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Abstract

From the structure of a static granular solid, we derive the fabric, and the stiff-
ness tensor in average over those pairs of interacting particles with contact within
the averaging volume. Starting from a linear expansion of the interaction potential
around static equilibrium, stress and elastic strain can be derived from the princi-
ples of virtual displacement and virtual stress-change, respectively. Our approach
includes both normal and tangential forces separately, in a new modular formulation
starting from single contacts.

The results are applied to a discrete particle simulation, and the findings include
a relation between fabric and coordination number that is almost unaffected by the
presence of friction, a different qualitative behavior of fabric and stiffness compo-
nents, and only three independent entries to the stiffness matrix in its eigen-system.
More general, anisotropy evolves directed against the direction of compression, and
exponentially fast up to a certain maximal (limit) magnitude — a constitutive model
for this behavior is proposed; in the critical state shear regime, the anisotropy is
considerably smaller.
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1 Introduction

One of todays great challenges in material science and physics is the macro-
scopic description of the material behavior of granular materials like sand,
that are inhomogeneous, nonlinear, disordered, and anisotropic on a “micro-
scopic” scale. This is due to the contact network of the static structure formed
by the grains, but also due to the inhomogeneous stress distribution in gran-
ular assemblies and the corresponding force-networks. There are always large
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fluctuations of contact forces and a reorganization of the network due to de-
formation can lead to a re-structuring of those. For example, when an initially
isotropic contact network is deformed, the result is likely anisotropic in struc-
ture. We do not review the existing literature in this field here, rather we
point the readers attention to the books by Herrmann et al. (1998); Vermeer
et al. (2001); Kishino (2001) and some references by various groups (Chang
and Ma, 1991; Babi¢, 1997; Bagi, 1999; Oda and Iwashita, 2000; Bardet and
Vardoulakis, 2001; Suiker et al., 2001; Luding and Herrmann, 2001; Peters and
Horner, 2002; Goldhirsch and Goldenberg, 2002; Kruyt, 2003; Luding et al.,
2003; Madadi et al., 2004; Luding, 2004) and the references therein.

Recent research already addresses micro-macro transitions and micro-mechanics
of granular media as well as the continuum description of those, including
micro-polar theories where the rotational degree of freedom is important (Bardet
and Vardoulakis, 2001; Suiker et al., 2001; Kruyt, 2003). The present work
adds to this a new formulation based on the virtual displacement ansatz for
single contacts. The method is not new, but the modular formulation pro-
vides a general formalism that can easily be extended to higher dimensions
and involves also the tangential-forces and contact-moments (not shown here),
which is expected to be helpful in the future. Many of the various approaches
in the literature can be formulated as special cases of the formalism presented
below. The numerical method of discrete element simulations alone is neither
new nor original, see e.g. (Oda and Iwashita, 2000; Thornton, 2000; Létzel
et al., 2000) and the referencs therein, but the combination and quantitative
comparison of numerical simulation with theoretical predictions is an issue
rarely realized in the literature yet.

The new findings involve (i) an interesting qualitative difference in fabric-
and stiffness-tensor component behavior under shear, (ii) an astonishing lack
of sensitivity of the relation between fabric and coordination number to the
addition of friction to the simulation model as compared to a non-frictional
model (Madadi et al., 2004), and (iii) the observation that only three entries
to the stiffness tensor are independent — for the system examined in its eigen-
system. The latter issue concerns the anisotropy of the packing and the issue of
anisotropic continuum theories, which is also rarely adressed in the framework
of granular flows. In this study, the anisotropic material tensor is computed
from a discrete particle simulation of a biaxial box set-up, and presented in
average over many particles inside the system, far away from the walls; a study
with space resolution that would unravel inhomogeneities like shearbands is
in progress (Luding, 2004).



2 Micro-macro transition for one contact

In this section, the contact force law is reformulated in terms of contact stress,
deformation, and stiffness — for single contacts. This leads to basic tensorial
quantities associated with single contacts over which averages can be taken
in a variety of ways. The single-contact stresses, e.g., do not constitute a
macroscopic stress yet, but they are at the very basis of the micro-macro
transition, and can be directly related to the “microscopic” force-displacement
laws. Some of the possible averages are discussed, but by far not all of the
possibilites can be considered in one paper. As final remark, it should be
mentioned that this formulation is easily generalized to three dimensions, also
for more complicated force-laws.

