
Contacts between Many Bodies

B. Muth1, M.-K. Müller2, P. Eberhard1, and S. Luding2

1Institute B of Mechanics, University of Stuttgart,

Pfaffenwaldring 9, 70569 Stuttgart, Germany,
[muth,eberhard]@mechb.uni-stuttgart.de

2DelftChemTech, TU Delft,

Julianalaan 136, 2628 BL Delft, The Netherlands,
[s.luding,m.k.mueller]@tnw.tudelft.nl

Abstract

In this paper the calculation and administration for motion and con-
tacts of systems is investigated that are consisting of many colliding bodies.
Both, two dimensional (2D) and three dimensional (3D) cases are investi-
gated. In order to reduce the high calculation time that is usually spent on
collision detection, sophisticated sorting algorithms for the neighborhood
search are required. Here, these algorithms are compared with respect to
their efficiency, for systems consisting of spherical 3D bodies of different
sizes. The very time consuming collision detection then only needs to be
done for neighboring bodies. The collision detection for polygonal bodies
as well as the determination of the contact geometry is alluded. In order to
simulate a very high number of contacting bodies, methods from Molecular
Dynamics are used. By means of constitutive equations, the contact force
can be determined, as addressed for polygonal bodies.

key words: contacts, neighborhood search, collision detection, molecular
dynamics, polygonal bodies

1 Introduction

For the determination of the dynamical behavior of systems consisting of many
objects, particles or atoms, several fully developed approaches exist. The main
differences are the assumptions about the particle shapes and their behavior on
collisions. Here, we examine bodies that can be treated as perfectly rigid objects,
as non-deformable objects with (small) overlaps at the contact zones, or as de-
formable bodies with a peculiar contact dynamics.

Very efficient methods were developed for molecular dynamics (MD) simulations,
and are, for example, applied to the dynamic and static behavior of granular
matter [Kishino01, PöschelLuding01, Lätzel et al.01, Kishino01]. However, also
basic systems such as gases, fluids, molecules or charge carriers can be investi-
gated [AllenTildesley89, Luding98b, PöschelLuding01]. Here it can be dealt with
motions and contacts of many thousands of particles. Besides body forces like the
gravitational forces, one typically has contact forces resulting from the bound-
aries of the system and from other particles within the system. The formulation
of the contact forces between the different bodies is based on simple models in
order to keep the calculation times within a feasible range. Here, usually very
small penetrations between the otherwise non-deformable particles are accepted,
compare [AllenTildesley89, Luding98a, Rapaport95, Lätzel et al.01].
The normal contact forces act in direction opposite to the occurring penetrations
and are usually modeled as a spring dashpot element that combines elastic and
viscous response on the contact level. Then the spring force is proportional to
the penetration of the particles, see [Luding98a, PetersDžiugys02], and it corre-
sponds to a penalty force.
For a system consisting of n particles, the required calculation operations for
the collision detection will be of order O(n2), causing huge computational effort.
However, for systems with short-range forces, only particles in their respective
neighborhood can interact, so that a tremendous reduction of computational
effort down to the order O(n) can be achieved [AllenTildesley89] by utilizing this
fact.
Here, we want to combine the methods from MD, with their efficiency and their
possibility to simulate a very high number of bodies, with the advantages of MBS,
where non-convex body shapes are possible, whereas in MD mostly convex poly-
gons were used, [Addetta et al.02, Matuttis et al.00, Schinner99]. In Section 2,
different approaches to save computational effort as mentioned above are intro-
duced and discussed. By means of these studies, neighboring body pairs are
found efficiently. These body pairs are then checked for collision, and in the case
of collision, the contact forces have to be determined. This is done for convex
and non-convex polygonal bodies, in Section 3. In Section 4 these methods are
compared using several test examples and, finally, in Section 5, the results are
discussed with respect to possible applications.

2 Neighbor Search Methods

The following three briefly presented methods can be used in order to find neigh-
boring bodies of a particle efficiently. Two of these methods identify the neighbor-
ing particles of a body by defining splitted regions of the system and considering
all particles within the same region as neighbors. The third method is based on
a different approach, where a bounding box is placed around each body. Every

2

body whose bounding box is colliding with the bounding box of another particle
is considered to be a neighbor of this particle [Schinner99]. For each method the
neighboring particles are stored in a neighbor data-structure after the pre-sorting
has been finished. The collision detection and force calculation then only needs
to be done for these neighboring bodies.

