
Collision Detection and Administration

Methods for Many Particles with Different

Sizes

Beate Muth a, Micha-Klaus Müller b, Peter Eberhard a, and
Stefan Luding b

aInstitute B of Mechanics, University of Stuttgart, Pfaffenwaldring 9,

70550 Stuttgart, Germany,

bParticle Technology, NSM, DelftChemTech, TUDelft,

Julianalaan 136, 2628 BL Delft, The Netherlands

Abstract

This paper deals with the calculation of the motion and the administration of the
contacts for systems with many colliding bodies of round shape and possibly large
size-differences. Both two dimensional (2D) and three dimensional (3D) cases are
investigated, while the efficiency of the employed algorithms is compared. For the
integration of the equations of motion, standard methods from Molecular Dynam-
ics (MD) and Discrete Element Methods (DEM) are used and, to reduce the effort
that is typically used for collision detection, some sophisticated administration al-
gorithms for the neighborhood search are implemented. Especially for large systems
with many particles with a wide, polydisperse size distribution, this is a challenge.
In the following three methods, the Verlet-Neighbor List (VL), the Linked Cell (LC)
method, and the Linked Linear List (LLL), are discussed and compared for 2D and
3D. Only LLL performs well for strongly different particle sizes.

Key words: contact detection; neighborhood search; molecular dynamics (MD);
discrete element method (DEM); polydisperse size-distriution

Email addresses:

Beate.Muth.76@web.de (Beate Muth),
M.K.Mueller@tudelft.nl (Micha-Klaus Müller),
eberhard@mechb.uni-stuttgart.de (Peter Eberhard),
s.luding@tudelft.nl (Stefan Luding).

Preprint submitted to Elsevier Science 2 May 2007

1 Introduction

In order to determine the dynamical behavior of systems consisting of many
objects, particles or atoms, several fully developed approaches exist. The main
differences are the assumptions about the particle shapes and their behavior
on collisions. Here we examine spherical particles, that could be treated as (i)
perfectly rigid objects, as (ii) non-deformable objects with (small) overlaps at
the contacts, or (iii) as deformable bodies with a peculiar contact dynamics.
Systems consisting of bodies with negligible deformations, i.e., case (i), can be
described by means of the so-called multibody system method (MBS) [12, 17],
and mass point systems may be regarded as a special case of the MBS. Us-
ing a molecular dynamics (MD) [1] also called the discrete element method
(DEM), i.e., case (ii), fake-deformable bodies can be represented by a col-
lection of non-deformable particles connected by springs [14]. The difference
between MD and DEM are the interaction forces between the particles, other-
wise both methods are similar in spirit. For completeness, we remark that the
so-called event-driven (ED) molecular dynamics [4, 8, 15] also assumes hard
(rigid) spheres and thus can be seen as bridging the gap between MD/DEM
and MBS for some special and simple situations. For more advanced stud-
ies of flexible, deformable bodies, i.e., case (iii), usually the Finite-Element-
Method (FEM) or the Boundary-Element-Method (BEM) are used, see [2, 13].
Each of these methods has its own advantages and disadvantages. While the
MBS is in general characterized by relatively short computation times due to a
small number of degrees of freedom, deformations cannot be handled. On the
other hand, systems investigated using FEM have a large number of degrees
of freedom that yield a rather extensive number of equations of motion, but
deformations are properly taken into account. The MD/DEM methods can be
seen as a compromise in so far that the number of degrees of freedom is kept
small by assuming overlap dependent contact force laws that rely on certain
assumptions and do not take the eigen-modes of a particle into account.
An expansion of the MBS method for elastic bodies is e.g. presented in [9].
Hybrid MBS/FEM contact calculations are presented in [2], where colliding
bodies are examined by the FEM approach in order to incorporate defor-
mations while all the other bodies of the system are regarded as rigid. This
approach combining FEM and MBS makes use of the advantages of both
methods. However, these advanced (hybrid) approaches share the drawback
that the number of contacting particles is quite limited due to the detailed
modeling involved for each particle.
Alternatively, very efficient methods were developed for molecular dynam-
ics and discrete particle systems, i.e., granular matter [3, 15, 20]. Molecular
(gases, fluids, solids) and particulate systems, charged or neutral, can be inves-
tigated [1, 7, 15]. The motion and the contacts of many thousands of particles,
involving body forces like gravity and interactions with the boundaries of the
system, can be modeled. The formulation of the interaction forces between