The vector connecting the centers of mass r; and r, of two particles, with
radius a, is the so-called branch vector [ = r;—r3, with the zero-force (contact)
distance | = |l| = 2a and the corresponding unit vector 1o = l/I, see also
subsection 4.2. The overlap in normal direction A =1 — 2an =: €" -1, is
the deformation relative to the configuration when the particles just touch
each other. This defines a tensor of rank two, € = n(n - €), ! which is the
normal contribution of the deformation € = €" + €, relative to a virtual,
stress-free reference configuration. With other words, € is the state variable
conjugate to the stress — at least for the linear force model discussed here
— such that o : €™ = 0g,€605" = u, with the energy density u, see Eq.
(5), the (transposed) stress o, see Eq. (7), and the symmetric (objective)
€Y™ = (1/2)(e + €"). ? The displacement in tangential direction ¥ =: €’ - [,
(also relative to a stress-free configuration) is irrelevant for perfectly smooth
particles, but has to be taken into account for rough surfaces. This defines
€ = io(%o - €), the tangential contribution to
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with ¢t := 9/|9|. Note that € defines the deformation relative to the stress-

! The dot corresponds to a inner (scalar) tensor product that leads to a reduction
of the rank by two, and no point corresponds to the outer (dyadic) product which
leads to a tensor of rank equal to the sum of the two neighboring tensors.

2 The deformation tensors € and € can be non-symmetric, corresponding to a ro-
tation of the contacting particles; from the non-symmetric deformation tensor, the
non-objective contribution due to a rotation of the continuum has to be disregarded
for objectivity reasons, so that the objective contributions remain [see the contribu-
tion by Jenkins and La Ragione in this issue]. The mean rotation of two particles can
be formulated as an objective non-symmetric deformation in tangential direction,
however, this will not be discussed further here.



free configuration such that €1 = A + ¥, and thus is not necessarily small,
since overlaps and tangential displacements are not restricted a-priori.
In contrast, a virtual, small (infinitesimal) change of the deformation is

Sl=1-l=1e-l~5A+ 69 = 5An + 5t , (2)

where the prime denotes the value after the deformation tensor € is applied.
. . A ~0 .
Note that (especially in 3D), the vectors ¢t and ¢ are not necessarily parallel.

2.1 Change of the branch vector

When the packing of particles is deformed, it is most intuitive that the branch
vector changes. This change, 61, can be split in two components, one parallel
to n, the other one perpendicular to it. The components of the normal change
of l are §A := 61" = n(n - € - 1) and, expressed in index notation 3 read

Ay = 8l = ngnpegyl,y, . (3)
The tangential components are 69 := 6l — §I", or

579(1 = (Slfl Ztat56g7l7 y (4)

with the intrinsic definition of the tensor ¢,ts perpendicular to n,ng. The ten-
sor n,ng is a degenerate, one-dimensional tensor with eigen-direction parallel
to 7 and trace unity. In two dimensions ¢ defines the tangential direction mod-
ulo the sign. In both two and three dimensions, one can use ¢ := 61°/|51'| as
definition if [01’| > 0. In three dimensions, this allows the definition of a third
degenerate tensor perpendicular to both 72 and ¢ via 5455 := lag —Nang —tals,
with the unit-tensor denoted by the Kronecker-delta 1,4.

2.2  Change of the potential energy density

The potential energy density for one contact,

1
2Ve

U= U, =

(kA? + K'9%) (5)

also changes due to a deformation, where k and k' are the spring stiffness in
normal and tangential direction, respectively (the prefactor of the quadratic

3 Summation over equal indices is implied



term in a series expansion of the interaction potential), and the volume V,
will be specified later, since it can depend on the configuration of the particles
in the neighborhood. Note that it is easy to specify the volume in any way
(volume per contact, volume per contact of this particle, or volume associated
to this contact via, e.g., a Voronoi tesselation or dual lattice construction,
as used by Bagi (1996); Kruyt and Rothenburg (2001)), however, we prefer
to leave it unspecified in order to keep a general formulation and since this
volume disappears during averaging, in many cases.

Due to the displacement of one pair of particles, the change in potential energy
density is

Su = ou” + dul A — (kA(Sl" + ktﬁaéalt) ~—fe-l, (6)

N

with the actual force f = kA + k19, the force after displacement f' = f+4f,
and the mean f* = (f+f')/2. (The asterisk is dropped in the following for the
sake of simplicity implying: f ~ f*). Note the nice symmetry of the problem
with respect to an exchange of the present configuration (unprimed) and the
deformed configuration (primed).

2.8 The stress tensor

From the potential energy density, we obtain the transposed stress from the
response to a virtual deformation by differentiation of u with respect to the
deformation tensor components

_ Ou
N 8sa5
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1
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For the result in Eq. (7), in symbolic notation: & = (1/V,)1f, the partial
derivative of the changes of the displacement vector with respect to the defor-
mation tensor was replaced by the branch vector component and the identity
tensors 1,,1pp; the higher order terms in Eq. (6) were neglected.

