Sound propagation in dense, frictional granular materials
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ABSTRACT: The understanding of the sound propagation mechanisms (dispersion, scattering, power-spectra,
etc.) inside dense granular matter is still a challenge. Using discrete element simulations we examine the effect
of interparticle forces like friction and thus also the role of rotations. A small perturbation is created on one side
of a dense, static packing of grains and then examined during propagation and when arriving at the opposite side.
The perturbations can be applied to longitudinal, shear or rotational degrees of freedom in order to select the
respective modes of information propagation. In order to bridge the gap between the particle “micro”-method
and the “macroscopic” continuum theory, we use a micro-macro approach for finding relations between the

wave speeds and the components of the stiffness tensor.

1 INTRODUCTION

The mechanisms of wave propagation through a given
material are strongly related to the properties of this
material, like the stiffness and the structure (where
anisotropy comes into play), but also are related
to phenomena like dissipation, including friction, as
well as temperature changes (Liu & Nagel 1992).
When using discrete element simulations one can de-
fine local contact parameters for the material and
tune them in order to examine their particular ef-
fect. Nevertheless, for applications on large scale, the
material obtained with the simulation has to be de-
scribed with a continuum theory and its related vari-
ables (e.g. bulk- and shear-modulus). This points out a
more general problem: The “micro-macro” transition
for granular materials. In this paper the influence of
friction and the difference between modes of propa-
gation (compressive/shear) are examined by compar-
ing the pressure evolution at both sender and receiver
walls. Also the ratio of the two wave speeds (compres-
sive and shear) of an anisotropic packing is compared
with the ratio of the two corresponding components
of the stiffness tensor (obtained by our micro-macro
approach) (Vermeer et al. 2001; Kishino 2001).

2 DESCRIPTION OF THE MODEL

The discrete element model (DEM) (Cundall &
Strack 1979; Herrmann et al. 1998; Oda & Iwashita
2000; Thornton & Antony 2000) is briefly introduced
in this section, together with a brief description of the
model system; for more details see (Luding 2004).

2.1 Discrete Particle Model

The elementary units of granular materials are meso-
scopic grains which deform under the stress develop-
ing at their contacts. Since the realistic modeling of
the internal deformations of the particles is much too
complicated, we relate the normal interaction force to
the overlap ¢ of two spherical particles. If all forces
f;, acting on particle 7, either from other particles,
from boundaries or from external forces, are known,
the problem is reduced to the integration of Newton’s
equations of motion for the translational and rota-
tional degrees of freedom

d? d?
Mi 2T = fi, and Iz'd—tQ%' =t;, 1)
with the mass m; of particle ¢, its position r; the to-
tal force f, = >, fi acting on it due to contacts with
other particles or with the walls, its moment of iner-
tia I;, its angular velocity w; = d¢;/dt and the total
torque ¢;.

Linear normal contact law:

The force acting on particle ¢ from particle j can
be decomposed into a normal and a tangential part,
where the simplest normal force is a linear spring
and a linear dashpot f* = ké + ~04, with spring con-
stant & and some damping coefficient ~,. The conse-
quences of more realistic normal force laws, involv-
ing non-linearities, plastic deformation, and attractive
cohesion forces will be discussed elsewhere. The half-
period of a (damped) vibration around the equilibrium
position can be computed, and one obtains a typical



response time ¢, = w/w, with w = /(k/m;;) — n¢,
the eigenfrequency of the contact, the reduced mass
m;; = m;m;/(m; + m;), and the rescaled damping
coefficient 7y = vo/(2m;;). The energy dissipation
during a collision, as caused by the dashpot, leads
to a (constant) restitution coefficient r = —v,, /v, =
exp(—not.), Where the prime denotes the normal ve-
locity after a collision.

Tangential Contact Model:

The force in tangential direction is implemented in
the spirit of (Cundall & Strack 1979), where a tan-
gential spring was introduced, in order to account for
static friction. Various authors have used this idea and
numerous variants were implemented, see (Brendel
& Dippel 1998) for a summary and discussion, and
(Luding 2004) for a detailed description of the tan-
gential friction force model used (see also the paper
by C. David et al. in this book).