2

the different bodies is based on models as simple as possible, in order to keep
the calculation time feasible. Usually, very small penetration of otherwise non-
deformable particles are accepted, compare [1, 5, 16, 20], and are used as the
basis of the force calculation. One of the essential assumptions, which allows
for efficient algorithms for granular systems, is that the particles interact only
when in contact.
For a given pair of particles, a normal contact force acts in the direction oppo-
site to the penetration – along the center-to-center line, and is usually modeled
as a spring dashpot element that combines elastic and viscous response on the
contact level. The spring force is proportional to the penetration of the par-
ticles, see [5, 11], corresponding to a penalty force. The simplest force model
is linear, but also various non-linear models are available [5]. Apart from the
repulsive, and viscous contact forces, also attractive forces may occur due
to adhesion/cohesion, or electro-static interactions. The latter are typically
long-ranged and are not subject of this study, where we focus on short range,
contact interactions only. These also could involve plastic deformation and
friction as alternative sources for dissipation; we refer to Ref. [6] for more
details and restrict ourselves to the most simple, linear contact forces in the
following.
For a system consisting of n particles with arbitrary interactions, the required
calculation operations for the force computation will be of the order O(n2),
causing huge computational effort. However, for the systems with short-range
contact forces, only particles in their respective neighborhood can interact, so
that a tremendous reduction of computational effort down to the order O(n)
can be achieved [1].
In this study, we consider n spherical bodies with radii ri, consecutively num-
bered from i = 1, . . . , n, where the radii can be different. The used contact
force model is based on linear spring dashpot elements, so that the equations
of motion are

mi

d2

dt2
ri =

∑

j

kδij + dδ̇ij
︸ ︷︷ ︸

fij

, (1)

with the masses of the bodies mi, the positions ri, and the forces fij acting
between i and j, while the sum runs over all particles j in the neighborhood
of particle i. Here, k is a spring constant, while d is the damping coefficient
for the dissipative force. The overlap between two particles i and j is

δij = ri + rj − (ri − rj) · nij , (2)

with the normal vector between both particles, nij, parallel to the line con-
necting their centers. These contact forces are applied only for the case δij > 0.
Frictional forces as well as adhesive contact forces are not considered here. The
equations of motion are solved by means of the Verlet integrator, which is an

3

explicit integrator. The new positions of the particles are computed based on
the information about the actual positions and the positions during the previ-
ous time step, that means without knowledge of the velocities of the particles.
In section 2, different approaches to save computational effort as mentioned
above are introduced and discussed. In section 3 these methods are compared
using several test examples and finally, in section 4, the results are summarized
and discussed with respect to possible applications.

2 Neighbor Search Methods

The following three methods presented can be used in order to find neighbor-
ing bodies of a particle efficiently. Two of these methods, VL and LC, identify
the neighboring particles of a body by regarding special regions of the system
and considering all particles within the same region as neighbors. As both
methods operate with similar ideas, they are also sometimes used simultane-
ously [16]. The third method, LLL, is based on a different approach. Around
each body a bounding box is placed which is proportional to the particle size;
every body whose bounding box is colliding with the bounding box of another
particle is considered to be a neighbor of this particle and thus a potential
contact partner [18].
For each method the neighboring particles are stored in a neighbor data-
structure (NDS) after some pre-sorting. The collision detection needs to be
done only for neighboring and potentially colliding bodies. Hence, the neces-
sary calculation operations for collision detection can be reduced down to an
order proportional to the number of particles in the system, i.e. O(n), because
the update of the NDS can be optimized. In the following we will examine
whether this expected performance also holds for LLL – but first the three
methods are introduced.

2.1 Verlet-Neighbor List

The first method presented, the Verlet-Neighbor List (VL), is quite similar to
Verlet’s originally proposed method. As shown in Fig. 1 an imaginary sphere
is drawn around each particle of the system, e.g., with a radius of five times
the maximum radius of the particles, compare [1, 10]. Particles within these
enclosing spheres are considered as neighbors of the particular body in the
middle of the sphere. The optimal extension of the zone around the bodies
depends on the velocity of the particles and on the density of the whole system.
For each particle a list is generated, where all neighboring bodies are stored [21].
In order to compile these neighbor lists, for each body all particles of higher
numbers than the body itself have to be tested, whether they lie inside the test

4

sphere or not. Particles of lower numbers are not tested since no pair needs
has to be checked twice.