2.1 Verlet-Neighbor List

The first method is called the Verlet-Neighbor List (VL) [AllenTildesley89]. An
imaginary sphere is drawn around each particle of the system, that is larger than
the radius of the particle, compare [AllenTildesley89, Muth01]. Particles within
these enclosing spheres are considered as neighbors of the particular body and are
stored in a list, [Vu-Quoc et al.00]. The optimal extension of the zone around the
bodies depends on the velocity of the particles and on the density of the whole
system.
In order to create the neighbor lists, for each body all particles of higher numbers
than the body itself have to be tested, whether they lie inside the test sphere
or not. Particles of lower numbers have not to be tested as no pair needs to be
checked twice.
Creating these neighbor lists therefore requires n(n−1)/2 calculation steps, which
means the number of necessary arithmetic operations is of order O(n2). However,
these updates of the lists do not have to be done for every time step. The
necessary update frequency depends on the density of the system, the velocity of
the particles, and on the size of the spheres. This update frequency, as well as
the radius of the spheres around the particles is a parameter that can be tuned.
Both parameters are interdependent, because the value for the radius is inversely
related to the rate at which the list must be rebuilt, see [Rapaport95]. The smaller
the zone around the particles, the more often the reconstruction of the lists needs
to be done. The larger it is, the more particles belong to the neighborhood
requiring more contact calculation time. The real collision detection and force
calculation, that requires quite some effort, now only has to be done for the
particle pairs which are stored in the lists.

2.2 Linked Cell Method

An alternative approach that is often used in order to determine the neighbors of
a body is the Linked Cell (LC) method, where the system is divided into a regular
lattice of, e.g. for cubic systems, m × m × m cells (3D) or m × m cells (2D),
compare [AllenTildesley89]. Non-cubic systems can also be dealt with and the
cell shape can be chosen as to fit the system. The optimal size of the cells, as
the size of the Verlet spheres in the VL, depends on the velocity of the particles
and on the density of the system, but the cell sizes all need to exceed at least
the size of a particle in length. The major difference between LC and VL is, that

3

for LC the cells are not sticked to particles and, therefore, they are not moving
along with the particles. Then, if particles are temporarily assigned to special
cells on the basis of their current positions, it is obvious that interactions are only
possible between those in the same or in directly adjacent cells, see [Rapaport95].
This means for a 2D system, that only particles within nine different cells for
2D and 27 cells for 3D may be neighbors. Again, as in the previous description
for VL, particle pairs are only checked once. Thus, not all nine cells have to be
tested, but only the center cell plus half of the neighboring cells. That means one
plus four (2D), Fig. 1 (left), and one plus thirteen cells (3D), Fig. 1 (right), have
to be checked. Cast into a formula, we have (3d + 1)/2 cells to examine, where
d = 2 for a 2D system and d = 3 for a 3D system.

Figure 1: Neighboring cells that need to be investigated are shaded grey in
2D (left) and are shown as solid cubes in 3D (right).

2.3 Linked Linear List

The third possibility described in this comparison is the Linked Linear
List (LLL) [Schinner99]. This method is quite different to the other approaches.
In a first step, bounding boxes are laid around each particle, Fig. 2, that are
sized in such a way, that each particle fits exactly in its box. The edges of each
bounding box are aligned parallel to the system axes.
In a next step the bounding boxes are projected separately onto the system axes,
see Fig. 2. In the following, only the order of the beginnings ‘b’ and endings ‘e’ of
the projections of the bounding boxes along the axes is of interest. Such a stored
sequence has a length, which corresponds to twice the number of particles in the
system. If there is the beginning, ending, or both, of another particle in between
the beginning and ending of a particular body, then there will be an overlap of
the projections of the bounding boxes of both particles along this axis. A colli-
sion of two bounding boxes exists for an overlap of these projections along each
axis. Each particle pair, whose bounding boxes are overlapping, is considered as
a neighboring body pair, that has to be stored in a linear list.
Although the sequences have to be updated for each time step, the necessary cal-
culation times can be reduced to an amount proportional to the total number of

4

3

2

1

4

x

b4 e4b2

y

b1 e3 e2b3e1

Figure 2: Bounding boxes around each particle.

