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ABSTRACT: In this paper different models for the simulation of granular material are investigated. Due to the
fact, that a detailed simulation considering also complex shapes or the deformability of every single particle is
very time consuming, methods from Molecular Dynamics are combined with methods from Multibody Systems,
so that it is possible to determine the motion of many differently shaped bodies. Here, particles are modeled as
rigid bodies, where the elasticity is described by means of elastic contact forces. The particles considered are
convex or non-convex three-dimensional polyhedra.

1 INTRODUCTION
One goal of this work is the determination of the dy-
namical behavior of large systems, containing many
differently shaped bodies. Of special interest are sys-
tems like hauling engines, shaking machines, filling
constructions, etc., where a large number of solid bod-
ies has to be investigated.
For the calculation of dynamical systems many dif-
ferent approaches exist. Bodies can be either treated
as perfectly rigid objects, as non deformable objects
with (small) overlaps at the contacts, or as deformable
bodies with a peculiar contact dynamics. In the fol-
lowing we use the second approach, while the third
one is currently under investigation.
In order to describe the interactions between different
bodies, models from Molecular Dynamics (MD) are
used here. These interactions depend on macroscopic
measurable properties of the materials. Constitutive
force laws are applied here to solid bodies, that are
three dimensional and either spherical or of general
polygonal shape.

2 MULTIBODY SYSTEMS
The systems considered here consist of free bodies in
space. Such a system holds six degrees of freedom
for each body, three translational y

T i
and three rota-

tional ones, yRi. For the rotational degrees of free-
dom, e.g. Kardan-angles can be taken into account.
All degrees of freedom can be summarized in a vec-
tor y = [yT yR]T of generalized coordinates. Here, the
bodies are only interdependent due to contact forces

and the equations of motion can be formulated with-
out further constraints or joints for each body sepa-
rately,

mi HT i ÿT i = f e

i
,

Ii HRi ÿRi + Ii ḢRi ẏRi + ωi × Ii ωi = l e

i
. (1)

Here, HT i and HRi are the Jacobian matrices of trans-
lation and rotation, respectively. Since the transla-
tional degrees of freedom are independent, HT i equals
the 3× 3 identity matrix, whereas HRi equals

HRi =





1 0 sinβ
0 cosα − sinα cosβ
0 sinα cosα cosβ



 , (2)

see (Schiehlen & Eberhard 2004), and ḢRi is the
time derivative of that Jacobian matrix. The mass
of each body and its inertia tensor are denominated
by mi and Ii, respectively. The rotational velocity is
ωi = HRi ẏRi. Finally, f e

i
and l e

i
of Equation (1) are

the forces and torques, that are acting on each body
due to gravity and contact.

3 NEIGHBORHOOD SEARCH
For a system consisting of n bodies, the required cal-
culation operations for collision detection will usu-
ally be of order O(n2), causing great computational
effort. However, there exist special neighborhood
search algorithms, so that a reduction of the com-
putational effort down to the order O(n) can be



achieved, (Allen & Tildesley 1989). The neighbor-
hood search method we want to introduce here, the
Linked Linear List (LLL), is described e.g. in (Schin-
ner 1999). Every body whose bounding box is collid-
ing with the bounding box of another particle is con-
sidered to be a neighbor of this body. Therefore, in a
first step, bounding boxes are laid around each par-
ticle, see Figure 1, that are sized in such a way, that
each particle fits exactly in its box. The edges of each
bounding box are aligned with the coordinate axes.
In a next step the bounding boxes are projected sep-
arately onto the system axes. The projection onto the
x-axis is shown in Figure 1. In the following, only
the order of the beginnings and endings of the projec-
tions of the bounding boxes along the axes is of inter-
est. These beginnings and endings are identified here
by a negative and positive value, respectively. These
sequences are stored in lists with length of twice the
number of particles in the system. If there is the begin-
ning, ending, or both, of another particle in between
the beginning and ending of a particular body, then
there is an overlap of the projections of the bounding
boxes of both particles along this axis. A collision of
two bounding boxes exists only for an overlap of these
projections along all axes. Although these lists have to
be updated for each time step, the necessary calcula-
tion time is proportional to the number of particles in
the system, corresponding to sorting an already nearly
sorted list. The occurring changes are usually permu-
tations only. If the order of the beginnings and end-
ings does not have to be changed, the collision status
of the particles also will remain unchanged. If a colli-
sion along an axis has to be removed, or if there is a
new collision between two particles along an axis, the
collision information along the other axes is essential
and has to be compared, (Muth, Müller, Eberhard &
Luding 2004).
The bodies, whose bounding boxes collide along all

system axes, are called neighbors here. Each neigh-
boring body-pair is now stored within a new list,
called the LLL and checked further in the actual col-
lision detection.
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Figure 1. Bounding box projected onto the x-axis.