4
5

1

3 2

2 −
−
−

−1
4
3

5
−

−
3

54

Fig. 1. Verlet circles (2D) or spheres (3D) and particle storage in lists.

Creating these neighbor lists therefore requires n(n − 1)/2 calculation steps,
which means the number of necessary operations is still of order O(n2). How-
ever, the lists do not have to be updated for every time step. The update
frequency depends on the density of the system, the velocity of the particles,
and on the size of the spheres. For relatively dense systems, an update of
only each 100th time step can be enough. Like the value for the radius of the
spheres around the particles, also the update frequency is a parameter that can
be tuned and, in principle, has to be checked for every new simulation. Both
parameters are interdependent, because the value for the radius is inversely
related to the rate at which the list must be rebuilt, see [16]. The smaller the
zone around the particles, the more often the reconstruction of the lists needs
to be done. The larger it is, the more particles belong to the neighborhood
requiring more contact calculation time.
The real collision detection and force calculation, that requires additional ef-
fort, especially for more advance interaction models, now only has to be done
for the particle pairs which are stored in the lists. That leads for the example
of Fig. 1 to just four pairs (and force calculations) instead of the originally
required ten.

2.2 Linked Cell Method

An alternative approach that is often used to indentify the neighbors of a
body is the Linked Cell (LC) method, where the system is divided into a
regular lattice of, e.g., for cubic systems, m×m×m cells (3D) [1]. Non-cubic
systems can also be observed and the cell shape can be chosen as to fit the
system with more or less cubical cells. The optimal size of the cells, as before
the size of the Verlet spheres in the VL method, depends on the velocity of
the particles and on the density of the system, but the cell sizes all need to
exceed at least the size of a particle in length. The major difference between
LC and VL is, that for LC the cells are not sticked to particles and thus are

5

not moving along with the particles. The size of the cells can be selected such
that one cell contains about three particles, see Fig. 2. Then, if particles are
temporarily assigned to special cells on the basis of their current positions, it
is obvious that interactions are only possible between those in the same or in
directly adjacent cells [16]. This means for a 2D system, that only particles
within nine different cells for 2D and 27 cells for 3D may contain neighbors.
Again, as in the previous description for VL, particle pairs are only checked
once. Thus, not all cells have to be tested, but only the center cell plus half
of the neighboring cells. That means one plus four (2D), Fig. 3, or one plus
thirteen cells (3D), Fig. 4. Cast into a formula, we have (3d + 1)/2 cells to
examine, where d = 2 for a 2D system and d = 3 for a 3D system.

3 4

5 6 8

9 10

14 15 16

21

7

13

11 12

6 11
5

2
1

9

15
14

12
13

3

10
8

7
4

Fig. 2. Linked cells numbering and particle numbering of a 2D system.

Fig. 3. Cells that need to be investigated (grey) for the neighbor list of bodies in
cell 6 (dark grey) for the example in Fig. 2.

Fig. 4. Neighboring cells to be investigated for a particle in the dark grey cell in 3D.

For the 2D system illustrated in Fig. 2 the NDS for body 1 contains the

6

particles from 2 up to 15. For particle 2 all particles of the neighboring cells
except number 1 are neighbors and for particle 6 only particles of the four
neighboring cells are neighbors. This is due to the fact that also within a cell
the same strategy is applied in order to avoid multiple checks of the same
particle pair.
In such a d-dimensional system, on average, one has nc = n/md particles in
each cell, with n, the number of bodies in the whole system and m, the number
of cells in each direction. Therefore, as an estimate, on average, only

p ≈

[
(

3d
− 1

) nc
2

2
+

nc(nc − 1)

2

]

md =

[

3d nc
2

2
−

nc

2

]

md (3)

distances need to be examined (for the majority of cells that are not situated
along the edge of the system). The first term takes neighbors outside into
account, while the second those inside the cell of the particle of interest. The
factors 1/2 are due to the fact that every pair shall be checked only once. Since
the bracket in Eq. (3) equals the approximate number of necessary operations
for one cell, it has to be multiplied by the number of cells in the system, md.
Another estimation for the average number of pair checks was given in [1] as

p ≈ 4.5nnc, (4)

for 2D, which is almost identical to Eq. (3) for large nc. For each particle,
in half of the nine cells approximately nc particles will be neighbors. This
contrasts with

p =
1

2
n(n − 1), (5)

which is of order O(n2) if no neighborhood search method is used. Clearly, for
systems with m ≤ 3, there is no benefit in using any NDS, but usually the
systems observed possess much more cells, if the number of particles is high
enough to justify a method like the described ones.