particles in the system, as there has to be done only an update of the old sequence
for each new time step. That corresponds to sorting an already nearly sorted list.
This update can simply be done by going through these sequences linearly and
checking for new changes in the order. While seeking for new colliding bounding
boxes by looking for permutations, four different cases have to be distinguished,
compare [Schinner99].
If two beginnings or two endings have to be changed, nothing has to be done
in the generated linear lists, as the collision status between any particle will not
change. If a collision along an axis has to be removed, or if there is a new collision
between two particles along an axis, the collision information along the other axes
is essential. One has to know whether there is a new or old collision along all axes
and, therefore, between the bounding boxes or, whether there is no overlap any
more between two so far colliding bounding boxes at least in one direction. For
our 2D example going through the list along the y-axis, see Fig. 2, leads to the
potential collision between particles (3/4), and (1/2). As the location of particle
3 along the x-axis is from position four to six, whereas the beginning of particle
4 has the position five, there is also an overlap of bounding boxes 3 and 4 along
the x-axis and, therefore, a collision of the bounding boxes of particles 3 and 4.
Particles 3 and 4 are now considered to be neighbors, that have to be checked for
collision. Therefore, a linked list is created in the form of a sparse matrix where
the colliding bounding boxes are stored. Collision pair (3/4) is stored at position
3, 4 of the matrix, see Fig. 3, that shows particle pair storage for an arbitrary
configuration.

5

1

2

3

4

1 2 3 4

3/4

1/2 1/3

Figure 3: Storage of colliding bounding box pairs, if e.g. boxes (1/2), (1/3) and
(3/4) collide.

2.4 Discussion

The two techniques described in Section 2.1 and Section 2.2 have in common that
both identify neighboring particles by considering bodies inside certain zones as
neighbors. For both methods these zones have to be at least larger than the
particles themselves. Out of that, two problems can arise. Firstly, if the particles
within the system are polydisperse, that means their sizes differ, then the size of
the grid (LC) or circles (VL) has to conform to the largest particle existing in
the system. Hence, for highly polydisperse mixtures, the smaller particles may
increase the number nc of particles within one cell, which might even, in the worst
case, be close to n, see [Schinner99].
As the neighborhood zones around a particle are larger than the particles, the
neighbor data-structure does not have to be updated in each time step. The size
of the zones and the necessary update frequency are interdependent and not quite
easy to guess. Therefore, another problem of both methods is the ascertainment
of optimal values for both, the update frequency for the lists and the size of the
zones. If the cells are chosen smaller than the particle size, a successful contact
detection can be impossible in the way described above. Besides that, if the cells
are either very small or very large, the contact detection is inefficient because up-
dates are too frequently necessary or too many particles are in the neighborhood,
respectively. Therefore, the choice of these values is very important, and it may
take a lot of personal time getting experience with the investigated system.

3 Treatment of different bodies

In the following section, the collision detection for different polygonal bodies in
two dimensions will be determined. Convex polygons may be calculated as well

6

as non-convex ones. In order to be able to apply the forces and moments to the
polygons, it is necessary to investigate the contact geometry, Section 3.2. The
contact force calculation and the moments that act on the bodies are described
in Section 3.3.

3.1 Collision Detection

Once neighboring body pairs have been detected, these pairs have to be checked
for collision. For round particles this is quite easy, since there only the distance
of the centers of masses has to be compared with the sum of the radii of both
bodies. In the case of polygonal particles, there may occur several collisions be-
tween two bodies and, therefore, the situation is much more complicated.
Only the nodes of each polygon are checked and it has to be distinguished between
the situation where a corner of the investigated body, e.g. body i, is entering an-
other one, e.g. body j, and the situation that the observed body i is being entered
by body j. Of course it is possible, that body i is entering body j and at the
same time is being entered by body j. In the following we want to call the tested
particle master body and its neighbors slave bodies. In order to know, which
corner of which body is colliding with another body, every corner of each body
has to be checked independently. This is done by means of a ‘Point in Polygon’
algorithm. Using such a method it is possible to check, whether an arbitrary
point P (here the considered corner of the tested polygon) is inside a body or
not. One of these algorithms is called the ‘Ray Crossing Method’ [O’Rourke93].

