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The first normal stress difference (N1) and the microstructure in a dense

sheared granular fluid are probed using event-driven simulations. N1 is known

to be positive (if the stress is defined in compressive sense) in a granular fluid

and also in elastic hard-sphere fluids. Here we show that N1 changes sign in

the dense limit, and the origin of N1 is tied to the anisotropy in the collision-

angle distribution. This sign-reversal of N1 occurs due to the microstructural

reorganization of the particles, which can be correlated with a preferred value

of the average collision angle θav = π/4 ± π/2 in the direction opposing the

shear. While the anisotropy in the second moment of fluctuation velocity,

which is a Burnett-order effect, is known to be the progenitor of normal

stress differences in dilute granular fluids, we show here that the collisional

anisotropies are responsible for the observed normal stress behaviour in the

dense limit. We also report on crystal-formation, signalling the onset of fluid-

solid coexistence in dense granular fluids. Different approaches to take into

account the normal stress differences are discussed in the framework of the

relaxation-type rheological models.
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I. INTRODUCTION

In the last decade, a lot of research activity took place to unveil the properties of granular

materials [1,2], primarily because of their industrial importance, but also due to their fas-

cinating properties. This has unraveled many interesting and so far unresolved phenomena

(for example, clustering, size-segregation, avalanches, the coexistence of gas, liquid and solid,

etc.). Under highly excited conditions, granular materials behave as a fluid, with prominent

non-Newtonian properties, like the normal stress differences [3]. While the normal stresses

are of infinitesimal magnitudes in a simple fluid (e.g. air and water), they can be of the

order of its isotropic pressure in a dilute granular gas [4]. From the modelling viewpoint,

the presence of such large normal-stress differences readily calls for higher-order constitutive

models [5,6] even at the minimal level.

Studying the non-Newtonian behaviour is itself an important issue, since the normal

stresses are known to be the progenitors of many interesting and unique flow-features (e.g.

rod-climbing or Weissenberg-effect, die-swelling, secondary flows, etc. [7]) in non-Newtonian

fluids. Also, normal stresses can support additional instability modes (for example, in

polymeric fluids and suspensions [7–10]), which might, in turn, explain some flow-features of

granular fluids. For example, particle-clustering [11–13] has recently been explained from the

instability-viewpoint using the standard Newtonian model for the stress tensor [14,12,15].

The kinetic theory of Jenkins & Richman [16] first showed that the anisotropy in the

second moment of the fluctuation velocities, due to the inelasticity of particle collisions, is

responsible for such normal stress behaviour. They predicted that the first normal stress

difference (defined as N1 = (Πxx − Πyy)/p, where Πxx and Πyy are the streamwise and the

transverse components of the stress deviator, respectively, and p is the isotropic pressure,

see section IIB) is maximum in the dilute limit, decreases in magnitude with density, and

eventually approaches zero in the dense limit. Goldhirsch & Sela [4] later showed that

the normal stress differences appear only at the Burnett-order-description of the Chapman-

Enskog expansion of the Boltzmann equation. Their work has clearly established that the
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origin of this effect (in the dilute limit) is universal in both atomic and granular fluids,

with inelasticity playing the role of a magnifier and thus making it a sizeable effect in

granular fluids. While the source of the normal stress differences in the dilute limit has

been elucidated both theoretically and by simulation, its dense counterpart has not received

similar attention so far. This is an important limit since the onset of dilatancy (volume

expansion due to shear, [17]) can be tied to the normal stress behavior [18].

Previous hard-sphere simulations [19,3,11] did look at the normal stress differences, but

they did not probe the dense limit in a systematic way. These simulations showed that

the first normal stress difference vanishes in the dense limit, in line with the theoretical

predictions of Jenkins & Richman [16]. On the other hand, the soft-sphere simulations

of Walton & Braun [20], with frictional particles, showed that this quantity can change

sign in the same limit. Our work with smooth hard-disks unequivocally demonstrates that

N1, indeed, changes its sign at some critical density in the dense regime, due to the sign-

change of its collisional component at a critical density, which depends on the value of

the coefficient of restitution (e). More importantly, we show that the origin of N1 in the

dense limit is distinctly different from that in dilute granular gas. We further show that,

at the microstructural-level, certain topological changes in the anisotropic structure of the

collision-angle distribution with density are responsible for the observed sign-reversal of N1.

We use the familiar smooth hard-disk model for an event-driven simulation [21] of the

uniform shear flow configuration, focussing mainly on the normal stress behaviour and the

microstructure formation as function of the density. The details of the simulation technique

and the relevant macroscopic quantities are described in section II. The simulation results

on the first normal stress difference, the radial distribution function, the collision angle

distribution and the crystalline-structure are presented in section III. Possible modelling

approaches to incorporate the normal stress differences are discussed in section IV. In

section V we summarize our findings, with suggestions for possible future work.
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II. SIMULATION METHOD

We consider a collection of smooth inelastic hard-disks in a square box of size L̃ under

uniform shear flow — let x̃ and ỹ be the streamwise and transverse directions, respectively,

with the origin of the coordinate-frame being positioned at the centre of the box. The

snapshot of a typical simulation, with non-dimensional coordinates, is shown in Fig. 1(a).