2.3 Linked Linear List

The third possibility described in this comparison, also a very efficient method
used to keep track of neighbors for large systems, is the Linked Linear
List (LLL) [18]. This method is quite different to the other approaches. In
a first step, bounding boxes are laid around each particle, Fig. 5, that are
sized in such a way, that each particle fits exactly in its box. The edges of
each bounding box are aligned parallel to the system axes.

7

1

3

2

4

Fig. 5. Bounding boxes around each particle.

Linear List Generation

In a next step the bounding boxes are projected separately onto the system
axes. Such a projection onto the x-axis for the situation in Fig. 5 is shown in
Fig. 6. In the following, only the order of the beginnings ‘b’ and endings ‘e’
of the projections of the bounding boxes along the axes is of interest. For this
reason the sequences are stored in lists.

e1

3

b3 e3

e4

3 4

b4e3b2b1 e1

1

b1

1

e4

4

b4b2 e2

b3 e2

x

2

x

2

Time t+ ∆ t

Time t

Fig. 6. Particles projected on the x-axis for two different times, [18].

For a 3D system, three different projections are necessary and, therefore, three
lists will be generated. Each of them has a length which corresponds to twice
the number of particles in the system. If there is the beginning, ending, or
both, of another particle in between the beginning and ending of a particular
body, then there will be an overlap of the projections of the bounding boxes
of both particles along this axis. A collision of two bounding boxes exists for
an overlap of these projections along each axis.

8

Update of the Linear Lists

Checking whether there is some part of a projection in between the beginning
and ending of another projection for each particle along each axis still takes a
lot of time. But, although these lists have to be updated for each time step, the
necessary calculation times can be reduced to an amount proportional to the
total number of particles in the system, as there has to be done only an update
of the old list for each new time step. That corresponds to sorting an already
nearly sorted list. This update can simply be done by going through the lists
sequentially and checking for any new changes in the order. The occurring
changes are usually permutations only, compare e.g. Fig. 6, where e3 and b4

have been changed. If the order of the beginnings and endings does not have
to be changed, the collision status of the particles also will remain unchanged.
While seeking for new colliding bounding boxes by looking for permutations
in the lists, four different cases have to be discerned, compare [18].

(1) Two beginnings are changed, which means the bounding boxes have been
overlapping and continue to overlap.

(2) Two endings are changed, which also means the bounding boxes have
been overlapping and continue to overlap.

(3) A beginning and a proximate ending are changed, which means a so far
occurring overlap has to be removed.

(4) An ending and a following beginning of another particle are exchanged,
which means a previously non-existing overlap has to be taken into ac-
count.

For the first two cases, except for the exchange, nothing has to be done in
the lists, as the collision status between any particle will not change. If a
collision along an axis has to be removed, or if there is a new collision between
two particles along an axis, the collision information along the other axes is
essential. One has to know whether there is a new or old collision along all axes
and, therefore, between the bounding boxes or, whether there is no overlap
any more between two so far colliding bounding boxes in at least one direction.
For this reason, a second and a third column (for the 2D case) are added to
the lists, that store the information of the positions of beginnings and endings
along the y-axis, see Fig. 7, respectively. In each row, the positions are stored,
of beginnings (column two) and endings (column three) of the particle of the
first column. For a 3D system also a fourth and a fifth column with the position
information of beginnings and endings along the z-axis have to be added.
For our 2D example going through the list along the y-axis, see Fig. 7, leads
to the potential collision between particles (3/4), and (1/2). As the location of
particle 3 along the x-axis is from position three to five, whereas the beginning
of particle 4 has the position four, there is also an overlap of bounding boxes
3 and 4 along the x-axis and, therefore, a real collision of the bounding boxes
of particles 3 and 4.