. o . ~0 .
Since both I and A are parallel to n and 9 is parallel to t ', one can rewrite
the stress tensor

klA k9
Oap = 7071(1715 + Ynat% s (8)

and the stress increment tensor
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5Ua,3 ~ natﬂ s (9)
with A = |A|, §A = |[0A|, ¥ = |9, and 69 = [§9|. Note that the dyadic prod-
uct of the normal vectors n,ng is symmetric (and degenerate one-dimensional)
by definition, whereas nat% and n,tz are typically non-symmetric and trace-
less. The stress relations above are similar to those obtained earlier in the
literature for many particle contacts (Bardet and Vardoulakis, 2001; Létzel
et al., 2000; Rothenburg and Selvadurai, 1981; Bathurst and Rothenburg,
1988; Bardet and Proubet, 1991; Bagi, 1996; Liao and Chang, 1997; Kruyt
and Rothenburg, 1998, 2001; Ball and Blumenfeld, 2002; Kruyt, 2003).

2.4 The stiffness tensor

The partial derivative of the stress tensor with respect to the deformation
leads to the stiffness tensor

6%5 _ ﬁ

Do v (k NaNpTy Ty + ktnatgnnyt(;s) ; (10)
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where the changes of the deformation in normal and tangential direction were
used. The additional derivative which should occur in Eq. (10) leads to terms
proportional to A/l, which are neglected in the following, since the overlap is
typically much smaller than the distance between the particle centers.

Note that the stiffness tensor in Eq. (10) is similar to the results in the lit-
erature, see e.g. (Liao and Chang, 1997; Kruyt and Rothenburg, 1998), but
here, particle-center to contact vectors are used instead of the frequently used
particle-particle branch vector, and the stiffness contribution of a single con-
tact only is given. In the next section, the relations are provided for particles
inside larger averaging volumes.

3 Volume averaging

The purpose of this section is to present averages over the single-contact ten-
sors from the previous section, for the sake of completeness, so that they can
be compared to the previous literature, see e.g. (Rothenburg and Selvadurai,
1981; Liao and Chang, 1997; Kruyt and Rothenburg, 1998; Litzel et al., 2000).
The focus of the results presented in the next section is the fabric- and the
stiffness-tensor, which can be obtained from static snapshots and do not rely
on small (virtual or real) displacements.



Given the tensor-elements based on single contacts, one possibility is to com-
pute the tensor for one particle in average over all its contacts. An alternative
is to perform averages over all contacts within an averaging volume V', which is
typically larger than one particle and thus can contain many contacts. As next
refinement, each contact information can be “smeared out” via an averaging
shape function, so that a fraction of it contributes to the averaging volume and
the rest does not. Since we did not observe differences * using either of these
methods together with the rather large V' used below, the issue of averaging
shape functions will not be discussed further here (Babié, 1997; Litzel et al.,
2000; Goldenberg and Goldhirsch, 2002; Goldhirsch and Goldenberg, 2002).

For the sake of simplicity, the simplest averaging approach is used here, i.e. a
contact is taken into account if the corresponding particle center lies within
the averaging volume. This corresponds to a pre-averaging over single particles
and then subsequent averaging over the particles in the volume. Cast into an
equation this reads

Q=@ =7 T Ve, (1)

peV

where () is the quantity to be averaged and Q7 = (1/V?) ¥, V,Q¢ is the pre-
averaged particle quantity with the contact quantity Q€. Here, the sub-script
p € V denotes the particle-in-volume averaging procedure; the equation for
contact-in-volume averaging would appear as () = % Yocev VeQ°. The volume
fraction v is obtained from either QP = 1, or from Q¢ = V?/(CPV,), to name
two examples. In the following, we restrict ourselves to the particle-in-volume
averaging method.

3.1 The Fabric Tensor

For one particle, the fabric tensor is defined as the sum, over all contacts, of
the dyadic product formed by the normal vectors:

cp
F(fﬂ = Znanﬂ , (12)
c=1

with the trace trF” = FP = CP. For one unit-cell (attributed to the single
particle under consideration) with volume V*, the fabric tensor can be defined

* For a centered averaging volume of about one third of the total volume, the
particle-center in volume and the contact in volume averaging rules, respectively,
slightly under- and overestimate the values obtained with a homogeneous shape
function covering one particle, by less than one per-cent.