Note that the dimensional quantities are denoted by tildes, and the reference length, time

and velocity scales for non-dimensionalization will be specified later in this section.

Let the diameter and the mass of the particle be σ̃ and m̃, respectively. The pre- and

post-collisional particle velocities of particle 1 are denoted by c̃1 and c̃′1, respectively. Hence,

the velocity of particle j relative to 1 is c̃21 = c̃2− c̃1. Let k21 = k be the unit vector directed

from the center of particle 2 to that of particle 1 at contact. The pre- and post-collisional

velocities are related by the expression:

k·c̃′21 = −e(k·c̃21), (1)

where e is the coefficient of normal restitution, with 0 ≤ e ≤ 1; note that we restrict ourselves

to perfectly smooth particles. The expression for the collisional impulse is

Ĩ = m̃(c̃′1 − c̃1) =
m̃

2
(1 + e)(k·c̃21)k, (2)

directed along k.

A. Model system and algorithm

The system is periodic in x̃-direction, i.e. a particle crossing the left/right boundary

re-enters the system through the opposite boundary at the same vertical position with

unchanged velocities. To impose a uniform shear rate (γ̃ = Ũ/L̃) in the ỹ-direction, the top

and bottom image boxes, bounding the central box, are set in motion with velocities Ũ/2 and

−Ũ/2, respectively, in the streamwise direction. This is the standard approach to attain the

state of uniform shear flow (USF) by imparting momemtum transfer by shearing, originally
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introduced by Lees & Edwards [22]. Overall, this system represents an extended doubly-

periodic system where the periodicity in the transverse direction is in the local Lagrangian

frame. In a typical simulation, the disks are initially placed randomly in the computational

box, and the initial velocity field is composed of the uniform shear and a small Gaussian

random part. An event-driven algorithm [21] is then used to update the system in time, the

details of which may be found in Alam & Luding [23].

To ascertain whether the system has reached the statistical steady-state, the time evolu-

tion of the average fluctuation kinetic energy (‘granular’ energy, defined in the next section)

is monitored, see Fig. 1(b). Due to the balance between the shear work and the collisional

dissipation under homogeneous shear deformation, the granular energy attains a constant

value at the steady state. Depending on the value of the coefficient of restitution and the

number of particles, it takes about thousand collisions per particle to reach such a statisti-

cal steady-state – the lower the value of e, the more quickly the system reaches the steady

state and vice versa. The simulation is then allowed to run for another 15000 collisions per

particle to gather data to calculate the macroscopic quantities. A few longer runs (30000

collisions per particle) were also checked, with no significant change on the measured quan-

tities. Another quantity which was simultaneously monitored, along with granular energy,

is the linearity of the streamwise velocity profile across the Couette gap, and we found that

the calculated shear rate (i.e. the slope of the velocity profile) fluctuated around the imposed

shear rate by at most 1%.

B. Macroscopic quantities

With L̃, γ̃−1, γ̃L̃, and m̃, used as the reference length, time, velocity, and mass, respec-

tively, the relevant dimensionless quantities are:

σ =
σ̃

L̃
, (c,u,C) =

1

γ̃L̃
(c̃, ũ, C̃), P =

P̃

ρ̃σ̃2γ̃2
, T =

T̃

σ̃2γ̃2
, (3)

where u is the ‘hydrodynamic’ velocity, C = c − u the fluctuation (peculiar) velocity of

particles, ρ̃ the material density of particles, P the stress tensor, and T the granular energy.
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The macroscopic stress, as measured in discrete particle simulations, is a byproduct of

the particle-level mechanisms of momemtum transfer. As in the hard-core model of dense

gases, the stress is the sum of its kinetic and collisional components. The former arises

from the transport of momentum as the particles move through the system carrying their

momentum, while the latter is due to the direct interparticle collisions. The homogeneity

of the uniform shear flow allows us to calculate the stress by averaging it over the whole

computational box [3,23].