3.2 Contact Geometry

Let us consider that there is a vertex of one body inside another body. In order
to apply the correspondent contact force and the moment that is acting on the
bodies, we need to detect the contact geometry. For spherical bodies this is quite
simple again. The normal contact force is directed from the center of mass of
one body to the center of mass of the other body and thus does not result in a
moment applied to the bodies.
This is different for polygonal bodies. Here, the normal contact force may act at
any position of the body and then certainly can result in a moment around the
center of mass for both bodies, see Fig. 4.
For this reason, the contact geometry has to be detected. There the position
of the applied force is determined. This can be done according to the node-to-
segment approach originally used for discretised contact mechanics [Wriggers02].
Here, a slave point xs comes into contact with a master segment, given by the
two points xm1 and xm2, Fig. 5. The variable ξ determines the position of the
projection of xs on the edge between xm1 and xm2, and its value is ξ = 0 for xm1

and ξ = 1 for xm2. The value of ξ has to be determined, which corresponds to
the closest point projection xs proj.

7

Therefore, the projection xs proj of point xs onto the master surface has to be
done, [Pfister99, Wriggers02]. The tangential vector of the master segment can
be detected as

tm =
xm2 − xm1

‖xm2 − xm1‖
. (1)

The projection then leads to the scalar product

ξproj = tm ·
(xs − xm1)

‖xm2 − xm1‖
. (2)

The direction of the normal contact force can be derived as

nm = ez × tm =
(xs − xs proj)

‖xs − xs proj‖
, (3)

where ez is the coordinate axis, about which the rotation is carried out. The gap
g, the distance from the slave point to the master segment, that is needed for the

���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������

F

F

C1

C2

C1

C2

Figure 4: Two particles in contact with their resulting normal forces.

� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �

xm1

ξ

xm2

xs

xs proj

g

Figure 5: Node-To-Segment element consisting of one slave node xs and two
master nodes xm1 and xm2.

8

contact force calculation, can then be computed as

g = (xs − xm1) · nm = ‖xs − xs proj‖. (4)

3.3 Contact Force Calculation

As soon as the contact geometry is detected and the information of the contact
kinematics is stored, the contact force calculation for all bodies that are in contact
can be performed.
The used contact force model is based on a penalty approach with linear spring
dashpot elements. Therefore, the balance of linear momentum for a body i that
is in contact with other bodies j is

mi

d2

dt2
ri =

∑

j

(kgij + vrel ijd)nij

︸ ︷︷ ︸

f i

, (5)

with the mass of the body mi, the positions of the body ri and the force fi
that is applied to it. Here, k equals the spring constant, whereas d equals the
damping coefficient due to the dissipative force. The gap gij for polygonal bodies
is calculated as described in Section 3.2 with the normal direction at the contact,
nij, [Luding98a, Tzaferopoulos95]. The forces are only applied to the particles if
they are in contact. Frictional forces as well as adhesive contact forces are not
considered here.
As soon as the normal contact forces that are applied to each body are detected,
the moments acting about the center of gravity may be determined. Since mostly
the coordinates for the master edges are given in the body-fixed coordinate system
in the center of gravity, the moment about body i is

Mi = (xm1 + ξprojtm) × fi. (6)

The detected moments are then adopted to the balance of angular momentum.
These equations are solved by means of the explicit Verlet integrator. The new
positions of the particles are computed from the actual positions and the posi-
tions for an old time step, that means without knowledge of the velocities of the
particles.

4 Comparisons and Results

The three techniques introduced shall in the following be compared with respect
to the simulation times for different test series. Goal of these series is, to keep
some system traits as constant as possible and to change only some well defined
influencing factors.

9

4.1 Spatial Monodisperse Increasing Systems

In a series of 3D systems examples with a different number of particles are studied.
An increasing number of spherical particles of equal size, R = 5.0×10−4 m, and a
proportionally growing space around the particles is investigated in this section.
The stiffness of the particles is k = 105 N/m, the damping coefficient is neglected;
the density of the particles is ρ = 1010 kg/m3, and the time step for the integration
is chosen as ∆t = 10−5 s. Here, systems of 512, 2197, 5832, 12167, 21952, 35937,
and 59320 particles are investigated, where the linked cell size was kept equal
lc = 2 × 10−3 m for each system. The behavior of the computation time with
respect to the number of particles within the particular system is shown in Fig. 6
as log-log plot.

1000

10000

100000

1e+06

1000 10000 100000

tim
e

[s
]

N

VL
LLL

LC

Figure 6: Comparison results for an increasing 3D example.

