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Abstract

From the structure of a static granular solid, we derive the fabric-, the stress-, and the stiffness-
tensor in average over pairs of interacting particles. Starting from a linear expansion of the
interaction potential around static equilibrium, stress and strain can be derived from the prin-
ciples of virtual displacement and virtual stress-change, respectively. Our approach includes
both normal and tangential forces, and the influence of both is discussed separately. Finally,
the results are applied to a discrete particle simulation where the averaged micro-quantities on
the contact-level can be compared to the macroscopic observations on the boundaries of the
system. An-isotropy in the bi-axial system is obtained and is directed against the direction
of compression up to a certain (maximal) magnitude. In the critical state shear regime, the
an-isotropy is considerably smaller.

1 Introduction

One of todays great challenges in material science and physics is the macroscopic description of
the material behavior of granular media which are inhomogeneous, nonlinear, disordered, and
anisotropic on a “microscopic” scale [1-3]. This is due to the stress distribution in granular
assemblies and the corresponding stress-networks involving large fluctuations of contact forces
and a reorganization of the network due to deformation. If an initially isotropic contact
network is deformed, the result can be anisotropic in structure.

In this study, the anisotropic material tensor is computed from a discrete particle simulation
of a biaxial box simulation, in average over many particles.

2 Micro-macro transition for one contact

The vector connecting the centers of mass r; and r4 of two particles, is the so-called branch
vector I = r; — vy, with the equilibrium distance | = |I| = 2a and the corresponding unit
vector n = l/l. The overlap in normal direction A =1 — 2an =: €" -1 ,is defined relative to
the configuration when the particles just touch each other. This defines € = n(n - €), the



normal contribution of the deformation € = €" + €', relative to a virtual, stress-free reference
configuration. The displacement in tangential direction 9 =: €' - I ,is irrelevant for perfectly
smooth particles, but has to be taken into account for rough surfaces. This defines €' = #(%-€),
the tangential contribution to €. A virtual (small) change of the deformation is

Sl=1'-l=:1e-l~5An + 5t (1)

where the prime denotes the value after the deformation tensor € := de is applied.

2.1 Change of the branch vector

When the packing of particles is deformed, it is most intuitive that the branch vector changes.
This change, 61, can be split in two components, one parallel to 7z, the other one perpendicular
to it. The components of the normal change of I are §A := §l" = n(n - € - 1) and, expressed
in index notation !, read

(SAa = 5[2 = nanﬁsﬂ7l7 . (2)

The tangential components are §9 := 6l — §I", or
579(1 = (5[2 = tatﬁs/37l7 s (3)

with the intrinsic definition of the tensor ¢,fs perpendicular to n,ng. The unit-tensor is
replaced by the Kronecker-delta 1,5. The tensor n,ng is a degenerate, one-dimensional tensor
with eigen-direction parallel to 7 and trace unity. In two dimensions ¢ defines the tangential
direction modulo the sign. In both two and three dimensions, one can use ¢ := 61°/|6l'| as
definition if |61'| > 0. In three dimensions, this allows the definition of a third degenerate
tensor perpendicular to both n and t via 5088 = log — Nang — talg.

2.2 Change of potential energy density

The potential energy density,
1

2V

also changes due to a deformation, where k¥ and k' are the spring stiffness in normal and

tangential direction, respectively (the prefactor of the quadratic term in the series expansion

of the interaction potential), and the volume V' will be specified later, since it depends on the
configuration of the particles in the neighborhood.

Due to the displacement of one pair of particles, the change in potential energy density is

u (kA% + K'9%) (4)

ou = ou"+ dul
1
Sfed, (5)

with the actual force f = kA + k', the force after displacement f' = f + 6f, and the
mean f* = (f + f')/2. (The asterisk is dropped in the following for the sake of simplicity
f =~ f7). Note the nice symmetry of the problem with respect to an exchange of the present
configuration (unprimed) and the deformed configuration (primed).

!Summation over equal indices is implied



2.3 The stress tensor

From the potential energy density, we obtain the transposed stress from the response to a
virtual deformation by differentiation of v with respect to the deformation tensor components

1
Oa = Vfalﬂ- (6)

For the result in Eq. (6), in symbolic notation: o = I f/V, the partial derivative with respect
to the deformation tensor was replaced by the identity tensors 1,415, and the higher order
terms in Eq. (5) were neglected.