as

yr &
op = V“ Znan3 . (13)

so that trF" = FJ = v*CP? is a contact number density with the (local)
volume fraction v* = V?/V*" and the contact number C? of particle p. In a
larger, disordered system, with some distribution of particle radii, the relation
between fabric, density and contact number is more complicated (Madadi
et al., 2004) and an average over many particles

aﬂ - Z sznanﬂ (14)

pEV c=1

is the method of choice. Note that the super-script u for unit-cell is redundant,
since the equations are identical to those with arbitrary averaging volume when
the sum over the particles reduces to one term. The prediction for the trace
of the fabric in frictionless, isotropic systems is

trF = F,, = govC , (15)

with the average coordination number C', and the correction factor

ng1+£<£i—1>, (16)

T \aa?

dependent on the first three moments of the size distribution a* (with & =
1,2,3), see the study by Madadi et al. (2004). In brief, go corrects for the
fact that the coordination number of different sized particles is proportional
to their surface area, so that a monodisperse packing has g, = 1, whereas a
polydisperse packing has g, > 1 with magnitude increasing with the width
of the size distribution. Thus, a polydisperse packing has a higher contact
number density than a monodisperse system of comparable density. Below, it
will be shown that this correction, as tested for frictionless systems (Madadi
et al., 2004), is also relevant for frictional packings.



3.2 The Stress Tensor

In the averaging volume V', one obtains the approximate (averaged) macro-
scopic stress from Egs. (8) and (11) so that:

1 C
Oap = 7 22 2 laff s (17)

peEV c=1

where the particle volumes (and the arbitrary averaging volumes introduced
for the single-particle relations) cancel due to the volume weight in Eq. (11).

3.8 The stiffness tensor

The stiffness tensor for spherical (disk) particles with branch vectors from
the center to the contact [° = a, and identical spring constants £ = k¢ and
k' = (k')¢, is equivalently:

1 c 3
Capyo = 77 2 @ (k > mangning + kY n@t%n@t@) ’ (18)
c=1 c=1

pEV

where the two contributions from normal and tangential springs will be exam-
ined separately below. Again this result can already be found in the literature
(Liao and Chang, 1997; Kruyt and Rothenburg, 1998) in similar form, however,
we provide it here again, for the sake of completeness, in our nomenclature.
More details and results on periodic lattices will be presented in a forthcoming
paper (Luding, 2004).

4 Simulation Results

4.1 Model System

The discrete element model (DEM) (Herrmann et al., 1998; Vermeer et al.,
2001; Cundall and Strack, 1979; Bashir and Goddard, 1991; van Baars, 1996;
Oda and Iwashita, 2000; Thornton, 2000; Thornton and Antony, 2000; Oda
and Iwashita, 2000; Kruyt and Rothenburg, 2001) is briefly introduced in this
section, together with the force laws used in the simulation. The “experiment”
chosen is the biaxial box set-up, see Fig. 1, where the left and bottom walls
are fixed, and stress- or strain-controlled deformation is applied. In the first



case a wall is subject to a pre-defined pressure, in the second case, the wall
is subject to a pre-defined strain. In a typical “experiment”, the top wall is
strain controlled and slowly shifted downwards, while the right wall moves
stress controlled, dependent on the force F'(t) exerted on it by the material in
the box. The strain-controlled position of the top wall as function of time t is
here

20 — 2 z

(I+coswt), with ¢g,=1—-—, (19)
20

z(t) = zr +

where the initial and the final positions 2, and z; can be specified together
with the rate of deformation w = 27 f. Rather large deformations ¢,, ~ 0.10
will be applied below. The cosine function is chosen in order to allow for a
smooth start-up and finish of the motion so that shocks and inertia effects are
reduced, however, the shape of the function is arbitrary as long as it is smooth
and the deformation is slow.

z SZZ

,,,,,,,,, - Z(t)

0 T2

Fig. 1. (Left) Schematic drawing of the model system. (Right) Position of the
top-wall as function of time for the strain-controlled situation.

The stress-controlled motion of the side-wall is described by

M (t) = F(t) = pz(t) — () , (20)

where m,, is the mass of the right side wall. Large values of m,, lead to slow
adaption, small values allow for a rapid adaption to the actual situation. Three
forces are active: (i) the force F'(t) due to the bulk material, (iz) the force
—p z(t) due to the external pressure, and (i4i) a viscous frictional force, which
damps the motion of the wall so that oscillations are reduced.

4.2 Discrete Particle Model

The elementary units of granular materials are mesoscopic grains which deform
under stress. Since the realistic modeling of the deformations of the particles is
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much too complicated, we relate the normal interaction force to the overlap A
of two particles, see Fig. 2. Note that the evaluation of the inter-particle forces
based on the overlap may not be sufficient to account for the inhomogeneous
stress distribution inside the particles. Consequently, our results presented
below are of the same quality as the simple assumptions about the force-
overlap relation.