We normalized the results in such a way that for the smallest investigated number
of particles (where the influence of the used method is mainly negligible) a contact
scaling factor has been computed. Therefore, the curves in the figure have the
same starting point.
The more the number of particles rises, (and with it the number of contacts
during the simulation) the more the performance for VL escalates in comparison
to LLL and LC. Here LC has the best performance: a roughly similar curve for
the behavior of VL is y ≈ (0.027 x)1.8, the polynomial for LLL is y ≈ (0.12 x)1.36

and the polynomial for LC is y ≈ (0.2 x)1.15. Therefore, it can be said, that the
behavior of LLL and LC both remain close to linear in contrast to the behavior
for VL, which is almost quadratic.

10

4.2 Spatial Polydisperse Fracturing Systems

In another 3D comparison the system size is kept constant. In contrast to the
previous example, the number of particles is increased, but no change of either
the system or cell-size is undertaken, lc = 0.033 m. Chosen parameters for this
system are the stiffness k = 4×106 N/m, damping coefficient d = 0 Ns/m, density
of the bodies ρ = 7000 kg/m3, and the time step for the integration ∆t = 4×10−7

s. The systems can be seen as a series of fracture of some of the particles, where
neither the volume enclosed in the system boundaries nor the volumetric content
of the system is changed. That means, that the volume fraction and the density
of the system are unchanged, while the number of particles within the system
is increased. In the first system 1000 particles are situated, with equal radii
R = 0.01 m. Approximately half of these particles are now successively fractured
in the next systems. There are about 500 particles of radius R, but approximately
eight times 500 particles of radius R/2 and thus an eighth of the original particle
volume. The systems therefore contain

1000 particles (see Fig. 7 on the left),

4451 particles, about 4000 smaller bodies of r = R
2
,

14676 particles, about 14000 particles of r = R
3
,

32374 particles, about 31000 particles of r = R
4
, and

65480 particles, about 65000 particles of r = R
5

(see Fig. 7 on the right).

Figure 7: A monodisperse system and a very polydisperse system with r = R/5
of exactly the same volume and density (volume-fraction ν = 0.12).

Here, R is the large original radius of all particles of the first system, and r the
smaller radius of the many small particles in the other systems. For this system
the computation time needed per particle is presented in Fig. 8 over the ratio of
the radii that is equivalent to the polydispersity of the system.

11

 0.1

 1

 10

 100

 1 1.5 2 2.5 3 3.5 4 4.5 5

tim
e

[s
]/

pa
rt

ic
le

R/r

LC
LLL

Figure 8: Computation time for a fracturing system of constant density.

It can be seen that the gradient of the curve over the polydispersity of the LC
calculation is a lot higher than for LLL, and the curves are intersecting at about
R/r = 2.5. This means that the LC method has advantages for quite monodis-
perse systems, while the LLL shows its advantages for polydisperse systems.

4.3 Simulation Results for 2D Polygonal Bodies

In the following section, the compared methods shall be applied to a polygonal
system. For such systems the collision detection is usually very time consuming,
as described in Section, 3.1. Here, we applied the LLL method to a quite poly-
disperse non-convex system. Then, only neighboring bodies need to be checked
for collision. During the collision check the already created bounding box can be
used once more by accomplishing a pre-test for each vertex of a body pair. In the
pre-test all vertices are tested, whether they are inside the bounding box of the
other body. Only for such vertices the time consuming collision detection has to
be carried out.
Here, we want to present briefly a simulation result of such a 2D non-convex
polygonal system. A series from an animation for such a system is shown in
Fig 9. Some non-convex bodies, for example micro chips, are gliding down a wall
arrangement in a production mechanism.

5 Conclusions

In this paper three different methods have been introduced in order to reduce the
calculation time for collision detection for systems consisting of many particles
with contact interactions only. The basic idea of these techniques is the fact,
that usually there are lots of particles in a system, which cannot be in touch, as
they are too far apart. The comparison has been done for 3D systems consisting

12

Figure 9: Non-convex polygonal bodies for t = 0s, t = 0.05s, t = 0.1s, t = 0.13s,
t = 0.22s, and t = 0.3s.

of spherical bodies, but the contact detection and contact force calculation has
also been implemented for convex and non-convex polygons. For such a system
exemplary scenes from an animation have been shown.
It has been shown, that for rather small systems the traditional VL is a quite
good technique, its efficiency being reasonable as it is very easy to implement.