The change in stress due to the virtual deformation € is

! 1 n tcyt _1
b =o' — o=l (kl" + Kol') = 1 6F (7)

since the overlaps A and 9 depend on the tensor €, whereas I does not. The work due to a
virtual stress change do’: € = du thus allows to regard € as the conjugate tensor-variable to
o.
Since I and A are parallel to 7o and 9 is parallel to ¢, we can rewrite the stress tensor
kIA kY

Oag = TTLang + 7natg , (8)

with A = |A| and ¥ = [¥|. Note that the dyadic product of the normal vectors n,ng is
symmetric (and degenerate one-dimensional) by definition, whereas n,ts is not necessarily
symmetric, traceless and two-dimensional.

2.4 The stiffness tensor

The partial derivative of the stress tensor with respect to the deformation leads to the stiffness
tensor
12

Coprp = = v (k NaMBMNy Ty + ktnatgn7t¢) , (9)

where the change of the deformation in normal and tangential direction was used. The ad-
ditional derivative which should occur in Eq. (9) leads to terms proportional to A/l which
are neglected in the following, if the overlap is much smaller than the distance between the
particle centers.

3 One particle with C' neighbors

Given the tensor-elements based on single contacts, one possibility is to compute the tensor in
average over all contacts of one particle. In a further step, the averages are performed over all
contacts within an averaging volume V' which is typically much larger than one particle and
thus can contain many contacts. For the sake of simplicity, the simplest averaging approach
is used here, i.e. a contact is taken into account if the corresponding particle-center lies within
the averaging volume. This corresponds to a pre-averaging over single particles and then
subsequent averaging over the particles in the volume. In an equation this reads

Q=@ =73V, (10)

pEV



where () is the quantity to be averaged and QP = Zg’;l Q¢ is the pre-averaged particle quantity
with the contact quantity Q°. Note that the criterion p € V' in the sum has to be discussed
[4], even though we will use the simplest approach in the following, i.e. particles with their
center in the averaging volume are taken into account.

3.1 The Fabric Tensor

For one particle, the fabric tensor is

c
Frg = > nang , (11)
c=1

with the trace trF” = FP = C. For one unit-cell with volume V*, the fabric tensor can be

defined as
a8 = ru O el - (12)
c=1

so that trF" = F. = vC is a contact number density with the volume fraction v = V?/V*.
In a disordered system, the relation between fabric, density and contact number is more
complicated [5] and an average over many particles

(&
Fop = % > VP nang (13)

peV c=1

is the method of choice. Note that we will drop the super-script u for unit-cell in the following
since the equations are identical to those with arbitrary averaging volume when the sum over
the particles reduces to one term.

3.2 The Stress Tensor

For C' contact partners, one obtains the average stress in the particle
1 C
9a8 = Tp Dol fs (14)
c=1

where the definition of the contact force f¢ = kAS + k"¢ at contact ¢ was used.
In a larger volume V', one obtains the stress

1 C
Oap = V Z Zlgf,g ) (15)

pEV c=1

where the particle volumes cancel due to the weighting condition in Eq. (10).

3.3 The stiffness tensor

The stiffness tensor for one homogeneous, spherical particle with equal branch vectors [ = [¢
and spring constants k = k¢ and k' = (k)¢ is

l2 < c,.c,Cc,C t < cyc, CycC
Copye = Ve (k‘ gnanﬁn7n¢ +k Zlnatﬁnvtd) , (16)

and the generalization to an arbitrary volume is evident.



4 Simulation Results

4.1 Model System

One possibility to obtain information about the material behavior is to perform elementary
tests in the laboratory. An alternative are simulations with the discrete element model (DEM)
[1,2,6-11] and the average over the “microscopic” quantities in some averaging volume. The
experiment chosen is the bi-axial box set-up, see Fig. 1, where the left and bottom walls are
fixed, and stress- or strain-controlled deformation is applied. In the first case a wall is subject
to a predefined pressure, in the second case, the wall is subject to a defined strain £,,. In a
typical ‘experiment’, the top wall is strain controlled and slowly shifted downwards while the
right wall moves stress controlled, dependent on the forces exerted on it by the material in
the box. The strain-controlled position of the top wall as function of time ¢ is here

ZO_Zf(l—I—coswt) , with EZZ:I—E , (17)

20

Z(t) =2+

where the initial and the final positions z; and z; can be specified together with the rate of
deformation w = 27 f so that after a half-period 7//2 = 1/(2f) the extremal deformation is
reached. With other words, the cosine is active for 0 < wt < . For larger times, the top-wall
is fixed and the system can relax. The cosine function is chosen in order to allow for a smooth
start-up and finish of the motion so that shocks and inertia effects are reduced, however, the
shape of the function is arbitrary as long as it is smooth.