Y

Fig. 2. (Left) Two particle contact with overlap A.

If all forces f; acting on the particle 4, either from other particles, from bound-
aries or from external forces, are known, the problem is reduced to the inte-
gration of Newton’s equations of motion for the translational and rotational
degrees of freedom

d? d?

mi@’rz’ =f;, and Iz’@‘Pi =1 (21)

with the mass m; of particle i, its position r; the total force f, = >, f; acting
on it due to contacts with other particles or with the walls, its moment of
inertia I;, its angular velocity w; = d¢p,/dt and the total torque t; = Y. 15 X f7.

4.2.1 Normal Contact Model

Two particles ¢ and j interact only if they are in contact so that their overlap
A := —n - A is positive. The force on particle i, from particle 5 can be
decomposed into a normal and a tangential part, where the simplest normal
force is a linear spring and a linear dashpot

= kA + A (22)

3

with spring constant £ and some damping coefficient 7. The half-period of a
vibration around the equilibrium position can be computed, and one obtains a

typical response time ¢, = 7/w, with w = 1/(k/m;;) — n¢, the eigenfrequency
of the contact, the reduced mass m;; = m;m;/(m; + m;), and the rescaled

11



damping coefficient 79 = 7o/(2m;;). The energy dissipation during a collision,
as caused by the dashpot, leads to a restitution coefficient r = —v/ /v, =
exp(—not.), where the prime denotes the normal velocity after a collision.

4.2.2  Tangential Contact Model

The force in tangential direction is implemented in the spirit of Cundall and
Strack (1979) who introduced a tangential spring in order to account for static
friction. Various authors have used this idea and numerous variants were im-
plemented, see (Brendel and Dippel, 1998) for a summary and discussion. Since
we use a special implementation, which can be used for dimensions D = 2 and
D = 3 alike, it is necessary to repeat the model and define the implementa-
tion. In the static case, the tangential force is coupled to the normal force via
Coulombs law, i.e. f* < u®f™, where for the sliding case one has the dynamic
friction with f* = u?f". The dynamic and the static friction coefficients follow,
in general, the relation u? < p®. However, for the following simulations we will
apply 1 = u? = p°. The static case requires an elastic spring, related to 9
in section 2, in order to allow for a restoring force, i.e. a non-zero remaining
tangential force in static equilibrium due to activated Coulomb friction.

If a contact exists with non-zero normal force, the tangential force is active
too, and we project the tangential spring into the actual tangential plane °

§=¢-n(n-¢), (23)

where &' is the old spring from the last iteration. This action is relevant only
for an already existing spring; if the spring is new, the tangential spring-length
is zero anyway, however, its change is well defined. The tangential velocity is

Vg = V5 — n(n : ’Uz'j) ) (24)

with the total relative velocity
vijzvi—vj—l—ainxwi-l—ajnij, (25)
of the surfaces of the two contacting particles. Next, we calculate the tangential

test-force as the sum of the tangential spring and a tangential viscous force
(in analogy to the normal viscous force)

ff) =~k & — oy, (26)

5 This is necessary, since the frame of reference of the contact may have rotated
since the last time-step

12



with the tangential spring stiffness k; and a tangential dissipation parameter
7. As long as |f!| < f&, with f& = p®f", one has static friction and, on the
other hand, if | /| becomes larger than fg, sliding, dynamic friction is active
with f¢ = pdf™. (In the next step, if |f%| is smaller than f, static friction is
active again, giving rise to stick-slip behavior.) In the former, static case, the
tangential spring is incremented

¢ =& +v oty (27)

with the time step dtyp of the DEM simulation. The new value of ¢ is to be
used in the next iteration in Eq. (23), and the tangential force f' = f! as
defined in Eq. (26) is used. In the latter, sliding case, the tangential spring is
adjusted to a length which is consistent with Coulombs condition

¢ = (fg* t+ ’Yt’Ut) ’ (28)

1
z

with the tangential unit vector, ¢ = f'/|f!|, defined by the direction of the
force in Eq. (26), and thus the magnitude of the Coulomb force is used. Insert-
ing ¢’ into Eq. (26) leads to f% ~ f&t. Note that f’ and v, are not necessarily
parallel in three dimensions. However, the mapping in Eq. (28) works always,
rotating the new spring such that the direction of the frictional force is un-
changed and, at the same time, limiting the spring in length according to
Coulombs law. In short notation the tangential force on particle ¢ reads

fi=+min (fe, |£L]) £, (29)

where fo follows the selection rules described above.