The stress, defined in the compressive sense, may be decomposed in the standard way:

P = Pk + Pc = p1 + Π, (4)

where p is the pressure, Π the pressure deviator and 1 the unit tensor. From the off-diagonal

components of the pressure deviator, we can calculate the shear viscosity which relates the

rate of strain to the shear stress:

µ = −Πxy/
du

dy
. (5)

For the steady uniform shear flow, thus, the dimensionless shear viscosity can also be in-

terpreted as the shear stress due to our adopted scaling, du/dy = γ = 1. The diagonal

components of the pressure deviator can be non-zero, giving rise to normal stress differ-

ences. The first normal stress difference is defined as

N1 =
(Πxx − Πyy)

p
. (6)

Note that we have scaled this quantity by pressure to ascertain its relative magnitude with

respect to pressure. For a standard Newtonian fluid, N1 = 0 and thus N1 is an indicator of

the non-Newtonian character of the fluid. N1 can be decomposed into kinetic and collisional

parts:

N1 = N k
1 +N c

1 =
(Πk

xx − Πk
yy)

p
+

(Πc
xx − Πc

yy)

p
. (7)

Note that the sign of N1 crucially depends on the convention used to define the stress

tensor. For example, in the rheology literature, stress is typically defined in the tensile sense
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[7]. A positive N1 for the compressive case is equivalent to its negative value for the tensile

case and vice versa. This point should be kept in mind while making any comparison with

data in the rheology literature.

From the trace of the kinetic stress tensor, Pk, one can calculate the granular energy,

T =
1

2σ2

[

1

N

N
∑

i=1

CiCi

]

, (8)

which is a measure of the random motion of the particles with respect to the mean motion.

There are two dimensionless control parameters: the volume fraction of particles (ν) and

the coefficient of normal restitution (e). The shear rate is also a control parameter, however,

due to normalization we have γ = γ̃/γ̃ = 1, and changing the value of γ̃ does not influence

the reported results; the imposed shear rate γ is thus kept fixed at unity. The simulations

are carried out for the whole range of solid volume fractions, varying from the dilute to the

dense limit, over a large range of values for the coefficient of restitution (e = 0.3–0.99). For

most of the simulations, the number of particles are fixed to N = 1024, and increasing the

value of N by fourfold (N = 4096) did not affect the reported quantities noticeably.

For the typical simulation in Fig. 1(a), at steady-state, after 2 × 107 collisions, the

parameter values were ν = 0.5, N = 1024 and e = 0.7. The variations of the granular

energy T and the calculated shear rate γcal with time are shown in Fig. 1(b), along with

corresponding initial variations in two insets. (The data represent the instantaneous values

of T and γcal sampled at a regular interval of 400 collisions – no time averaging is involved

here.) It is observed that the granular energy reaches its steady value (T = 0.6121± 0.022)

quickly after the initial transients and the calculated shear rate fluctuates around its imposed

value (γ = 1) by about ±1%. The fluctuations in both T and γcal at steady-state are due

to the finite-size of the system and diminish with increasing number of particles as N−1/2.

III. RESULTS

For detailed results on the quantities, pressure, shear viscosity and granular energy, and

for their comparison with kinetic theory predictions, we refer to our recent study [23]. Here,
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we will mainly focus on the behaviour of the first normal stress difference and its kinetic

and collisional components. We also present results on the pair distribution function and

the collision angle distribution to characterize microstructures. Lastly we will present some

results on crystal-formation at high densities, signalling the coexistence of fluid and solid,

complementing recent results in non-sheared systems [24,25].

A. Normal stress difference

Figure 2(a) shows the variation of the first normal stress difference (N1) with density

for two values of the coefficient of restitution. It is observed that N1 is maximum at the

dilute limit and decreases thereafter with ν. The overall variation of N1 with density looks

similar at other values of the coefficient of restitution, with a difference in the magnitude

of N1. The inset in Fig. 2(a) shows that N1 decreases quite sharply in the dense limit and

becomes negative at some density (ν = ν). Increasing the value of the restitution coefficient

decreases this critical density ν. The arrows on the left-ordinate indicate the asymptotic

values of N1 for a two-dimensional granular gas in the dilute limit:

N1 =































32(1−e)
16+9(1−e) (Jenkins & Richman 1988)

1.0448(1− e2) (Sela et al. 1996)

(9)

The anisotropy in the second moment of the fluctuation velocity is primarily responsible

for the finite normal stress difference in the dilute limit [16,26] and this shows up only at

the Burnett-order of the Chapman-Enskog expansion [4]. We should mention here that the

limit e→ 1 is singular and the normal stress difference survives even in the elastic limit as

pointed out by Goldhirsch & Sela [4]. The corresponding expression for N1 in a molecular

gas is:

N1 ≈ 1.358
γ2`2

〈u2〉
,
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where ` is the mean free path and 〈u2〉 is the rms of the velocity fluctuations. However, be-

cause of its extremely small magnitude under normal conditions, the normal stress difference

is not measurable in a molecular fluid.

Previous hard-sphere simulations of Campbell and coworkers [19,3] are in variance with

our result in that they found N1 → 0 as ν → νmax. However, the soft-sphere simulations

of Walton & Braun [20], with frictional particles, support our observation that N1 indeed

undergoes a sign-reversal. To better understand what is responsible for the sign-reversal of

N1, we look at the kinetic and collisional components of the first normal stress difference.