13

For larger systems the LC and LLL methods become more and more efficient
compared to the VL. The LC method shows very good performance with a lower
increase of computing time for monodisperse systems, as compared to the LLL
method. A practical problem using LC is the optimal choice of the linked cell
size. For too small sizes and for too large sizes the computation becomes ineffi-
cient. Therefore, a new optimal cell size has to be found for each new system.
As the linked cell size is dependent on the largest particle in the system, and
as the calculation time is dependent on the linked cell size, the time response
for LLL becomes much better as compared to the LC for polydisperse partial
fracturing systems of constant volume and density with increasing numbers of
particles.
The compared methods have been applied to a non-convex system consisting of
polygonal bodies. For such systems, the collision detection is very time consum-
ing. Great advantages regarding simulation time can be made by applying the
neighbor-search methods to such systems.

References

[AllenTildesley89] Allen, M.P., Tildesley, D.J., 1989, Computer Simulations

of Liquids, Clarendon Press, Oxford.

[Addetta et al.02] D’Addetta, G.A., Kun, F., Ramm, E., 2002, On the
Application of a Discrete Model to the Fracture Process of Cohesive Granular
Materials, Granular Matter 4 (2), 77-90.

[Kishino01] Kishino, Y., 2001, (ed.), Powders & Grains, Balkema, Rotterdam.

[Lätzel et al.01] Lätzel, M., Luding, S., and Herrmann, H.J., (ed.), 2001,
Continuous and Discontinuous Modelling of Cohesive Frictional Materials,
Lecture Notes in Physics 568, Springer, Berlin.

[Luding98a] Luding, S., 1998, Collisions & Contacts between Two Particles, in:
H. J. Herrmann, J.-P. Hovi, and S. Luding, (ed.), Physics of Dry Granular

Media, NATO ASI Series E350, Kluwer Academic Publishers, Dordrecht,
285.

[Luding98b] Luding, S., 1998, Die Physik trockener granularer Medien, Logos
Verlag, Berlin.

[Matuttis et al.00] Matuttis, H.-G., Luding, S., and Herrmann, H.J.,
2000, Discrete Element Methods for the Simulation of Dense Packings and
Heaps made of Spherical and Non-Spherical Particles, Powder Technology,
109, 278-292.

14

[Muth01] Muth, B., 2001, Simulation von Kontaktvorgängen einfacher Körper
mit Methoden der Molekulardynamik, Diploma Thesis, University of Stutt-
gart.

[O’Rourke93] O’Rourke, J., 1993, Computational Geometry in C, Cambridge
University Press, Cambridge.

[PetersDžiugys02] Peters, B., Džiugys, A., 2002, Numerical Simulation of
the Motion of Granular Material Using Object-Oriented Techniques, Comp.

Methods Appl. Mech. Engrg., 191, 1983–2007.

[Pfister99] Pfister, J., 1999, Implementierung von Reibkontakten für nichtlin-
eare Finite Elemente Berechnungen, Diploma Thesis, University of Stutt-
gart.

[PöschelLuding01] Pöschel, T., Luding, S., (ed.), 2001, Granular Gases, Lec-

ture Notes in Physics, 564, Springer, Berlin.

[Rapaport95] Rapaport, D.C., 1995, The Art of Molecular Dynamics Simula-

tion, Cambridge University Press, Cambridge.

[Schiehlen86] Schiehlen, W., 1986, Technische Dynamik, B.G. Teubner, Stutt-
gart.

[Schinner99] Schinner, A., 1999, Fast Algorithms for the Simulations of Polyg-
onal Particles, Granular Matter, 2(1), 35–43.

[Tzaferopoulos95] Tzaferopoulos, M.A., 1995, On the Numerical Modeling
of Convex Particle Assemblies with Friction, Comp. Methods Appl. Mech.

Engrg., 127, 371–386.

[Vu-Quoc et al.00] Vu-Quoc, L., Zhang, X., and Walton, O.R., 2000, A 3-D
Discrete-Elemente Method for Dry Granular Flows of Ellipsoidal Particles,
Comp. Methods Appl. Mech. Engrg., 187, 483–528.

[Wriggers02] Wriggers, P., 2002, Computational Contact Mechanics, J. Wiley
& Sons, Chichester.

15

