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ABSTRACT: A new hierarchical cell algorithm in combination with multi-pole expansions of the long-range
forces in a Molecular Dynamics environment is presented. The model, based on the linked cell algorithm, is
applied to ring-shaped particle aggregates. For such systems the relevance of the interplay of both short-ranged
and long-ranged interactions will be the topic. We will present the time evolution of astrophysical objects with
dissipation and self-gravitation, like e.g. massive planetary rings or dust disks orbiting around central objects.
Of special interest is the cluster and structure formation of such particle systems in the presence of dissipation
and self-gravity.

1 INTRODUCTION

For discrete particle systems with long-range interac-
tion potentials like electrically charged granular gases
or astrophysical rings with self-gravity it is always a
challenge to handle the

�����
-potential correctly, as it

is shown and discussed in several fundamental books
and publications (Eastwood et al. 1980; Barnes & Hut
1986; Allen & Tildesley 1987; Greengard & Rokhlin
1987; Barnes 1990).
The inclusion of particles’ mutual gravitational forces
in simulating astrophysical rings was first presented
for azimuthally complete systems (Lukkari & Salo
1984), involving partially elastic collisions and gravi-
tational encounters for a small number � of particles.
Other authors (Wisdom & Tremaine 1988) consider
only the vertical component of self-gravitation in the
equations of motion in order to approximate the sit-
uation in Saturn’s rings. The general importance of
inelastic (dissipative) collisions in granular systems is
shown in (Luding & Herrmann 1999).
While the computational time expense of the con-
ventional treatment of long-range interacting particles
(where all particles interact with ���	� others) scales
with 
������� , the new method described in this pa-
per, the hierarchical linked cell algorithm (HLC), will
lead to more efficient modeling. After a description
of molecular dynamics and an introduction to the
HLC algorithm, some results are shown. We use the
mean vertical thickness of the rings for comparing this
model with the conventional approach and will inves-
tigate how do short-ranged inelastic collisions inter-
play with long-ranged gravitational forces.

2 MOLECULAR DYNAMICS
Discrete particle molecular dynamics (MD) in 3D is
used for numerical simulations of azimuthally com-
plete ring systems. Time is discretized and for each
(constant) time-step the equations of motion are inte-
grated. Particles are treated as soft spheres and during
a collision between particles � and � , with radii ��� and
��� , a linear repulsive force and dissipation of kinetic
energy in normal direction, ������������� ��� ����� �!���#"
�$�%� �'& ���#"(��� & , is considered (see the linear spring
dashpot model described in (Luding 1998)). The loss
of kinetic energy at each collision is expressed by
the coefficient of normal restitution

� �*)�+-,/.10�2� � )3,4.50��� that
gives the ratio of the relative velocities )����6� & 7 ��� & �& 7 �'" 7 � & in normal direction after (primed) and be-
fore (unprimed) the collision. The long-ranged forces
are split into the external volume force (each particle
interacts with the central potential with mass 8:9 ) and
self-gravitational force (each particle interacts with all
others). To summarize, during a time-step on one ring
particle � always long-ranged forces are acting,

; volume� � "=< 8>�?8@9� ��A9
���A9� �B9 (1)

; self� � "=CD8>�
EF
�HGJILK �NMGO� 8P�

�Q���� ����SR (2)

and, if
� ���UTV�W�3XY��� , short-ranged contact forces as

well

; coll� �[Z\��W�]XS���^" � ���%�_�Q���^"a` . �
7 ���^bc�Q���%�_�Q���6d (3)



Here is
� �A9^� & �3�A9 & � & ���e"S�e9 & the distance of � from

the central mass with �'9 as its position vector, ` . a
measure for how much kinetic energy is dissipated at
each collision and Z the spring constant that defines
the stiffness of a contact. Cf�hgc< defines via g the
strength of the self-gravitation of the ring particles,
where < denotes the gravitational constant.

3 THE MODEL
Our algorithm for handling long-range interaction po-
tentials is set up onto a linked cell structure that is a
regular lattice into which the system is divided and
the particles are sorted, see also (Allen & Tildesley
1987). This gives the advantage that neighbor particle
search and the computation of long-range forces (in
the neighborhood) can be done in a single (first) step.