Figure 2(b) shows the variations of N k
1 and N c

1 with density at e = 0.7. We observe that

N k
1 is maximum at the dilute limit and decreases monotonically to zero as ν approaches the

packing limit. Except for the dense limit, the overall behaviour of N k
1 represents that of

the total normal stress difference. The collisional component, N c
1 , shows a non-monotonic

variation with density: N c
1 is zero in the dilute limit, increases with increasing ν, remains

almost constant for intermediate densities, and then decays sharply in the dense limit.

Interestingly, N c
1 becomes negative at some critical density (ν = ν) beyond which the

behaviour of N c
1 mirrors that of N1 (see inset). Thus the normal stress behaviour in the

dense regime is clearly due to the anisotropy in the collisional stresses.

Recall that the kinetic theory of Jenkins & Richman [16,26] predicts that N1 → 0 in the

dense limit. The predictions of the revised Enskog theory of Santos et al. [27] are in line

with that of Jenkins & Richman, even though their kinetic model is claimed to be valid even

in the crystalline-phase. Since the source of normal stress differences in all these theories is

linked to the anisotropy in the second moment of velocity fluctuations (which vanishes as

ν → νmax), they are unable to predict the correct behaviour of normal stresses in the dense

limit.

The sign-reversal ofN c
1 can be succinctly presented as a phase-diagram in the (ν, e)-plane

by plotting the zeros of N c
1 as a function of the coefficient of restitution, see Fig. 3. Below

the solid line, N c
1 is positive, and negative above it. Also plotted in this figure is the line

for the zeros of N1 which, as expected, lies slightly above. The stress tensor is Newtonian

9



along the solid line which may be called the symmetry-line. It is observed that decreasing

the coefficient of restitution increases the critical density (ν) at which N c
1 changes sign. As

we approach the elastic limit, ν depends strongly on the value of e. We further note that

as e→ 1, ν ∼ 0.62 which is well below the freezing-point density of a 2D hard-sphere fluid,

νf ≈ 0.70, [25,24].

We need to mention here that the sign-change of N1 is not uncommon in other non-

Newtonian fluids. For example, in non-Brownian viscous suspensions, N1 changes sign at

high Peclet number [28,29]. However, the reason for this effect is quite different in granular

fluids as we show below.

B. Microstructural features

Here we probe the microstructural features of a dense granular fluid, with the aim to

find out possible relations of the sign-reversal of N1 with the freezing-transition and the

collisional anisotropy. In the last subsection we show some results on the formation of

layered-crystals with triangular packing.

1. Radial distribution function

Typical snapshots of the system in the dense regime are shown in Fig. 4 at four different

densities with e = 0.7. Note that for subplot 4(c) the density is ν = 0.725 for which

N c
1 ≈ 0. Looking at the corresponding distribution of granular energies (not shown here

for brevity), we could find signatures of clusters (group of particles) with minimum energies

surrounded by particles with maximum energy. To understand the flow-microstructures and

their energetics at such high densities, we need to probe the pair distribution function and

similar measures for the structure of the packing.

Figure 5(a-d) shows the radial distribution function g(r) at four densities, with parameter

values as in Fig. 4. The thin, dotted lines are data from a non-sheared, homogeneous, elastic

system [25,24], whereas the thick, solid lines represent a sheared situation with rather strong
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dissipation e = 0.7. The weak difference at low density ν = 0.60 grows with increasing

density, concerning two aspects:

(i) The peak value of contact in the sheared systems is always larger than in a homogenous

system of the same density, and the difference increases strongly with density, another

indicator for clustering [30].

(ii) The peaks and valleys, which allow to distinguish between different lattice structures, are

different in the sheared case when compared to the non-sheared situation. In the former case,

peaks at r/σ = 1, 2, 3, . . . are observed, signalling shell-formation about any test-particle.

In the latter case, the peaks at r/σ = 1,
√

3, 2, . . . indicate a crystallization transition and

the development of a triangular lattice.

The peaks in the sheared situation, e.g. at r/σ = 2, 3, become sharper as the density is

increased, but the one at r/σ = 4 is not well-defined even at ν = 0.75; higher order peaks are

almost invisible, indicating long-range disorder due to the shearing in contrast to the long-

range order that evolves in the non-sheared system. The comparison between the sheared

and non-sheared cases suggest that the structure-formation is much slower in a sheared fluid

which, in turn, implies that the freezing-point density of the former would be larger than

that of the latter. Shear at least delays, if not avoids the freezing of the monodisperse

particles to a triangular crystal. The splitting of the second-peak in the non-sheared case

corresponds to the onset of freezing transition; with increasing density this splitting becomes

much more prominent, with similar structural-features appearing at the successively higher-

order peaks. The higher-order peaks in the sheared case become prominent only if we go

beyond ν = π/4, which corresponds to the limit of perfect square-packing, but it is difficult

to maintain homogeneous-shearing at such high densities, because the system splits into two

parts, a dense, cold, crystalline area and a dilute, hot, fluid area – see below for details.

