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Abstract. We show that a mixture of two species of granular particles
with equal sizes but differing densities can be either segregated or mixed
by adjusting the granular temperature gradient and the magnitude of the
gravitational force. In the absence of gravity, the dense, heavy particles
move to the colder regions. If the temperature gradient is put into a grav-
itational field with the colder regions above the hotter, a uniform mixture
of light and heavy particles can be attained. This situation can be realized
in a container of finite height with a vibrating bottom, placed in a grav-
itational field. We present a relation between the height of the container,
the particle properties, and the strength of gravity required to minimize
segregation.

1. Introduction

Segregation and mixing of granular material is of eminent importance for
industrial operations and it has been subject to research since decades.
However, both effects are not yet completely understood and thus cannot be
controlled under all circumstances. Traditional experimental methods and
theoretical approaches are nicely complemented by numerical simulations
which in the last few years have developed tremendously [1]. For a review
which covers a broad practical experience of segregation see Ref. [2] and
references therein.
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Segregation can be driven by geometric effects, shear, percolation and
also by a convective motion of the small particles in the system [3]. In vi-
brated systems, the segregation due to convection appears to be orders of
magnitude faster than segregation due to purely geometrical effects [4, 5]. In
rotating drums, another archetype of many industrial devices, several segre-
gation processes acting in parallel are reported [6]; in three-dimensional de-
vices, axial and longitudinal segregation are observed [7—9] simultaneously.
For axial segregation, particle percolation is reported to be responsible [8],
while longitudinal segregation is related to different surface flow properties
in the cylinder [10, 11].

In this paper, we investigate a model segregation problem which sug-
gests a simple way to obtain uniform mixtures of two species. We show a
sketch of the system in Fig. 1.
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Figure 1. A sketch of the studied system

N particles are placed in a container of height H in the presence of
gravity. The side walls have been replaced with periodic boundary condi-
tions. Energy is supplied to the container by vibrating the bottom using
a symmetric sawtooth wave with velocity V. The top wall is stationary.
N4 of the particles have mass m 4, and the rest have mass mpg. We will
take my4 > mp. Though the particles have different mass, they all have
the same radius a. We model the loss of energy during collisions with a
restitution coefficient 7 < 1. Our detailed study of a similar system with
identical particles is Ref. [12].
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2. The Mixing Mechanism

We find that it is possible to obtain uniform mixtures of the two species by
pitting two segregation mechanisms against each other. When the particles
rarely touch the top of the container, all the dense particles are found near
the bottom of the plate (see Fig. 2a). A similar effect occurs in the upper
atmosphere, where different molecular species are sorted by weight [13].
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Figure 2. (a) A simulation with N = 150, N4 =50, L = H =50, ma/mp =10, g =1,
V =1, r =0.9. The dense particles (mass m,) are shaded. (b) same as (a), except g = 0.

On the other hand, when gravity is turned off, the particles are pushed
against the top plate and the dense particles are found close to the upper
plate (Fig. 2b). By smoothly varying between these two situations, it is
possible to obtain a situation where the two species are uniformly mixed.
In Fig. 3, we plot the difference between y 4, the center of mass of the heavy
particles, and yp, the center of mass of the light particles, normalized by
the height of the container. Mixing is optimal when the difference between
the species’ centers of mass vanishes.

We see that the state of maximum mixing is obtained near mgH /T ~ 2
for all values of the parameters, except for almost elastic particles (r =
0.99). Here, T is the granular temperature, defined as the average kinetic
energy per particle: T = (1/2N) 3 m;v2. When the ratio of both energies is
near unity, it means that the kinetic and potential energies of the particles
are comparable. The tendency of (y4 —yg)/H to approach 0 for large grav-
ities magH/T > 10 is due to the initial conditions. Initially, all particles
are arranged in a lattice just above the vibrating floor. Due to the large
gravity, it is very difficult for particles to change places, and the mixture
keeps its original configuration for a very long time. For msgH/T < 10,
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Figure 3. Segregation of the two species measured by the difference between y4, the
center of mass of species A and yg, the center of mass of species B. This difference is
plotted as a function of magH/T, where T is the granular temperature, here defined
as the average kinetic energy per particle. The points marked “Center” have V = 2,
ma/mp = 2, Na = 50, Ng = 100, H = L = 50a, and r = 0.95, with g swept over
six orders of magnitude. The other points are the same, except for the parameter values
marked on the graph. In all cases, the time unit is fixed by the wall vibration period, and
the mixture is equilibrated for 300 time units, and then data is averaged for 1500 time
units.

the particles change places often, and (y4 —yp)/H is independent of initial
conditions.

To show more closely what happens with the densities of the different
species, we show in Fig. 4 the concentrations of each as a function of height
for three different simulations; one at small g, one at large g, and one where
the particles are nicely mixed. In the situations with extremal g values,
we obtain rather strong density gradients, while in the case of optimal
mixing the density gradients are small, i.e. the density is almost constant
throughout the system.

3. Discussion and Conclusion

Each of the two segregation mechanisms can be observed also with per-
fectly elastic (dissipationless) particles. In Fig. 5(a), we show a binary gas
of elastic particles under gravity in the absence of forcing. The heavy par-
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Figure 4. Profiles of the density of each species as a function of y. The solid curve
represents the heavy species with mass m4, and the dashed curve is the light species
with mp. All simulations have ma/mp =2,V =2, H = 50, Ng = 50, Ng = 100. The
top figure has g = 10™%, the middle has g = 0.3169, and the bottom has g = 10%. The
densities are given in terms of the probability of a single particle of each species to have
a given height; the area under all curves integrates to 1.

ticles accumulate at the bottom. In Fig. 5(b), we show a binary gas in
the absence of gravity, subjected to a thermal gradient. Now the particles
particles accumulate against the upper, cold wall. Therefore, neither seg-
regation mechanism relies on the dissipation of energy during collisions.
This dissipation serves only to set up the necessary gradients which drive
the segregation of the particles (see also the paper by Luding, Strauf, and
McNamara in this proceedings).

To use this method to mix granular materials, the particles could be
put into a chamber like the one shown in Fig. 1. To obtain the proper
value of magH/T, it is perhaps most convenient to adjust the height of
the container H. It is also possible to control T by changing the vibration
velocity V' [12]. One possible disadvantage is that only a small amount of
material can be mixed at one time. It also may be difficult in practice to
adjust H or T correctly. Replacing the periodic boundaries with side walls
may also introduce new effects.
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Figure 5. (a) A simulation with N = 150, Ny =50, L = H = 50a, ma/mp =2, g =1,
r = 1.0. All the walls are stationary, so no energy is added or subtracted. Note that the
dense particles sink to the bottom. (b) same as except that g = 0 and when a particle
touches the upper or lower wall, a new velocity is selected from a Maxwellian velocity
distribution with a certain temperature. The temperature of the lower wall is 160 times
as large as the temperature of the upper wall. Smaller temperature gradients also sort
the particles by density, but it is much less visually striking.
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