Note that the tangential force described above is identical to the classical
Cundall-Strack spring only in the limits g = p* = p and 73 = 0. The se-
quence of computations and the definitions and mappings into the tangential
direction, however, is new to our knowledge in so far that it accounts for dif-
ferent static and dynamic friction coefficients and can be easily generalized to
three dimensions.

4.2.83 Background Friction

Note that the viscous dissipation takes place in a two-particle contact. In the
bulk material, where many particles are in contact with each other, dissipation
is very inefficient due to long-wavelength cooperative modes of motion (Luding
et al.,, 1994a,b). Therefore, an additional damping with the background is

13



introduced, so that the total force on particle 7 is

fi=Y (fra+fl) - woi, (30)
c
with a viscous damping constant v, for a rapid equilibration.

4.2.4 Other Forces

Other forces than those mentioned above, like long-range forces, contact cou-
ples, rolling- or torsion-friction are neglegted in this study as well as a possible
non-spherical shape of the particles. Research in this direction is in progress,
however.

4.8 Parameters and initial configuration

The system examined in the following contains N = 1950 particles with
radii a; randomly drawn from a homogeneous distribution with minimum
Amin = 0.5107® m and maximum @, = 1.5 1073 m. The masses of the cylin-
drical particles with height h = 2.010™*m are m; = prha?, with the den-
sity p = 2.0103kgm™3. The total mass of the particles in the system is thus
M =~ 0.0026 kg with the typical reduced mass of a pair of particles with
mean radius, mis ~ 0.67107%kg. The wall properties are m, = 107*kg
and v, = 2kgs™!. If not explicitly mentioned, the material parameters are
k = 10°5Nm™, v = v = 0.02kgs™!, and y, = 107%kgs™t, u = 0.5,
and k;/k = 0.2. This leads to a typical contact duration t. = 0.82107°s
and a restitution coefficient of r = 0.89, with the integration time-step used
dtymp = 0.210°%s. The choice of parameters is rather arbitrary, however, the
finding below that the stiffness tensor scales with the spring contstant rec-
tifies this a-posteriori. Additional simulations (not shown here) also confirm
this statement. Note that the choice of the stiffness and a possible non-linear
force law is more important for dynamic systems for, e.g., sound propagation
than for the quasi-static system presented here.

Initially, the particles are randomly distributed in a huge box, with rather low
overall density. Then the box is compressed by allowing the walls to follow Eq.
(20) with isotropic pressure p = py = p,, in order to achieve an initial condition
as isotropic as feasible; there is remainig anisotropy of the order of a few per-
cent in some situations, however. This configuration is relaxed until the kinetic
energy is several orders of magnitude smaller than the potential contact energy.
Starting from the relaxed, isotropic initial configuration, the strain is applied
to the top wall and the response of the system is examined, while the side wall
is still pressure controlled. In Fig. 3, snapshots from a typical simulation are

14



shown during compression, displaying two important features. The potential
energy (mean stress is equivalent to the potential energy density) increases
together with the anisotropy (more vertical than horizontal stress-chains).

€,, =0 €,, = 0.011 €,, = 0.065

Fig. 3. Snapshots of the simulation at different €,,. The greyscale corresponds to
the potential energy of each particle (summed over all its contacts), decaying from
bright to dark.

4.4 Averaged Quantities

In the following, most simulation results are presented for the side pressure
p = 200 only. A more detailed study involving various p = 20, 40, 100, 200,
400, and 500 is in preparation (Luding, 2004). There, the behavior of all the
averaged scalar and tensor variables during the simulations is examined in
detail for situations with low and high confining pressure. Here we focus on
the fabric and the stiffness tensor.

The averages are performed such that parts of the system close to the walls are
disregarded in order to avoid boundary effects. This means, that the averaging
volume is only 64 per-cent of the total volume. A particle contact is taken
into account for the average if the corresponding particle-center lies within
the averaging volume V.

4.4.1 Fabric Tensor

The fabric tensor is computed according to Eq. (14), and displayed in Fig. 4.
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Fig. 4. (Left) Fabric tensor, contact number density, deviator fabric, and fabric
orientation ¢g, plotted against €,,. The contact number density is corrected by
a factor go = 1.09, which accounts for the polydisperse size-distribution (Madadi
et al., 2004). (Right) Quality factor for the trace of the fabric tensor scaled by the
analytical prediction gorC from (Madadi et al., 2004), for different pressures p = 20,
40, 200, and 400.