4 COLLISION DETECTION
As soon as neighboring body pairs are identified, the
even more time consuming collision detection can be
carried out. For body-pairs that are stored in the LLL,
it is necessary to check, whether and which surface
points are located inside another body. That means,
for each neighboring body pair (e.g. body pair 3 and
4 in Figure 1) it has to be checked, whether vertices of
polyhedron 3 lie within 4 and vice versa. In order to
check, whether a point P is positioned within another
body, e.g. the star-shaped body of Figure 2, a long ray
originating from the observed point is created, and the
intersections of this ray with the surface of the body
are counted, (O’Rourke 1998).

1 crossing 3 crossings

2 crossings 0 crossings
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Figure 2. Collision detection for a planar example showing two
possible rays for points P and Q.

Point P is inside the other body, if the number of
intersections with the surface of the other body is odd
for all possible rays. Equivalently, point Q is outside
the other body, if the number of intersections is even
for all rays from this point. In order to check that, the
ray has to be tested against all separate surface parts
of the body. By controlling, whether an intersection
point of the ray with a surface plane lies on the sur-
face of the body, the distance between the observed
point and the surface is computed. If the distance be-
tween the observed point and the surface of the other
body equals zero, then point R is positioned directly
on the surface of the body, (O’Rourke 1998). These
considerations have to be taken into account for each
surface point of both neighboring bodies.

5 CONTACT FORCE
Since the investigated bodies here are solids, interac-
tions between bodies are due to measurable proper-
ties of the bodies and their material such as viscosity,
elasticity, frictional properties, and so on. These in-
teractions are leading to contact forces, whose calcu-
lation is done following straight forward ideas from
MD. They can be divided into normal and tangential
contact forces. For the normal direction a penalty-
formulation is used, i.e. overlaps between the bod-
ies are accepted, and the magnitude of the contact
force is dependent on this overlap. The contact forces
are then calculated by means of the Calvin-Voigt
model, (Lankarani & Nikravesh 1994), consisting of
an elastic and a viscous part. The elastic part is pro-
portional to the overlap of the two bodies. The abso-
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lute value of the viscous part may not be larger than
the elastic part since the total value of the contact
force could then become negative for negative rela-
tive velocity, and it therefore depends on the overlap
as well. The contact force in normal direction is

f = Kδn n
︸ ︷︷ ︸

elastic force

+K
3 (1− e2)

4 δ̇0

δn δ̇ n
︸ ︷︷ ︸

viscous force

. (3)

Here, δ and δ̇ are the overlap between the two
bodies and their relative velocity at the contact point,
respectively. The exponent n can e.g. be 1, which
leads to a linear contact law. The relative velocity at
the beginning of the contact is denoted with δ̇0 and
e is a constant that corresponds to the coefficient of
restitution when its value is close to one. That means,
the damping coefficient d is here depending on the
stiffness parameter K, and on the overlap between
the bodies. This leads to a total relative kinetic energy
during the contact of ∆T = 1

2
meff δ̇2

0 (1 − e2). For
a more detailed explanation of this see e.g. (Hunt &
Grossley 1975; Lankarani & Nikravesh 1994).

For the implementation of the friction force, the
simplest model would implement a velocity depen-
dent tangential force with a cut-off at the Coulomb
friction limit. Cundall and Strack proposed to use a
tangential spring model where the tangential contact
force is defined as

ft = −
ξ

t

‖ξ
t
‖

min(k‖ξt‖, µfn). (4)

That means the friction process is divided into a stick-
ing and a sliding phase, and here the friction force
acts opposite to a (small) tangential displacement that
is allowed here also in the sticking phase due to elas-
tic surface roughness. Therefore, in this approach the
friction force is depending on the relative displace-
ment. In Figure 3 the tangential plane is shown, where
the occuring displacements and, therefore, the forces
can be seen. Perpendicular to this plane is the nor-
mal direction with the normal contact force. There-
fore, Figure 3 shows the tangential plane for a special
normal contact force fN . The circle shows the border
between the sticking and the sliding zone, with the ra-
dius being equivalent to µfN . Therefore, sticking oc-
curs inside and sliding outside the circle. The begin-
ning of the contact is at the origin of the coordinate
system. In this example the line from 0 to 1 shows
the tangential displacement ξt1 of two bodies due to
some acting forces. Point 1 is clearly within the stick-
ing zone. Therefore, the contact force that has to be
applied, Ft1, is a sticking-force, its size being propor-
tional to the distance between 0 and 1, see Figure 3.
In a next time step, the tangential displacement may
change, e.g., due to the impulse of another body in the
system. Then the point that is in contact has moved
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Figure 3. Cut of friction cone at actual normal force, parallel to
the tangential plane.