3.1 Linked Cell Algorithm (LC)

In order to avoid the computational time expense of

>�!���i� for collision detection for short-range forces
of all particles with all other particles, the system is
divided into �kjl8mjan linked cells with differently
large edges. Each cell then has 26 neighbor cells, as it
can be seen in Fig. 1. If the smallest LC size is larger
than the largest particle diameter it is sufficient that
particles in a (linked) cell of interest ( gco�� ) are checked
for collision with particles only in neighboring cells
because it is impossible that they encounter particles
that are much more distant. This reduces the time ex-
pense to 
���DpV� , where p is the typical number of
particles within gco�� and its 26 adjacent cells. Even
though LC is efficient for mono-disperse systems it
is less efficient for strongly poly-disperse particles
(Muth et al. 2004).

3.2 The Hierarchical Linked Cell Algorithm (HLC)

The HLC method is built up on the linked cell struc-
ture and can be explained as follows: let us pick out

cell of interest (coi)

26 neighbor cells of coi

front neighbors

rear neighbors

Figure 1. The three dimensional linked cell neighborhood, in-
cluding the cell of interest ( q_rts ) and its 26 directly adjacent
neighbor cells (front and rear cells are shifted apart from the
other cells).

one gco�� which we also call a hierarchy 0 (H0) cell.
This g%o�� and (in 3D) its 26 directly neighboring linked
cells are important for the linked cell neighborhood
search (as shown in Fig. 1) and, in the HLC context,
represent one cell in the H1 level. In the same spirit
27 H1 cells make up one cell of H2 level – and so
on. Note, that the higher level cells are all based on
the present g%o�� . Let us now construct an inner cut-
off sphere around our particle of interest (ueo�� ) some-
where in g%o�� , see Fig. 2, whose radius v in equals the
smallest LC edge for reasons of symmetry. For long-
range interactions, all particles inside this sphere are
treated separately, but those outside (but still inside
the H1 level), for each single adjacent linked cell, are
grouped together to pseudo-particles. Their masses
and centers of mass are obtained from the particles
inside the H0 cells they are made of. Obviously, in
the H1 level, we have to consider 27 pseudo-particles
interacting with u�o�� . All particles in H2 contribute to
26 more pseudo-particles which interact with u�o�� but
are more distant. We can proceed this approach until
the highest hierarchy w max level is reached, approach-
ing a computational time expense of 
��� log x��y� , if
�z�{8|�}n . Particular attention requires the imple-
mentation of an outer cut-off sphere with radius v out

inside level w max, see also Fig. 2, for symmetry rea-
sons. This problem will be discussed elsewhere.

3.3 Pseudo-particles and Multipole Expansion

An ensemble of n\~ particles can be composed into a
pseudo-particle if the distances

� �_~ of the particles �
of the ensemble � from the ensemble’s center of mass
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Figure 2. The HLC structure sets up onto the linked cell struc-
ture, shown in 2D for one linked cell as an example. Here is�

max ��� with non-periodical boundaries.
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are all much smaller than the distance
� �A~ of the ueo��

from the center of mass of the ensemble. v in men-
tioned in 3.2 represents a lower limit of

� �A~ . A series
expansion of the potential will then lead to monopole,
dipole, quadrupole and higher terms in powers of the
inverse distance

����� �A~ . The monopole term,

; self�A~ ��"�C 8>�1� .c���GJI 8P�� ��A~
�3�A~� �A~ R (4)

looks similar to Eq. (2) but refers to only one distant
pseudo-particle � . Dipole and quadrupole terms de-
pend also on the ensemble of distances

� ��~ and can be
found in several text-books.

4 RING-SHAPED PARTICLE AGGREGATES
In our simulations we distribute � = 9108 mono-
disperse particles of diameter �U����� = 0.000786 a.u.
over a ring with mean radius v = 0.151 a.u. and an
initial dynamical optical depth of � = 0.3 (the ratio
of the total surface area of particles to the area of the
ring they reside in), which is actually a very dilute
system. The following results are obtained during the
first 0.3 Keplerian periods � Kep, where � Kep � 415.000
simulation time-steps. For a first investigation of the
evolution of ring systems we implemented the HLC
method only up to w max = 2 and for the force calcula-
tion we use only the monopole term, see Eq. (4).
From various simulations of collisional dynamics of
ring aggregates it is well-known (Pöschel & Luding
2001) that reaching a steady state depends drastically
on the parameters of the dissipation model, i.e. on

�
.

Each particle has, depending on its distance from the

Figure 3. A ring aggregate of � = 9108 particles with no dis-
sipation. Top left: initial configuration, � = 0. Top right: � = 0.3�

Kep, q = ���i�H�i� . Bottom left: � = 0.3
�

Kep, q = ���i���c� . Bottom
right: � = 0.3

�
Kep, q = �#�t���c� .