9

b1 e1 b2 b3 b4 e3 e2 e4 x
b
b
e
e
b
b
e
e

4

3

4

3

1

2

1

2

4 7
3 5
4 7
3 5
0 1
2 6
0 1
2 6

y

3rd pos.
5th pos.

Fig. 7. Lists containing also the position information along the other axes.

Particles 3 and 4 are now considered to be neighbors, that have to be checked
for collision. Therefore, a linked list is created in the form of a sparse matrix
where the colliding bounding boxes are stored. Collision pair (3/4) is stored
at position 3, 4 of the matrix, see Fig. 8, that shows particle pair storage for
an arbitrary configuration.

1

2

3

4

1 2 3 4

3/4

1/2 1/3

Fig. 8. Storage of colliding bounding box pairs, if e.g. boxes (1/2), (1/3) and (3/4)
collide.

Figure 9 shows an example of a 2D system and Fig. 10 the matrix structure
that is received for this system. As the particle numbers are given sequentially,
the entries in the matrix for the left part of Fig. 10 that are right next to the
diagonal, show that only neighboring bodies have colliding bounding boxes.
This is only true for the special numbering, that we use at the beginning of
our simulations, but the matrix is for all times quite sparse, cp. right part of
Fig. 10.

As collisions between the bounding boxes of two particles are only treated
once, in Fig. 10 an upper triangular matrix is shown, where the diagonal of
the matrix must also be empty. Due to the very small number of entries in the
matrix, this cannot be seen very clearly in this illustration, but it is clear from
Fig. 8. All rows and all columns are linked, compare Fig. 8. Therefore, it is

10

Fig. 9. System consisting of 300 particles for two different points of time. The initial
situation is shown on the left hand side, whereas the right side shows the situation
after a simulation time of 2 sec, calculated with gravity, but without dissipation and
friction.

Fig. 10. Matrix structure for two different times, for the 300 particle system, where
the dots are the potential collisions for the situations in Fig. 9.

now possible to check only these neighboring particles in a following collision
fine test, whose bounding boxes collide.

2.4 Discussion

The two techniques described in sec. 2.1 and sec. 2.2 have in common that
both identify neighboring particles by considering bodies inside certain zones
as neighbors. For both methods these zones have to be at least somewhat larger
than the particles themselves. From this, two problems can arise. Firstly, if the
particles within the system are polydisperse, that means their sizes differ, then
the size of the grid (LC) or circles (VL) has to conform to the largest particle
existing in the system. Hence, for highly polydisperse mixtures, the smaller

11

particles may increase the number nc of particles within one cell, which might
even, in the worst case, be close to n, see [18].
As the neighborhood zones around a particle are larger than the particles, the
NDS does not have to be updated in each time step. The size of the zones
and the necessary update frequency are interdependent and not quite easy to
guess. Therefore, another problem of both methods is the ascertainment of
optimal values for both, the update frequency for the lists and the size of the
zones. If the cells are chosen smaller than the particle size, a successful contact
detection can be impossible in the way described above. Besides that, if the
cells are either very small or very large, the contact detection is inefficient
because updates are too frequently necessary or too many particles are in
the neighborhood, respectively. Therefore, the choice of these values is very
important, and it may take a lot of personal time getting experience with the
investigated system.

3 Comparisons and Results

The three techniques introduced shall in the following be compared with re-
spect to the simulation times. In order to keep the influence of the different
computers, of the different programming languages and compilers, as well as
the influence resulting from the different programming styles as small as pos-
sible, for the comparisons different test series are used. The goal of these series
is, to keep some system traits as constant as possible and to change only some
well defined influencing factors.
The program for the LC was programmed in C++ while the VL and LLL
were programmed in C. For this reason and since the program runs were per-
formed on different Linux PC’s we normalized the results in such a way that
for the smallest investigated number of particles for each system (where the
influence of the used method is mainly negligible) contact scaling factors have
been computed. Therefore, all curves in the following figures have the same
starting point.

3.1 Comparison of a Planar Polydisperse Example

In a first 2D test series, examples with different numbers of particles are stud-
ied. The system is not monodisperse, i.e. the diameters of all particles are not
equal, but the difference in the particle sizes are equal for each example of
the series. The sizes were randomly drawn from a homogeneous distribution
in the interval [R0(1 − w0), R0(1 + w0)] with mean radius R0 = 10−3 m and
width w0 = 0.5. Other system parameters are the stiffness for the calculation
of the penalty force k = 107 N/m, the dissipative constant d = 0 Ns/m, the

12

density of the particles ρ = 7000 kg/m2, and the time step for the integration
of dt = 10−7s. It was tried to keep the density of the system as constant as
possible, while simultaneously the number of particles was duplicated stepwise
and the system size was enlarged accordingly, see Fig. 11.