2.2 Model system

We consider a dense, static packing of grains con-
tained in a cuboidal volume, for which two different
configurations have been studied: a regular monodis-
perse packing and a random polydisperse packing;
however, we focus on the regular packing in the fol-
lowing. The packing is bounded by (stress- or strain-
controlled) walls (w) in a first case, and treated as
piece of an infinite, larger sample via periodic bound-
aries (pb) in a second case. Periodic boundaries means
here that if a particle exits at one side of the simula-
tion volume it enters at the opposite side at according
position with the same velocity.

By applying a small perturbation to the system at
one side wall or by moving a layer of particles (de-
pending on the boundary conditions w or pb, respec-
tively), a wave is created perpendicular to either ag-
itating wall or layer. Both compressive (P) and shear
(S) modes of propagation are examined by directing
the perturbations either parallel or perpendicular to
the wave propagation direction.

The regular monodisperse packing is, in our case,
a stack of horizontal square layers, such that, starting
from the bottom, each higher layer lies in the holes
of the one below, see Fig. 1. This makes the packing
similar in the horizontal directions, but different in the
third, vertical direction, hence creating an anisotropic
system. Random polydisperse packings are typically
obtained by compressing the walls of a loose pack-
ing, where the particles have a random radius from a
given size distribution. Before the sound wave is ag-
itated, the system is relaxed until it reaches a reason-
able static equilibrium state, with stress P, such that
particles overlaps are much smaller than their diam-
eter; in the case of the regular homogeneous packing
used in the following, the system can be prepared im-
mediately in a static configuration, whereas a system

with polydisperse particles has to be relaxed, which
can take much longer than a typical wave propagation
simulation.

Figure 1. Regular monodisperse packing

The packing used here contains N =~ 6000 parti-
cles with radius a = 0.001m. The mass of the spher-
ical particles is m = p(4/3)ma®, with the density
p = 2.103kgm~3. The total mass of the system is
thus M =~ 0.0645kg. The material parameters are
k=10°Nm~1, k, = 0.2k (tangential spring stiffness),
and v, = 0.04kgs~!. This leads to a typical con-
tact duration ¢, = 2.25 105 s and a restitution coef-
ficient of » = 0.9. As integration time-step we used
5tMD =4.10""s.

3 SIMULATION RESULTS

In the following, the wave propagation is first exam-
ined in systems with walls and varying friction co-
efficients, starting with smooth, frictionless particles.
Then the propagation speeds of different modes (com-
pression/shear) are examined in a system with peri-
odic boundaries.

By simply looking at the pressure as function of
time at both agitated and response walls we can al-
ready get some information on the wave, see Fig. 2.
The motion of the agitation wall leads to a rapid
stress increase, which travels into the system towards
the opposite wall. Modulations of the stress, much
smaller than the agitation peak-stress remain through-
out the whole simulation. The receiving wall experi-
ences the increase in stress with a time delay and with
much slower rate of change. The wave is reflected
from the receiver wall and travels back and forth be-
tween agitation and receiver wall several times, ever
decreasing in amplitude (data not shown here).

The system size divided by the time difference be-
tween the two peaks gives an approximated wave
speed. The difference in amplitude (smaller at the
response wall) and shape (broader at the response
wall) is caracteristic for the wave dispersion. Thus,
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Figure 2. Normal stress (scaled by the equilibrium stress Fy),
plotted against time, at both agitated and response walls.

speed, amplitude, and shape already allow for pa-
rameter studies and analysis of the wave propagation
mechanisms. However, in the following, we focus on
the wave-speed for different strength of friction.
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Figure 3. Scaled normal stress plotted against time at the receiver
wall, for different friction coefficients p.

Using the same system as before, we only activate
Coulomb friction between the particles, and vary the
friction coefficient u. For the same agitation as be-
fore, with some larger amplitude of agitation (larger,
but still small enough that no contacts are opened), we
focus now on the receiver wall, see Fig. 3. Note that
the wave speed seems to be independent of the agita-
tion amplitude — at least for the still small amplitude
used. Comparing simulations with different friction
strength, first, a difference in the amplitude is visible,
and second, stronger friction makes the wave propa-
gate faster. This can be related to the stiffness of the
material which is higher with friction, i.e. the stiffness
is increased due to the addition of tangential springs in
the particle model. The increase in stiffness is rather
small due to the small ratio of tangential to normal
stiffness k;/k, = 0.2.