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0  0.05  0.1  0.15  0.2  0.25  0.3

s 
/ d

t / TKep

c = 2e4
c = 2e5
c = 2e6
c = 2e4
c = 2e5
c = 2e6

Figure 4. The scaled mean vertical height ����� is plotted against
time in units of

�
Kep for a qualitative comparison between the

conventional approach (dots) and HLC algorithm (dashed lines),
here is always � = 1.

central potential, a certain azimuthal Keplerian veloc-
ity ) Kep �}�!<U8@9 ��� �A9_� I� � which leads to differentially
orbiting ring regions. The resulting shear stress trans-
forms systematic into random motion, where the lat-
ter is equivalent to the temperature (standard devia-
tion of particles’ velocities) of the system and leads
to a spreading of the ring. Dissipation counteracts this
heating and gives rise to collisional cooling, governed
by
�
. If
�

is chosen larger than a threshold value
� 9?�

the ring will spread out both in radial and vertical di-
rection, which is going ahead with an increasing tem-
perature. If

�
lies below the threshold value the ring

will be quasi-stable.
Now, what is the effect of self-gravitation on the

cooling process? Fig. 3 shows examples for non-
dissipative (

�
= 1) simulations with different values

of g . Quite remarkable is the early formation of lumps
in the case g = �6b �1�W  . To evaluate the new method, in
Fig. 4 the HLC implementation is compared with the
��� method by observing the evolution of the mean
vertical ring width ¡ (twice the standard deviation of
the vertical position components of all particles) in
time. The results show only a little deviation from
each other, even for the largest g value used. One can
see here, that for stronger self-gravity the ring’s re-
laxation time is much shorter than for weaker self-
gravity.
In Fig. 5, a closer look to the interplay of self-gravity
and dissipation is taken and again the time evolution
of ¡ is shown. In both panels the results with self-
gravity are compared with those without, for differ-
ent
�
. They show that for moderate mutual gravita-

tional forces (top panel of Fig. 5) there is a weaker
increase of height of the ring than it can be seen for
the corresponding non-gravity results. This can be ex-
pected since the effects of gravitational attraction and
granular cooling are acting against the effect of verti-

3



 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0  0.05  0.1  0.15  0.2  0.25  0.3

s 
/ d

t / TKep

r = 0.5
r = 0.6
r = 0.8
r = 1.0
r = 0.5
r = 0.6
r = 0.8
r = 1.0

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0  0.05  0.1  0.15  0.2  0.25  0.3

s 
/ d

t / TKep

r = 0.5
r = 0.6
r = 0.8
r = 1.0
r = 0.5
r = 0.6
r = 0.8
r = 1.0

Figure 5. Scaled mean vertical height ����� plotted against time in
units of

�
Kep. Top panel: comparison between self-gravity with

q = �¢�%�H�i� (open symbols) and no self-gravity (solid symbols)
for different dissipation � . Bottom panel: the same as in the top
panel, but with q = �£�����c� .
cal spreading. For stronger self-gravity (bottom panel
of Fig. 5), in the beginning the self-gravitation con-
tracts the ring stronger, but later on it causes ¡ in-
creasing faster than in the non-gravity case. After a
strong increase, for all simulations (except for

�
= 1)

¡ approaches the same saturation level, independent
from
�
. In case of no dissipation, we observe a much

stronger increase and no significant descent within the
simulation time. Thus, with strong self-gravity, the
elastic system behaves strongly different from the in-
elastic ones.

5 CONCLUSIONS

We introduced a new algorithm that allows for han-
dling

�����
-long-ranged potentials quite accurately.

This method takes linked cells hierarchically up to
larger length scales into account, shows nice agree-
ment with the conventional �y� approach and is faster.
Only for strong forces there occur small differences
between the curves. This can be the result of both the
truncation of the long-range potential by the outer cut-

off sphere already done in H2 level and the usage of
only the monopole term in the force computation.
Self-gravity generally tends to keep the ring narrow,
i.e. the vertical height is smaller as compared to sim-
ulations with no self-gravity. Stronger self-gravity
shows a shorter relaxation time, after which the ring
has taken a steady-state. For high enough dissipation
and strong self-gravity there can be observed a satu-
ration level, which all the simulations have in com-
mon. In conclusion, we have shown that both dissipa-
tion and self-gravity affect the ring dynamics and thus
must be taken into account.
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