Fig. 11. Example of a dense system with 7800 particles. The lines show the arrange-
ment of the particles for all six system sizes.

Keeping the system density for each example exactly constant was not pos-
sible, since the container size divided by the linked cell size always has to be
a natural number and the linked cell size for the whole series was kept equal
lc = 7.0 × 10−3 m. The first series consists of

244,
488,
975,

1950,
3900, and
7800 particles, respectively.

The results, received for the computation times with respect to the increasing
number of particles are shown in Fig. 12.
From this picture it is quite clear, that the curve for the Verlet method is the
steepest, whereas both other curves have a very similar behavior. All three
curves show the most increasing behavior between 1950 and 3900 particles.
However, reason for this behavior are slight changes in the density of the
system, which varies from νcont ≈ 0.670 to νcont ≈ 0.678. In Fig. 13 the curves
for LLL and LC are pictured enlarged again.
Supplementary there is a straight line added to the graphs, that is parallel to
both curves below 1950 particles. The picture shows, that the gradient of the
curve for LLL between 3900 and 7800 particles is very similar to the gradient
below 1950 particles and that the gradient for LC above 3900 particles is
even lower than it was for the smaller systems. Hence, from the gradient of
the straight line it is clear, that the gradient of both curves is approximately

13

0

10000

20000

30000

40000

50000

60000

70000

0 1000 2000 3000 4000 5000 6000 7000 8000

tim
e

[s
]

n

VL
LLL

LC

Fig. 12. Comparison of the results for the 2D example.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0 1000 2000 3000 4000 5000 6000 7000 8000

tim
e

[s
]

n

LLL
LC

2000

1000

Fig. 13. 2D results for LLL and LC only.

equal two, and that an O(n) runtime behavior is obtained.

3.2 A Spatial Monodisperse Example for Increasing System Size

A series of 3D systems with an increasing number of particles of equal size,
R = 5.0× 10−4 m, and a proportionally growing space around the particles is
investigated in this subsection. For the stiffness of the particles it was chosen
k = 105 N/m, the damping coefficient again was neglected, the density of the
particles was ρ = 1010 kg/m3, and the time step for the integration was chosen

14

as dt = 10−5 s. Here, systems of

512,
2197,
5832,

12167,
21952,
35937, and
59320 particles

are investigated, where again the linked cell size was kept equal lc = 2.0 ×

10−3 m for each system. The behavior of the computation time with respect
to the number of particles within the particular system is shown in Fig. 14 as
log-log plot.

1000

10000

100000

1e+06

1000 10000 100000

tim
e

[s
]

N

VL
LLL

LC

Fig. 14. Comparison results for an increasing 3D example.

The more the number of particles rises, (and with it the number of contacts
during the simulation) the more the performance for VL escalates in compar-
ison to LLL and LC. Here LC has the best performance. Clearly it can be
seen, that the gradient is lower than for LLL. Due to clearness of the plot
the approximating curves are not plotted in Fig. 14. Nevertheless, a roughly
similar curve for the behavior of VL is y ≈ (0.027 x)1.8, the polynomial for
LLL is y ≈ (0.12 x)1.36 and the polynomial for LC is y ≈ (0.2 x)1.15. Therefore,
it can be said, that the behavior of LLL and LC both remain close to linear
in contrast to the behavior for VL, which behaves almost quadratic.

15

3.3 A Polydisperse Example in 3D

In the last 3D comparison the system size is kept constant. In contrast to the
previous changes, here the number of particles is increased, but no change of
either the system or cell-size is undertaken, lc = 0.033 m. Chosen parame-
ters for this system are the stiffness k = 4.0 × 106 N/m, damping coefficient
d = 0 Ns/m, density of the bodies ρ = 7000 kg/m3, and the time step for the
integration dt = 4× 10−7 s. The systems can be seen as a series of fracture of
some of the particles, where neither the volume enclosed in the system bound-
aries nor the mass content of the system is changed. That means, that the
volume fraction and the density of the system are unchanged, while the num-
ber of particles within the system is increased. In the first system 1000 particles
are situated, with equal radii R = 0.01 m. Approximately half of these parti-
cles are now successively fractured in the next systems successively: There are
about 500 particles of radius R, but approximately eight times 500 particles
of radius R/2 and thus an eighth of the original particle volume. The systems
therefore contain

1000 particles (see Fig. 15 on the left),
4451 particles, about 4000 smaller bodies of r = R/2,

14676 particles, about 14000 particles of r = R/3,
32374 particles, about 31000 particles of r = R/4, and
65480 particles, about 65000 particles of r = R/5 (see Fig. 15 on the right).