again due to some forces and its projection onto the
tangential plane is then, e.g., point 2. If this point is
still within the circle, the sticking force is still pro-
portional to the tangential displacement ξt2 in its total
direction and value, see Ft2 of Figure 3. That means,
in each time step, the displacement ξt in tangential
direction has to be re-calculated from the relative ve-
locity and added up vectorially. The force is then ap-
plied in opposite direction of that total displacement.
As soon as sliding occurs, e.g. in the timestep from
point 2 to 3, the value of the friction force will be
restricted to the sliding force. That means, its magni-
tude is restricted to µdfN . The direction of this force
still changes with each time step and will always be
directed to the origin of the tangential system, i.e. the
point of first contact.
If, in a later time step, when the contact still exists,
the relative motion stops and changes its direction,
a sticking force has to be applied to the bodies. By
means of the conventional Cundall-Strack model, this
is not possible, see (Brendel & Dippel 1998). If the
elongation of ξt has been updated in each time step,
after a long sliding phase it will take a long backwards
motion in opposite direction to release this “spring”.
Therefore, (Brendel & Dippel 1998) propose not to
update the elongation of ξt during sliding, but to keep
it constant, i.e., at the value that corresponds to the
particular radius of the circle, until sticking occurs
again. The solution for the contact force in a planar
example is given in (Brendel & Dippel 1998), and is
extended here to a spatial statement,

ft = −ktξt, (5)

ξt =
∫

t

t0

vtΘ(µ‖fn‖− kt‖ξt‖)dt′, (6)

where Θ(•) is the Heaviside function. Therefore,
an update of ξt will only be carried out for
µ‖fn‖ > kt‖ξt

‖.

6 EXAMPLE
In this example the advantage of the above friction
model is shown. Contrary to models, where the fric-
tion force is detected by means of the relative velocity
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between two bodies, here e.g. a block on an inclined
plane can come to rest. Such an example is shown
here, with a nonconvex block of volume 0.001m3.
It has the density of ρ = 2700 kg/m3, therefore its
mass is m = 2.7kg. The angle of the inclined plane
on which the block is located is α = 30◦ and the crit-
ical value for the friction coefficient is µ = tan(α) ≈
0.57735. Here, the block is located in its balanced
state in normal direction. Tangentially to the plane,
an initial velocity v0 = 5m/s is given to the block.
So, the block is sliding upward first, until at a spe-
cial time the relative velocity is zero. This time can
be determined as t = v0/(g sin(α) + µg cos(α)). In
the following, a simulation with a time step size of
∆t = 5e-6s is carried out for three different values
of µ around the critical value. For this example, time
t1 at which the velocity of the block gets zero for
µ1 = 0.5 is t1 ≈ 0.546s. For a friction coefficient of
µ2 = 0.58, t2 ≈ 0.508s, and finally for µ3 = 0.6 we
get t3 ≈ 0.499s. In Figure 4 the velocity of the block
is shown over the time. As an inset, the assembly of
the example, i.e. the nonconvex block on the plane
is shown. The block is gliding upwards, while its ve-
locity drops until it gets zero at a certain point. At
this point, the block comes to rest. For µ1 < tan(α),
the velocity drops further, it changes its sign and gets
negative, i.e., the block glides down the plane. A more
detailed image of the scene is given in Figure 5. Here,
points t1, t2, and t3, are specified, at which the veloc-
ity is zero. It can be seen clearly, that for all cases, the
velocity decreases further for a short time, since the
block moves downward during sticking. Then, after
sticking is overridden, the velocity for the small fric-
tion coefficient decreases further. For µ2 and µ3, the
velocity rises until it gets zero and remains there.

7 CONCLUSIONS

In this paper we described different models that are
used to obtain an efficient program for the simu-

Figure 4. Velocity of the nonconvex block on an inclined plane
for three different friction coefficients.

Figure 5. Zoomed depiction of the velocity of the block.

lation of granular media. The combination of ideas
from MD and MBS makes it possible to simulate the
dynamical behavior of large systems of differently
shaped bodies efficiently. First, the equations of mo-
tion for arbitrary solid bodies are obtained. By means
of a neighborhood search method, neighboring bodies
are presorted such that the very time consuming col-
lision detection only has to be accomplished for bod-
ies that are positioned very close to each other. The
contact forces are modeled by the Calvin-Voigt model
in normal direction. We described the Cundall-Strack
model in detail, which is used to model the frictional
contact force here. We depicted results for three dif-
ferent friction coefficients and could show, that e.g.
a block on an inclined plane can completely come to
rest.
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