Furthermore, our simulation data on pressure and viscosity in Fig. 6 show that both

increase monotonically with density, much beyond ν = 0.7001, and we did not find the hys-

teretic van-der-Walls loop in our pressure data upto ν = π/4. These observations, together

with our result that in the elastic limit N1 changes sign at a much lower density (ν ≈ 0.62,
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see Fig. 3) than the corresponding freezing-density, suggest that the sign-reversal of N1 is

not related to the freezing-transition.

2. Collision angle distribution

Associated with the sign-reversal of the first normal stress difference is a change in the

relative magnitudes of the normal stress components (Pxx and Pyy). Subtle changes in the

direction and magnitudes of the collisional-mode of momemtum transfer could influence

the individual components of the stress tensor. In order to test this hypothesis, we focus

on the collision angle distribution function, C(θ), which is defined such that C(θ)dθ is the

probability of collision occuring at an angle lying between θ and θ+dθ (see, for the definition

of θ, Fig. 12). For a fluid in equilibrium, all collisions are equally likely, and hence C(θ) is

a uniform function of θ, i.e. C(θ) = 1/π ≈ 0.318309. For a non-equilibrium system (e.g.

shear flow), however, preferred collisions are dictated by the nature of the external field,

leading to an anisotropic distribution for C(θ) [31–33]. Following Savage & Jeffrey [32,33],

an explicit expression for C(θ; ν, e) can be derived for the case of uniform shear flow as

detailed in the Appendix. Note that the angular dependence of C(θ; ν, e) will be modified

by both the coefficient of restitution and density.

Figure 7 shows the comparison of our simulation data on C(θ) with the theoretical

predictions of equation (A9) for two different values of the coefficients of restitution at a

density ν = 0.6. It is observed that the probability of collisions is higher on the upstream-

faces of the colliding particles, i.e. for θ ∈ [π/2, π] and θ ∈ [−π/2, 0]. This is a consequence

of the imposed shear-field which compresses the flow-structure along the 3π/4-direction and

stretches along the π/4-direction. Note that the probability of collisions on the upstream-

faces increases further with increasing dissipation levels. Regarding the comparison with

theory, there is, clearly, a phase-difference between theory and simulation, and the overall

agreement is only qualitative.

Turning our attention to the range of densities where N1 undergoes a sign-reversal, we
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show the collision angle distributions C(θ) in Fig. 8 as polar plots with e = 0.7; the

corresponding densities are as in the subplots of Fig. 4. It is observed that the anisotropic

structure of C(θ) gets further modified in this regime, with distinct peaks appearing near θ =

0 and 2π/3 (see subplot b). While the peak at θ = 0 corresponds to head-on collisions between

particles in the same-layer, the one at θ = 2π/3 clearly signals the onset of triangular-

structure formation. Another noteworthy point is that the collisions on the downstream-faces

of the colliding particles are rare at these densities and hence C(θ) can be approximated solely

by its contributions from the second- and fourth-quadrants (θ ∈ [π/2, π] and θ ∈ [−π/2, 0],

respectively).

Since the momemtun transfer occurs mainly due to collisions in the dense regime, the

stress tensor can be approximated by

P ∼
∫

(k ⊗ k)C(θ)dθ

Assuming now that all the collisions would occur at some average collision angle θav so that

C(θ) = C(θav), and recalling that C(θ) is well represented in this regime by restricting θ

only in the second- and fourth-quadrants, the expression for the first normal stress differnce

simplifies significantly to

N1 ∼ [(k⊗ k)x − (k⊗ k)y]θ=θav C(θav). (10)

It is trivial to check that N1 = 0 at θav = −π/4. From our simulation data, we have

calculated θav by averaging C(θ) over the second- and fourth-quadrants, whose variation

with density is plotted in Fig. 9 for two restitution coefficients. It is observed that θav crosses

through −π/4 (i.e. 3π/4) at around the critical density ν for all restitution coefficients. For

example, θav ≈ −45.16◦ and −45.04◦ at ν = 0.725 and 0.67, respectively, where N1 changes

sign. Thus, the microstructural signature of the sign-reversal of N1 is directly correlated

with the average collision angle being greater or less than −π/4 (or 3π/4).
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3. Crystallization: Fluid-solid coexistence

Figure 10(a) shows a snapshot of the system where a solid-layer coexists with a fluidized

regime. The parameter values are ν = 0.80 and e = 0.9. A closer look reveals that the

particles are arranged in a triangular-packing, representing a crystal, and thus we have

a clear evidence for fluid-solid coexistence. The corresponding instantaneous streamwise

velocity profile is shown in Fig. 10(b); the coarse-graining is done by binning the system

into 20 equal-size bins in the transverse direction and then taking averages over all the

particles in each bin. Clearly, the shearing is inhomogeneous across the Couette-gap: the

layered-crystal moves with a constant velocity and the shear-rate in the fluidized regimes

on either side of the crystal is almost uniform. Note that the velocity profile is asymmetric,

and this also signals the breakdown of the Lees-Edwards boundary condition as a motor for

homogeneous shear. The formation and time-evolution of this crystal can be ascertained

from Fig. 10(c) which shows the corresponding evolution of the streamwise velocity at early

times. We observe that the crystal has fully formed at t = 76, and the velocity profile

remains antisymmetric about y = 0 till t = 150. With further time-evolution, however,

the crystal does not remain stationary in the transverse direction, rather it moves slowly

with particles diffusing across the fluid-solid interface. The overall life-time of this crystal is

several orders of magnitude larger than the external time-scale γ−1, imposed by the shear.