The trace of the fabric first (very rapidly) increases, due to the initial compres-
sion, and then decays at ¢,, ~ 0.003, due to the dilation; eventually, it reaches
an almost stationary value for £,, > 0.04. This stationary contact number
density is only slightly larger for higher pressure, and there is no strong differ-
ence for the deviator and the orientation as function of p. The former grows to
values around 0.56 +0.03 until €,, ~ 0.03, and then decays to 0.40+0.05. The
latter remains close to zero, i.e. the mean fabric is almost always anisotropic
during deformation, but not tilted away from the box geometry. The deviator
grows to slightly smaller magnitude for larger confining pressure (data not
shown here).

Note that the prediction for the trace was obtained from frictionless isotropic
simulations. Given a correction of the order of eight to nine per-cent, the
disagreement with our data of order one to two per-cent in the strongly
anisotropic, frictional case indicates that the prediction by Madadi et al. (2004)
is astonishingly robust. This shows that our definition of the fabric is promis-
ing with respect to its scaling behavior with v and C'. Nevertheless, the hidden
secret is the functional behavior of C as function of the density and possibly
other system- or material-parameters as well.

4.4.2 Stiffness tensor — normal contributions

The normal contributions of the stiffness tensor are plotted in Fig. 5, in units
of k. The elements with an even number of one/two-indices (open symbols) are
non-zero, whereas the entries with an odd number are always much smaller
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(solid symbols). The difference of C7,;; and C%,, indicates the anisotropy
that is build up during the experiment, i.e. the material becomes stronger in
vertical than in horizontal direction. Note that the vertical stiffness rapidly
increases and remains at its saturation value from ¢,, = 0.005 to 0.03, whereas
the horizontal stiffness decreases much slower and also does not saturate. For
deformations larger than ¢,, = 0.03, vertical and horizontal stiffness decrease
and increase, respectively, until they reach their large deformation limit. The
variation of the shear stiffness C7,4, is much less pronounced, but qualitatively
follows the vertical stiffness. The small values of C7,,, and C7,,, (solid symbols)
indicate that the eigen-system is not tilted much from the Cartesian and,
expressed in terms of material behavior, means that the material does neither
respond with a shear stress to a linear deformation nor with a linear stress to
a shear deformation — in average ®. As an interesting observation, we remark
that the entry C7},, is larger in magnitude than C7,,,. We relate this to the
fact that the left and bottom wall of the simulation volume are fixed which
breaks the symmetry of the problem and creates a preferred direction of tilt
induced by the shear deformation and possibly related to (or caused by) the
existence of a shearband.

c"/k

0 0.020.040.06 0.08 0.1

8ZZ
Fig. 5. Normal contributions to the material tensor C. The dashed line is the differ-
ence between vertical and horizontal stiffness, Co_; = C%,99 — CT41;- The isotropi-
cally prepared initial configuration is in fact isotropic Cs_1 =~ 0.
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Fig. 6. Tangential contributions to the material tensor C.

4.4.3  Stiffness tensor — tangential contributions

The tangential contributions C* are plotted in Fig. 6, in units of k?, where
a = k'/k™ is the ratio of tangential and normal stiffness. Note that o = 0.2 as
used for these simulations corresponds to a rather small overall contribution of
the tangential forces to the global stiffness. The results are more complicated
than for the normal contributions due to more different entries: The entries
Cl11 = Clygy = aCP 5y (open symbols) are now identical and behave like the
entry C7,5,. In contrast, the entry Ct,,, = —aC},, (plus symbol) interestingly
has a negative sign. The entries C};;, and Cly,, (dots) are again very small,
and so are the new, possibly different entries C?,5, and C%,, (small dots). The
remaining two entries behave like the major entries in the normal tensor, i.e.
Cly1s = aC?y, and Cly, = aCh,, (x-symbol and star-symbol).

When the tiny entries of C are examined more closely, one observes that
aCly = Clyyy and aCly,, = Cl,,, while the entries Cf;;, = —Cl,y, and
Ct,,, = —Cl,,, have the corresponding opposite sign.

4.4.4 Discussion of the anisotropy and its evolution

As could be expected from the experimental setup, the stiffness matrix behaves
such that the material builds up strength against the direction of compression,

6 If the deformation would not be parallel to the eigendirection of the anisotropy
— as realized here in the bi-axial box set-up — such fully anisotropic behavior can
be expected before critical state flow, until the contact network has adapted to the
deformation.
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and becomes weaker in the perpendicular direction. Both processes happen
with different rate and different qualitative behavior — the vertical direction
reaches its maximum rapidly and saturates, whereas the horizontal stiffness
decreases slower. The tangential springs contribute less to the total stiffness
than the normal springs, according to their smaller microscopic spring stiff-
ness. The entry C!,,, is interestingly negative, and the behavior of the normal
stiffness tensor is reflected in the tangential stiffness tensor entries, however,
in different ones. Finally, we note that the magnitude of the stiffness tensor
entries is typically higher for larger external pressure (data not shown here),
due to a larger contact number density.