Note that smaller agitation amplitude and larger
friction coefficients (x > 0.01) do not lead to different
wave-shape or -speed. This is due to the fact that this

sample was created without friction, such that at the
beginning of the agitation, all contacts have no tan-
gential force, i.e. friction is initially inactive. Pertur-
bation leads to a stretching of tangential springs and —
only for small enough friction coefficients — to sliding
contacts. If the friction coefficient becomes too large
(fixed amplitude), the sliding limit is not reached. In-
creasing the amplitude (fixed friction coefficient), on
the other hand, can lead to sliding contacts. By de-
creasing the friction coefficient such that certain con-
tacts reach the limit of the Coulomb cone (x = 0.001),
we get something in between the extreme cases.

Assuming that the granular material behaves like
an elastic continuum, the anisotropic relation between
stress- and strain-increments involves a material ten-
sor C of rank four. In symbolic and index notation
(Einstein convention with summation over double in-
dices) this reads in incremental form:
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with the stress- and strain-rates on the left and right
respectively. This describes also the response of our
packing and implies the assumption of a constant,
time-invariant material tensor, which can be true only
for very small deformations, and does not allow for
opening or closing of contacts or even large scale re-
arrangements.

In the isotropic case, continuum theory gives a di-
rect relation (first order approximation) between the
wave speeds (P- and S-wave) and the material mod-
uli: pvp? = XA+ 2u and pvg? = p, with vp and vg the
P- and S-wave speeds, respectively, p the bulk mate-
rial density, and X, u the Lamé coefficients in isotropic
materials.

In a dense, regular, monodisperse packing, these re-
lations are a reasonable approximation as far as we
are in the long-wave limit (wavelength much larger
than the particle size). Making the assumption that in
our packing (special anisotropy) such relations also
hold, we can write: pvp? = C,,,, and pvs? = C,z.z,
for waves propagating in the z-direction. Although
the relatively “small” size of our packing does not
necessarily allow to reach the long wavelength limit,
in order to test our simulation with respect to these
relations, we compare the ratios between the wave
speeds (vp/vs)?, and the related stiffness tensor en-
tries szzz/czazza:-

This comparison is relevant since the dispersion
curves for P- and S-wave in a regular lattice have
the form: w = vpsin(k,4), and w = vp sin(kyq), With w
the angular frequency and k4 the normalized wave-
number. Thus also the ratio of their derivatives,
vp/vs, does not depend on the wave number, see
(Suiker et al. 2001). From the same packing as before,
but using now periodic boundaries (for practical rea-
sons), we create a shear wave by shifting a horizon-
tal layer in a horizontal direction (say x). Shifting the
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Figure 4. Components of the stress tensor: (Top) o,
(compressive-wave) and (Bottom) o, (shear-wave) as function
of time at the shifted layer at zo and a second layer at z;, with
21 — 29 = 0.03m (with friction x = 0.5 and Py ~62kNm~2).

same layer in the direction of propagation (z), we get
a compressive wave. The same type of graph as be-
fore is obtained (see Fig. 4) by taking the components
of the stress tensor averaged in different layers at dif-
ferent times. The stress tensor is calculated accord-
ing to the standard definition for granular material,
for more details concerning the averaging method, see
(Luding 2004). From this we get two different speeds
vp ~ 223ms~! and vg ~ 155ms~! and the corre-
sponding ratio v2 /v% a 2.07. On the other hand from
a micro-macro approach we can express a macro-
scopic stiffness tensor for the packing, see (Lud-
ing 2004), which gives C,,., ~ 66068000 kgmts~2
and C,,.. ~ 33034000kgm~1s~2, with the ratio
Clr22/Chuze = 2 (With volume density v ~ 0.74). We
observe thus a nice agreement between the two ratios.

4 CONCLUSION

In this paper we showed the results of three dimen-
sional simulations for wave propagation in a dense,
static, regular, monodisperse packing of spheres, for
different propagation modes, compressive (P) and
shear (S), and also in the case of the P-wave for differ-
ent friction coefficients. We compared the ratios of the
P- and S-wave speeds, v% /v% with the corresponding
stiffness ratios and obtained quantitative agreement,

although we only looked at the normal contributions
for the stiffness tensor. This indicate the consistency
between our model and classical theory in regular ho-
mogeneous packings, and thus is the first step towards
the understanding of wave propagation in polydis-
perse, inhomogeneous, anisotropic, dense, frictional
granular materials.
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