The corresponding collision-angle distribution C(θ), shown in Fig. 10(d), suggests that most

of the collisions occurred in the crystalline-phase. (Note that similar layered-microstructure

was reported by Campbell & Brennen [33], but due to the small system-size (N = 40) and

boundary-effects (they considered a shear-flow bounded by walls), the coexistence of fluid

and solid is not evident.)

Analogous plots for a nearly elastic system (e = 0.99) are shown in Fig. 11(a–c) for

the same density ν = 0.80. The overall features are similar to that for e = 0.9, but the

width of the crystalline zone is a little larger. By decreasing the dissipation-level to e = 0.7,

we did not observe crystal formation, with other parameters being fixed; by increasing the
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system-size to N = 4096, however, we observed layered crystal at e = 0.7. We should remark

here that, at high densities and strong dissipation, the inelastic collapse [34,35] terminates

the evolution of the system (after some time), however, we do not discuss this artifact of

the hard-sphere model. Thus, the formation of such layered-crystalline structure depends

crucially on the system size and the dissipation level: the larger the system-size and the

weaker the dissipation, the more susceptiable the system is to crystallize. Also, even if we

are well below the limit of perfect square-packing (ν = π/6 ≈ 0.785), the system could

crystallize if the dissipation-levels are low; for example, we observed signatures of crystalline

structures at ν = 0.72 with e = 0.99 and N = 1024. This indicates that the system

relaxes faster/better towards the non-sheared equilibrium situation if dissipation is weaker.

However, the steady shear leads to a systematic deviation from that state.

IV. CONSEQUENCES FOR THE CONSTITUTIVE MODELING: RELAXATION

MODELS

Here we attempt to describe the normal-stress behaviour of a granular fluid using the

standard relaxation-type models. Prior literature on the dense-gas kinetic theory, which

forms the foundation of theoretical developments of granular fluids in the rapid-shear regime,

indicates that such a stress relaxation mechanism does also exist in granular fluids [36–38].

The relaxation-type models are routinely used to describe the non-Newtonian behaviour of

viscoelastic/viscoplastic materials, and hence might be apt for granular fluids in the dense

limit as well.

Let us consider the viscoelastic relaxation approximation suggested recently by Jin &

Slemrod [38] to regularize the Burnett order equations of Sela & Goldhirsch [5] for a low-

density granular fluid. Their proposed equation for the pressure deviator, in our notation,

is

Π + τ1

(

DΠ

Dt
− LT ·Π−Π · L + 2

d
tr(Π · L)1

)

+ τ2

(

S ·Π + Π · S− 2
d
tr(Π · S)1

)

= Πeq (11)
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where

Πeq = −2µS− (λ∇·u) 1 + Π2 + Π3,

S = 1
2

(

L + LT
)

− 1
d

(∇·u) 1,

L = (∇u)T =

(

∂ui
∂xj

)

λ = (ζ − 2

d
µ),

τ1 = 0.3211

(

µ

p

)

,

τ2 = 0.58775

(

µ

p

)

.

Here τ1 and τ2 are relaxation times, d the dimensionality of the system, L is the velocity

gradient, S the deviatoric part of the rate of strain tensor, µ the shear viscosity, ζ the bulk

viscosity and 1 the identity tensor; Π2 and Π3 are higher order terms, explicitly written

down in [38]. Note that both relaxation times are proportional to the ratio of the shear

viscosity and the pressure, and hence proportional to the mean free path. In the limits of

τ1, τ2 → 0 and Π2, Π3 → 0, we recover the standard Newtonian model for the stress tensor.

Neglecting the higher-order terms, an expression for the first normal stress difference can

be obtained for the steady uniform shear flow:

N1 =

[

4τ1

2(1 + τ 2
1 ) + τ2(1 + τ1 − τ2)

](

µ

p

)

> 0. (12)

This quantity is always positive, as in our simulation results for dilute flows.

It is important to note that the above evolution equation does not satisfy the principle of

material frame indifference (MFI) which states that the constitutive laws should be invariant

under rigid-rotation [7,8]. The scalar field φ, the vector field v and the tensor field Π are

called frame-indifferent or objective if the following relations hold for all t:

φ′(x′, t′) = φ(x, t), (13)

v′(x′, t′) = Q(t)v(x, t), (14)

Π′(x′, t′) = Q(t)Π(x, t)Q(t)T , (15)
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where φ, v & Π and φ′, v′ & Π′ are defined in two different frames F and F ′, respectively,

and Q(t) is a proper orthogonal tensor. Here F ′ ∈ E(F), with E(F) denoting the set of all

frames obtainable from a given frame F by observer transformations. That the stress-tensor

in a granular gas is not a frame-independent quantity (as in the hard-sphere gas [39,40]) is

well-known. In the framework of the standard relaxation models, this effect shows up as a

sign-change of the first normal stress difference [23].