,,,,,,,,, - Z(t)

0 T2

Figure 1: (Left) Schematic drawing of the model system. (Right) Position of the top-wall as
function of time for the strain-controlled situation.

The stress-controlled motion of the side-wall is described by
my(t) = F(t) — pz(t) — wi(t) , (18)

where m,, is the mass of the right side wall. Large values of my lead to slow adaption, small
values allow for a rapid adaption to the actual situation. Three forces are active: (i) the force
F,(t) due to the bulk material, (ii) the force —p,z(t) due to the external pressure, and (iii) a
strong frictional force which damps the motion of the wall so that oscillations are reduced.

4.2 Discrete Particle Model

The elementary units of granular materials are mesoscopic grains which deform under stress.
Since the realistic modeling of the deformations of the particles is much too complicated,



we relate the interaction force to the overlap ¢ of two particles, see Fig. 2. Note that the
evaluation of the inter-particle forces based on the overlap may not be sufficient to account for
the inhomogeneous stress distribution inside the particles. Consequently, our results presented
below are of the same quality as the simple assumptions about the force-overlap relation.

Y

Figure 2: (Left) Two particle contact with overlap A.

If all forces f; acting on the particle ¢, either from other particles, from boundaries or from
external forces, are known, the problem is reduced to the integration of Newton’s equations
of motion for the translational and rotational degrees of freedom

d2 2

mi@ri = fz y and IZ tz (19)

@‘Pz’ =

with the mass m; of particle 7, its position r; the total force f, = 3. f; acting on it due to
contacts with other particles or with the walls, its moment of inertia I;, its angular velocity
w; = d¢,;/dt and the total torque ¢t; =3 17 x f:.

4.2.1 Normal Contact Model

Two particles 7 and j interact only if they are in contact so that their overlap
A= (ri—r;)-n—(1/2)(d; + dj) (20)

is negative, A < 0, with the unit vector n = n;; = (r; — r;)/|r; — r;| pointing from j to i.
The force on particle 4, from particle 7 can be decomposed into normal and tangential part as
Tfi=1in+ fjt. The simplest normal force is a linear spring and a linear dashpot

Fliss — EA 4+ 400 (21)

) =

with spring constant £ and some damping coefficient v,. The half-period of a vibration around
the equilibrium position can be computed, and one obtains a typical response time on the

contact level,
k
t.=—", with Ww=4/— -5, (22)
w mio

the eigenfrequency of the contact, and the rescaled damping coefficient 1y = o/ (2m12).



4.2.2 Tangential Contact Model

The force in tangential direction is implemented in the spirit of Cundall and Strack [6] who
introduced a tangential spring in order to account for static friction. Various authors have used
this idea and numerous variants were implemented, see [12] for a summary and discussion.

Since we use a formulation which is generalized to dimensions D = 2 and D = 3, it is
necessary to repeat the model and define the implementation. The tangential force is coupled
to the normal force via Coulombs law, i.e. f; < p®f,,, where for the limit case one has dynamic
friction with f; = u?f,. The dynamic and the static friction coefficients follow, in general,
the relation ¢ < p®. However, for the following simulations we will apply p = u¢ = u®. The
static situation requires an elastic spring in order to allow for a restoring force, i.e. a non-zero
remaining tangential force in static equilibrium due to activated Coulomb friction.

