈÁ D � F� À Á�Ã D � F , we obtain� %j� �� ¢ m�k � � � / x �À¿ b� �#�gÝ ý Ù � ��� 	 ~ ¹½mMk � w 	 � M 9�³ º ½ ´ � ]�_!f��� ' 7 � � � / ' 	K]�_!f � ��	�Á½ 9¥ ú ûTÂ û / '� ��Ã f O�Q � � / � ' / � � 	K]�_¢f � � ¦ �
(A17)

Up to this point we have not specified, whether we are go-
ing to use constant coefficients of restitution or Coulomb fric-
tion. All this is hidden in û which is either a constant or
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a function of � . Since we are interested in the Coulomb
friction case, we use û � û ���
	 . We introduce the notationû � . � ÷� ��NPORQ26�h ]�_#`K� ý h V h ]�_#`^� h 7   NCORQ26 û�ý V . � ÷� �@h ]�_#`K� h 7 ,and obtain� %j� �� ¢ m�k � � � / x �
¿ b� ����Ý ý Ù � ��� 	 ~ ¹½m�k � w 	 � M v �x ' / � �� M

7FÄ ù³ º ½ ´ � ]�_¢f��� ' 7 � � � / ' 	K]�_¢f � �
	�Å�¿ � 9
¥ ��� ' 7 �� � f ORQ �g]�_!f�� 7 � � � ' 7 �U	 � ]�_!f � � ¦7 ú û#ý ¥ û�ý / '� � ¦ �³Ä ù ´ �

]�_!f�� f ORQ � �� ' 7 � � � / ' 	^]�_!f � �
	�Å�¿ �qÆ ÇÈ �
(A18)

After performing the last integration the result can be writ-
ten in the form´´#w ~Åm�k � w 	 � � | k /äç ~ Ø ¿ �mMk 6 ë ÷ (A19)7 û#ý� ' / û�ý � �� ' 7 � � ]�_#` � � ý 	 Ø ¿ � 7 û#ý� � � ]�_#` � � ý� ' 7 � � ]�_#` � � ý 	 Ø ¿ �/ û �ý `�þ Q � � ý ¥ ' / ' 7 Ø� � � ]�_#` � � ý� ' 7 � � ]�_#` � � ý 	 Ø ¿ � ¦ y V
where ç � ð � �$ ��Ý ý Ù � ��� 	 , which is the same as Eq. (14),

and ë�÷ � . � ÷ ½M . Similarly ~ k�lnm can be calculated using, in-
stead of

A ¢ m�k , the change of rotational energy at collision,�� A ¢ k�lWm � � � � . �� / ' 	�� h 1 . h � 7 h 1 � h � 	� � h 1BÉ. h � 7 h 13É� h � 	 / � h 1 . h � 7 h 1 � h � 	D Ø F � D M F� ú û �� � � � h �, 9 2?h � 7 ú û � ¥ û � / ' ¦ ­ h 1<h � / � �, > 1 	 � °/ ú û� � ¥+� û � / ' ¦ � �, 9 2 	 > 1 V
(A20)

which can be reformulated as�� A ¢ k�lWm � � û �� : h 4 h � / � �, >�4 	 � ; / �#� û 4�> 1 ¸ V (A21)

using the notation introduced in Eqs. (A11) and (A13). The
calculation for the rotational temperature is identical to the
one for the translational temperature just shown until Eq.
(A15) into which we insert

A ¢ k�lnm from Eq. (A21) instead ofA ¢ m�k . Performing the integrals yields

'� ´´!w ~ k�lWm � w 	 � ç ~ Ø ¿ �m�k v '� ' 7 � � ]�_#` � � ý 	 Ø ¿ � 9 (A22)

¥ û �ý � �� � / � � � / ' 	 û�ý� � ' 7 � � ]�_�` � � ý 	 ¦7 û �ý `�þ Q � � ý� ¥ ' / ' 7 Ø� � � ]�_�` � � ý� ' 7 � � ]�_�` � � ý 	 Ø ¿ � ¦ y
Finally, from Eqs. (A19) and (A22) the conversant reader may
reproduce the transformation to the more convenient coeffi-
cients in Eqs. (33).

For comparison, we quote the equivalent results in three
dimensions [13]:

x � ´´!w ~ m�k � w 	 � � | k /äç ØËÊ ~ Ø ¿ �m�k v ëg÷67 û ý� ' / û ý � �' 7 � � ]�_�` � � ý7 û�ý� ¥ þ���]�`�þ Q � � ]�_#`^� ý 	� ]�_�`K� ý / '' 7 � � ]�_#` � � ý ¦ y V(A23)

and

x � ´´!w ~ k�lnm � w 	 � ç ØËÊ ~ Ø ¿ �mMk ÌÍ Î û�ý ' / ­ ' / ø�ù� ° � �' 7 � � ]�_�` � � ý/ û�ý� � � � / ' 	 ¥ þ8��]�`�þ Q � � ]�_�`^� ý 	� ]�_#`^� ý / '' 7 � � ]�_�` � � ý ¦ y V(A24)

where ç ØÏÊ � x � � �$ �¢��Ý ý Ù ØÏÊ � ��� 	 and Ù ØÏÊ � ��� 	4� . �«Ð ¿ �D . � Ð F ¹[54].