If one has to recover the Boltzmann-limit of relaxation-type equations, which is non-

objective, a frame-indifferent approach is ruled out. Since the kinetic component of the

first normal stress difference remains positive at all densities, the kinetic stress tensor can

be modelled using a non-objective equation as discussed above. If we were to postulate

a relaxation-type model for the collisional stress tensor as well, then, it must change its

type, from nonobjective to objective, at a critical density as one approaches the dense limit.

(For steady homogeneous shear flow, one can also model positive/negative normal stress

differences by postulating a general orthonormal basis, generated by the nilpotent basis

tensors, which satisfies the objectivity requirement; for related issues, the reader is referred

to Goddard [8].)

A question now arises as to the possibility of writing down a single evolution equation for

the total stress deviator, Π, by combining evolution equations of its kinetic and collisional

components. The simplest way to postulate such an equation is:

Π + α(ν, e)τ

(

DΠ

Dt
−
{

LT ·Π + Π · L− 2
d
tr(Π · L)1

}

)

= −2µS− (λ∇·u) 1. (16)

where α(ν, e) is an empirical constant, dependent on both density and restitution coefficient.

This is nothing but the Jin-Slemrod equation with τ2 = 0 and neglecting its higher-order

terms. Note that the above equation resembles the well-known lower-convected equation with

a minus sign in front of the curly bracket. For this case, the first normal stress difference is

N1 =
2τα

1 + τ 2α2

(

µ

p

)

. (17)

Clearly, if α(ν, e) is obtained from simulation, its sign-reversal would also correspond to the

sign-reversal of N1.
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Another possibility to model N1 is to postulate the following equation for the pressure

deviator:

Π + α(ν, e)τ

(

DΠ

Dt
+
{

L ·Π + Π · LT − 2
d
tr(Π · L)1

}

)

= −2µS− (λ∇·u) 1. (18)

With a minus sign in front of the curly-bracket and α(ν, e) = 1, this represents the upper-

convected equation [7]. It can be verified thatN1 is also given by (17) for this case. Similarly,

one could postulate evolution equations using other objective derivatives (e.g. Jaumann

rate, etc, [7]). Despite its empirical nature and crudeness, such a simplified approach holds

promise for practical purposes.

V. SUMMARY AND CONCLUSION

We have probed the non-Newtonian behaviour and the incipient crystalline-phase in a

sheared, monodisperse, two-dimensional granular fluid. The standard event-driven tech-

nique is used to simulate a box of hard-disks under homogeneous shear deformation. The

information about the stress tensor is obtained by decomposing it in the standard way:

P = p1 + Π, where p is the pressure and Π the pressure deviator. The non-Newtonian

behaviour is quantified in terms of the first normal stress difference: N1 = (Πxx − Πyy)/p.

The granular fluid is non-Newtonian with measurable first normal stress difference (N1)

which is positive (if the stress is defined in the compressive sense) in the dilute limit. In-

terestingly, however, N1 changes from positive to negative at a critical density in the dense

regime. By decomposing N1 into the kinetic and collisional contributions, N1 = N k
1 +N c

1 ,

we found that while N k
1 is always positive and decays to zero in the dense limit, N c

1 has a

non-monotonic variation with density. In particular, N c
1 increases from zero in the dilute

limit as ν increases, reaches a maximum at some value of ν and then decreases, eventually

becoming negative in the dense limit. The density at which N c
1 = 0 (ν ≡ ν) depends cru-

cially on the level of micro-scale dissipation; in particular, ν increases as the coefficient of

restitution decreases. We have constructed a phase-diagram in the (ν, e)-plane by identifying

the regions where N1 is positive/negative.
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At the micro-level, the particles undergo reorganization as the dense-limit is ap-

proached. The signatures of microstructural-reorganization have been captured by probing

the collision-angle distribution, C(θ), which is anisotropic due to the presence of the mean

shear. In particular, we have found that the topology of the anisotropic-structure of C(θ)

changes, with collisions occurring at certain preferred angles on the upstream-faces of the

colliding pairs. The sign-reversal of N1 is correlated with a preferred value of the average

collision angle, θav = π/4± π/2, averaged over the upstream-faces of the colliding particles.

We have shown that the origin of the first normal stress difference, in the dense limit,

is tied to the collisional anisotropies. The underlying mechanism is distinctly different from

that is known for a dilute granular gas [16,4] where the anisotropy in the second moment of

fluctuation velcoity, which is a Burnett-order effect, gives rise to normal stress differences.