If f, > 0, the tangential force is active, and we project the tangential spring into the actual
tangential plane 2

(=& -nn-¢), (23)
where ¢’ is the old spring from the last iteration. This action is relevant only for an already
existing spring, if the spring is new, the tangential spring-length is zero anyway, however, its
change is well defined. The tangential velocity is

vy = v — n(n-v;) , (24)
with the total relative velocity
vij:vi—vj—i-a,-nxwi—i-ajnij . (25)

Next, we calculate the tangential test-force as the sum of the tangential spring and a tangential
viscous force (in analogy to the normal viscous force)

f? = —k & — vy, (26)

with the tangential spring stiffness k; and the tangential dissipation parameter v;. As long as
|f7| < f&, with f& = p° f,, one has static friction and, on the other hand, if the limit | f}| > f&
is reached, sliding friction is active with f& = u¢f,. (As soon as | f{| becomes smaller than fg,
static friction is active again.) In the former, static case, the tangential spring is incremented

¢ =&+ v Atup , (27)

to be used in the next iteration in Eq. (23), and the force f, = f} from Eq. (26) is used. In
the latter, sliding case, the tangential spring is adjusted to a length which is consistent with
Coulombs condition

r_ _i d
E - kthtv (28)

with the tangential unit vector, t = f7/|f;|, defined by Eq. (26), and thus the magnitude
of the Coulomb force is used. Inserting &' into Eq. (26) leads to f; ~ —fct — yv;. Note
that f; and v; are not necessarily parallel in three dimensions. However, the mapping in Eq.
(28) works always, rotating the new spring such that the direction of the frictional force is

2This is necessary, since the frame of reference of the contact may have rotated since the last time-step



unchanged and, at the same time, limiting the spring in length according to Coulombs law.
In short notation this reads

fi=+min (fe, |f7[) ¢ (29)

where fc follows the selection rules described above.

Note that the tangential force described above is identical to the classical Cundall-Strack
spring only in the limits y = p® and v, = 0. The sequence of computations and the definitions
and mappings into the tangential direction, however, is new to our knowledge in so far that it
can be easily generalized in three dimensions as well as in two.

4.2.3 Background Friction

Note that the viscous dissipation takes place in a two-particle contact. In the bulk material,
where many particles are in contact with each other, dissipation is very inefficient due to
long-wavelength cooperative modes of motion [13,14]. Therefore, an additional damping with
the background is introduced, so that the total force on particle 7 is

f Z hYS + dlSS n+ ft — Wi (30)
with the damping artificially enhanced in the spirit of a rapid equilibration.

4.3 Simulation Results

The systems examined in the following contain N = 1950 particles with radii a; randomly
drawn from a homogeneous distribution with minimum @piy, = 0.5107m and maximum
Umax = 1.51073m. The masses m; = (4/3)pma?, with the density p = 210°%kgm™3, are
computed as if the particles were spheres. This is an artificial choice and introduces some
dispersity in mass in addition to the dispersity in size. However, since we are mainly concerned
about slow deformation and equilibrium situations, the choice for the calculation of mass
should not matter. The total mass of the particles in the system is thus M ~ 0.02kg with
the typical reduced mass of a pair of particles with mean radius, mis ~ 0.4210 °kg. If not
explicitly mentioned, the material parameters are k = 10°Nm !, and o = 0.1kgs *.

4.3.1 Initial Configuration

Initially, the particles are randomly distributed in a huge box, with rather low overall density.
Then the box is compressed, either by moving the walls to their desired position, or by defining
an external pressure p = py = p,, in order to achieve an isotropic initial condition. Starting
from a relaxed, isotropic initial configuration, the strain is applied to the top wall and the
response of the system is examined. In Fig. 3, snapshots from a typical simulation are shown
during compression.

4.4 Averaged Quantities

In the following, simulations are presented for the side pressure p = 20 only. A more detailed
study involving various p = 20, 40, 100, 200, 400, and 500 is in preparation [15]. There, the
behavior of all the averaged scalar and tensor variables during the simulations is examined in
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Figure 3: Snapshots of the simulation at different ¢,, for side pressure p = 200. The color

code corresponds to the potential energy of each particle, decaying from red, green (bright)
to blue and black (dark).

detail for situations with low and high confining pressure. Here we focus in the fabric and the
stiffness tensor only.

The averages are performed such that ten per-cent of the total volume are disregarded in
the vicinity of each wall in order to avoid boundary effects. A particle contact is taken into
account for the average if the contact point lies within the averaging volume V.