Fig. 15. A monodisperse system and a very polydisperse system with r = R/5 of
exactly the same volume and density (volume-fraction ν = 0.12).

Here, R is the original radius of all particles of the first system and r the
second, smaller one. In Fig. 15 there are no overlaps between the bodies. The
bodies that look as if they were overlapping are situated in different depths.
For this system the computation time needed per particle is presented in
Fig. 16 over the ratio of the radii that is equivalent to the polydispersity of
the system.

16

1

10

100

1 1.5 2 2.5 3 3.5 4 4.5 5

tim
e/

pa
rti

cl
e

[s
]

R/r

LC
LLL

Fig. 16. Computation time for a polydisperse system of constant density.

It can be seen that the gradient of the curve over the polydispersity of the LC
calculation is a lot higher than for LLL. Before scaling, so that both curves
have the same starting point in the picture, the starting point of LC (for
the monodisperse system) was underneath the starting point for LLL, and
the curves were intersecting at about R/r = 2.5. This means that the LC
method has advantages for quite monodisperse systems, while the LLL shows
its advantages for polydisperse systems.

4 Conclusions

In this paper three different methods have been introduced in order to reduce
the calculation times for collision detection for systems consisting of many
particles with contact interactions only. The basic idea of these techniques is
the fact, that usually there are lots of particles in a system, which cannot
be in touch, as they are too far apart. The presented methods save a lot of
time by excluding such particles from a detailed and time consuming contact
examination and evaluation.
It has been shown, that for rather small systems the traditional VL is a quite
good technique, its efficiency being reasonable as it is very easy to implement.
For larger systems the LC and LLL methods become more and more efficient
compared to the VL. The LC method shows very good performance with a
lower increase of computing time for monodisperse systems, as compared to
the LLL method. A problem using LC might be the optimal choice of the
linked cell size. For too small sizes and for too large sizes the results become
inefficient. An optimal cell size has to be found for each different system, since
there is no general rule to our knowledge.
As the linked cell size is dependent on the largest particle in the system and
as the calculation time is dependent on the linked cell size due to increasing

17

nc with increasing cell size, LC becomes very inefficient for wide size distribu-
tions. The time spent using LLL behaves much better, as compared to the LC,
for polydisperse (partial fracturing) systems of constant volume and density
but increasing numbers of particles.
Therefore, there is no unique “winner” of our comparison and for computa-
tions it is required to know the methods with their strengths and weaknesses
in order to choose the most appropriate one.
In future work it might be interesting to use LLL for polydisperse systems with
even wider size distributions. Another interesting task will be the contact de-
tection and force calculation of polygonal/polyhedral particles and the neigh-
borhood search for strongly anisotropic particles. Finally, since the collision
detection for concave particles is even more complicated and time consuming,
the choice of the most appropriate neighborhood search algorithm will remain
an issue of interest and requires further research.

References

[1] M. P. Allen and D. J. Tildesley. Computer Simulations of Liquids (Clarendon
Press, Oxford, 1989).

[2] P. Eberhard. Kontaktuntersuchungen durch hybride Mehrkörpersysteme /
Finite Elemente Simulationen, in German (Shaker, Aachen, 2000).

[3] Y. Kishino, editor, Powders & Grains (Balkema, Rotterdam, 2001).

[4] B. Lubachevsky, How to Simulate Billiards and Similar Systems, Journal of
Computational Physics 94 (1991) 255–283.

[5] S. Luding, Collisions & contacts between two particles, in: H. J. Herrmann,
J.-P. Hovi, and S. Luding, editors, Physics of dry granular media - NATO ASI
Series E350 (Kluwer Academic Publishers, Dordrecht, 1998) 285.