Comparing the behavior of fabric and stiffness, one observes that the fab-
ric trace, trF', remains almost constant, but the deviator, Fpp := devF /trF,
approaches a maximal value close to F3*(v,p)trF' = 0.6, a function of, at
least, density and confining stress. The trace and the deviator, respectively,
increase and decrease with the confining pressure. The anisotropy of the stiff-
ness tensor, Cj_s, behaves similar to devF'. Thus, answering the question
what determines the empirical “yield-law”: F, < F3**(v, p), will help to un-
derstand the evolution of anisotropy in granular packings based on geometric
arguments. In relation to experimental observations, see section 5.2.3 in the
paper by Calvetti et al. (1997), we propose the following differential equation,
which describes the exponential approach of the deviatoric fabric to its limit
value:

aF max
e, = Or (F5™ = Fp) | (31)

where Sr = Pr(p) is a material parameter (8r(p = 200) ~ 82), and the
deviatoric deformation ep = ¢,, — €4, is introduced. This equation is solved
by

F
1-— FTDaX = exp (_ﬁFgD) s (32)
D

in agreement with the simulation data for ep < 0.03, with an error margin
of about five per-cent. When the maximal anisotropy is reached, the behavior
changes possibly due to shear band localization, and F'* is reduced to its

critical state value F¢rt,

Remarkable is here also that both FR#trF' and F&*trF are only very weakly
dependent on p. Note that Fp & (Fuax — Fiin)/(Funax + Fin) & (Cogoz —
C1111)/(Ca922+C1111+2C1192), so that the above differential equation describes
the fabric and the stiffness-anisotropy evolution as well.

Note that the formulation of a more general constitutive law for arbitrary

19



orientation of the deformation direction relative to the direction of the fabric
eigen-values is far from the scope of this paper.

5 Conclusion

From the presented data, it can be concluded that there are basically only
three different entries for the stiffness tensor, scaling with the microscopic
spring stiffness used for the simulation. The normal contacts contribute the
shear modulus and two (different) normal moduli. Besides the symmetry of
the stiffness tensor with respect to all indices, another reason for this small
number of quantities is the biaxial geometry that fixes the eigen-system of
the tensorial quantities parallel to the walls. The stiffness tensor due to the
tangential springs also scales with the corresponding spring stiffness and has
also only three independent magnitudes (one entry being negative). This is
interesting, because an anisotropic theory with only three stiffness parameters
(plus the orientation of the eigen-system) is much easier to deal with than
general anisotropic elasticity.

The second interesting finding is that friction has only a small effect on the
scaling relation between fabric trace and the coordination number of the pack-
ing. However, this requires further investigation since the initial density was
very high, and it cannot be excluded from the present data that a critical state
flow with lower density and smaller coordination number is observed - how-
ever, this would contradict the critical state flow concept where, supposedly,
the material has forgotton the initial state.

In the biaxial geometry we observe clear anisotropy of the fabric and the stiff-
ness tensor. The magnitude of anisotropy is maximal at the point of maximum
stiffness that coincides with the end of the dilatant regime with shear band
localization (data not shown here, see Luding and Herrmann (2001); Luding
et al. (2003)). The maximum of the fabric trace, interestingly, is found much
earlier, closer to the onset of shear-banding. When the maximal anisotropy is
reached eventually, the material becomes softer, until the measured quantities
saturate in the critical flow regime. The scaled (dimensionless) anisotropy of
the fabric and the stiffness tensor behave similarly, but the entries can behave
qualitatively different.

A very simple constitutive relation for the evolution of the anisotropy (scaled
deviatoric fabric and stiffness) with deviatoric deformation is proposed for
the case of co-linear deformation and fabric. The limit deviator magnitude
is approached exponentially fast. The microscopic and structural reasons for
the limit in anisotropy is unclear as well as the detailed relation between
stress, strain, and anisotropy. Future research involves a more detailed pa-
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rameter study and three-dimensional simulations of similar systems. Since the
data were obtained from averaging over the possibly inhomogeneous center of
the system, ongoing research is directed towards a better resolution involving
smaller averaging volumes in order to examine the effect of inhomogeneities
on the conclusions above. The interesting finding, which supports the averag-
ing used, is the fact that the eigen-direction of the averaged tensors remains
(almost) parallel to the walls, whereas a tilt is expected inside the shear-band.
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