4.4.1 Fabric Tensor

The fabric tensor 1
Fop = v S (VP +Vnang . (31)

ceV
is computed as a sum over all contacts in the averaging volume with the volume of the particles
p and g which share the contact c.

The trace of the fabric first rapidly increases, due to the initial compression, then decays,
due to the dilation, and eventually reaches an almost stationary value. This stationary contact
number density is slightly larger for higher pressure, whereas there is no evident difference for
the deviator and the orientation. The former grows to values around 0.5 and the latter remains
close to zero, i.e. the fabric is well anisotropic, but not tilted away from the box geometry.

4.4.2 Stiffness tensor

The normal contributions C™ are plotted in Fig. 5, in units of k. The elements with an even
number of one/two-indices are non-zero, whereas the entries with an odd number are always
much smaller (open symbols). The difference between C7,;; and C%,, indicates the anisotropy
that is build up during the experiment, i.e. the material becomes stronger in vertical than in
horizontal direction. The small values of C},;, and C7,y, (small dots) indicate that the eigen-
system is not tilted much from the cartesian and, expressed in terms material behavior, mean



Figure 4: Fabric tensor, contact number density, deviator fabric, and fabric orientation ¢p.
The contact number density is corrected by a factor g, ~ 1.088 which accounts for the poly-
disperse size-distribution [5]

that the material does neither respond with a shear stress to a linear deformation nor with a
linear stress to a simple shear deformation.
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Figure 5: (Left) Normal contributions to the tensor C. (Right) Tangential contributions.

The tangential contributions C* are plotted in Fig. 5, in units of k!, where a = k'/k"
is the ratio of tangential and normal stiffness. Here, the result is more complicated due to
more different entries: The entries C!;;; = Clyyy = aClyy, (0pen symbols) are now identical
and behave like the entry C7y,,. In contrast, the entry C},0 = —aC7,5, (plus symbol) has
negative sign and cancels the normal entry if summed up with a = 1. The entries C%,;, and
Cl,y, (small dots) are again very small, and so are the new, different entries C%,,, and C%,,,
(small dots), like in the normal tensor. The remaining two entries behave like the major entries
in the normal tensor, i.e. Cl,, = aCP;; and Ct,, = aCh,, (x-symbol and star-symbol).

As could be expected from the experimental setup, the stiffness matrix behaves such that
the material builds up strength against the direction of compression, and becomes weaker in
the perpendicular direction. The tangential springs add up in stiffness to the normal springs
according to their microscopic spring stiffness. Only the entry Cji99 is significantly negative



and may reduce the total stiffness. The behavior of the normal stiffness tensor is reflected
in the tangential stiffness tensor entries, however, in different ones. Finally, we note that the
magnitude of the stiffness tensor entries is higher for larger external pressure.

When the tiny entries of C are examined closer, one observes that aCl,, = Cl,,, and
aClyy, = Ct 5, while the entries C};,, = —Clyyy and C%,, = —C%,,, have the corresponding
opposite sign. However, as mentioned above, the magnitude of these entries is very small as
compared to those entries with an even number of one/two-indices.

As a last interesting observation, we remark that the entry C7,;, is larger in magnitude
than CT,,,. We relate this to the fact that the left and bottom wall of the simulation volume
are fixed which breaks the symmetry of the problem and creates a preferred direction of tilt
induced by the shear deformation.

5 Summary

As brief summary, we conclude that there are three entries for the stiffness tensor, scaled
by the microscopic spring stiffness used for the simulation. The normal contacts contribute
the shear modulus and two (different) normal moduli. The reason for this small number of
quantities is the biaxial geometry that fixes the eigen-system of the tensorial quantities. The
stiffness tensor due to the tangential springs also scales with the corresponding spring stiffness
and has also only three independent magnitudes (one entry of them being negative).

In the biaxial geometry we observe clear anisotropy of the fabric and the stiffness tensor.
The magnitude of anisotropy is maximal at the point of maximum stiffness. Then, due to
shear band localization, the material becomes softer and less anisotropic, until the measured
quantities saturate in the critical flow regime.

The microscopic and structural reasons for the limit in anisotropy is unclear as well as
the detailed relation between stress, strain, and anisotropy. Future research involves a more
detailed parameter study and three dimensional simulations of similar systems.
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