[6] S. Luding, Cohesive frictional powders: Contact models for tension, Granular
Matter, in press, 2007.

[7] S. Luding. Die Physik trockener granularer Medien, in German (Logos Verlag,
Berlin, 1998).

[8] S. Luding, M. Huthmann, S. McNamara, and A. Zippelius, Homogeneous
cooling of rough dissipative particles: Theory and simulations, Phys. Rev. E 58
(1998) 3416–3425.

[9] F. Melzer, Symbolisch-numerische Modellierung elastischer Mehrkörpersysteme
mit Anwendung auf rechnerische Lebensdauervorhersagen, Fortschritt-Berichte
VDI, Reihe 20, Nr. 139 (VDI Verlag, Düsseldorf, 1994).

[10] B. Muth, Simulation von Kontaktvorgängen einfacher Körper mit Methoden
der Molekulardynamik, in German, Master thesis, University of Stuttgart, 2001.

18

[11] B. Peters and A. Džiugys, Numerical Simulation of the Motion of Granular
Material Using Object-Oriented Techniques, Comp. Methods Appl. Mech.
Engrg, 191 (2002) 1983–2007.

[12] F. Pfeiffer, Multibody dynamics with unilateral contacts (Wiley, New York,
1996).

[13] J. Pfister and P. Eberhard, Frictional contact of flexible and rigid bodies,
Granular Matter, 4(1) (2002) 25–36.

[14] T. Pöschel and V. Buchholtz, Static friction phenomena in granular materials:
Coulomb law vs. particle geometry, Phys. Rev. Lett., 71(24) (1993) 3963.

[15] T. Pöschel and S. Luding, editors, Granular Gases, Lecture Notes in Physics
564 (Springer, Berlin, 2001).

[16] D. C. Rapaport, The Art of Molecular Dynamics Simulation (Cambridge
University Press, Cambridge, 1995).

[17] W. Schiehlen, Technische Dynamik, in German (B.G. Teubner, Stuttgart,
1986).

[18] A. Schinner, Fast algorithms for the simulations of polygonal particles, Granular
Matter, 2(1) (1999) 35–43.

[19] M.A. Tzaferopoulos, On the Numerical Modeling of Convex Particle Assemblies
with Friction, Comp. Methods Appl. Mech. Engrg, 127 (1995) 371–386.

[20] P. A. Vermeer, S. Diebels, W. Ehlers, H. J. Herrmann, S. Luding, and E. Ramm,
editors, Continuous and Discontinuous Modelling of Cohesive Frictional
Materials, Lecture Notes in Physics 568 (Springer, Berlin, 2001).

[21] L. Vu-Quoc, X. Zhang, and O.R. Walton A 3-D Discrete-Elemente Method
for Dry Granular Flows of Ellipsoidal Particles, Comp. Methods Appl. Mech.
Engrg, 187 (2000) 483–528.

19

List of Figures

1 Verlet circles (2D) or spheres (3D) and particle storage in lists. 5

2 Linked cells numbering and particle numbering of a 2D system. 6

3 Cells that need to be investigated (grey) for the neighbor list
of bodies in cell 6 (dark grey) for the example in Fig. 2. 6

4 Neighboring cells to be investigated for a particle in the dark
grey cell in 3D. 6

5 Bounding boxes around each particle. 8

6 Particles projected on the x-axis for two different times, [18]. 8

7 Lists containing also the position information along the other
axes. 10

8 Storage of colliding bounding box pairs, if e.g. boxes (1/2),
(1/3) and (3/4) collide. 10

9 System consisting of 300 particles for two different points of
time. The initial situation is shown on the left hand side,
whereas the right side shows the situation after a simulation
time of 2 sec, calculated with gravity, but without dissipation
and friction. 11

10 Matrix structure for two different times, for the 300 particle
system, where the dots are the potential collisions for the
situations in Fig. 9. 11

11 Example of a dense system with 7800 particles. The lines show
the arrangement of the particles for all six system sizes. 13

12 Comparison of the results for the 2D example. 14

13 2D results for LLL and LC only. 14

14 Comparison results for an increasing 3D example. 15

15 A monodisperse system and a very polydisperse system
with r = R/5 of exactly the same volume and density
(volume-fraction ν = 0.12). 16

20

16 Computation time for a polydisperse system of constant
density. 17

21