The time evolution of the sheared granular fluid leads to crystallization in the dense

limit, signalling the coexistence of fluid and solid. The particles are arranged in a triangular-

packing inside the crystal, and it moves as a layer in the streamwise direction. The formation

of such layered-crystalline structure depends crucially on the system size and the dissipation

level: the larger the system-size and the weaker the dissipation, the more susceptible the

system is to crystallize.

The present work clearly shows that the available kinetic-theory-based rheological mod-

els for granular fluids are not adequate to predict the behaviour of the first normal stress

difference in the dense limit. Certain microstructural-features, like the preferred distribu-

tion of collisions which eventually leads to crystal-formation, should be incorporated into

the theory. To incorporate the observed normal stress behaviour into the framework of

‘plausible’ constitutive models, we postulated a relaxation-type evolution equation for the

stress deviator. Using frame-dependent derivatives, with empirical fit parameters, the model

would be valid over the whole range of densities.
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APPENDIX A: SHEAR-INDUCED ANISOTROPY AND THE COLLISION

ANGLE DISTRIBUTION

Here we are interested in the shear-induced anisotropy of the collision angle distribution

of an inelastic hard-disk fluid. Following Savage & Jeffrey [32] an expression for the collision

angle distribution C(θ) is derived, which is compared with our simulation data in IIB.2.

To calculate the probablility of collisions at a specific angle θ, we focus on Fig. 12 with

two particles colliding at r. Note that θ is measured anticlockwise from the positive x-axis.

For collisions to occur in a time δt, the center of particle 1 must lie inside the volume

σδk(q · k)δt, where q = c1 − c2 is the relative velocity of the colliding pair. Thus the

expected total number of collisions (per unit time and unit area) with the line of centres k

lying between k− δk/2 and k + δk/2 is given by

∫

σf (2)(c1, r1, c2, r2)(q · k)(k · n)dkdc1dc2 (A1)

where f (2)(·) is the two-particle distribution function which is defined so that

f (2)(c1, r1, c2, r2) dc1dc2dr1dr2 is the number of pairs of particles such that the particle

i is located in an area element dr1 about r1 with its velocity in the interval dc1 about c1

while particle j is located in an area element dr2 about r2 with its velocity in the interval

dc2 about c2. To progress further, we have to invoke the assumption of molecular chaos and

hence the expected number of collisions is
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∫

σg(r1, r2)f (1)(c1, r1; u(r1))f (1)(c2, r2; u(r2))(q · k)(k · n)dkdc1dc2 (A2)

where g(r1, r2) is the pair-distribution function. For the steady uniform shear flow, g(r1, r2)

is calculated from the relation [31,32,41]:

g(r1, r2) =
2gc(ν)

n2

∫

q·k>0
f (1)(c1, r1; u(r1))f (1)(c2, r2; u(r2))dc1dc2 (A3)

where gc(ν) is the contact value of the pair-distribution function and q · k > 0 implies that

the integration be carried out for impending collisions.

As a first approximation, the single particle velocity distribution function

f (1)(c1, r1; u(r1)) is assumed to have the Maxwellian-form:

f (1)(c1, r1; u(r1)) =
(

nm

πkBT

)

exp

[

−m (c1 − u(r1))2

2kBT

]

(A4)

where T is the granular temperature (fluctuating kinetic energy) and kB the usual Boltz-

mann constant. Now transforming the particle velocities (c1, c2) to their center-of-mass

and relative velocities, equation (A3) can be integrated to arrive at the following explicit

expression for the pair-distribution function [32]:

g(r1, r2) = gc(ν)erfc

[

2k · u(r2)

(2kBT )1/2

]

, (A5)

where erfc(·) is the complementary error function. Using the above expression for the pair-

distribution function and transforming in terms of polar coordinates (r, θ), the integral for

the normalized collision angle distribution yields [33]

C(θ) = A(T )

[

exp

(

−sin2 θ cos2 θ

2T

)

− g(θ) sin θ cos θ√
T

]

g(θ) (A6)

where g(θ) is the angular pair-distribution function given by

g(θ) ≡ g(r1, r2)

gc(ν)
= erfc

[

sin θ cos θ√
2T

]

(A7)

and A(T ) is a normalization constant.

For the uniform shear flow, an expression for the granular temperature, can be obtained

from the energy balance equation, by equating the energy production due to shear-work

with the energy loss due to collisions:
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µ
du

dy
= D

⇒ T = fµ(ν)/fD(ν, e) (A8)

where µ = ρpσfµ(ν)
√
T is the shear viscosity and D = (ρp/σ)fD(ν, e)T 3/2 the collisional

dissipation rate, with

fµ(ν) =

√
πν

8

[

1

νgc(ν)
+ 2 + νgc(ν)

(

1 +
8

π

)

]

fD(ν, e) =
4√
π

(1− e2)ν2gc(ν).

Substituting this expression for T , the normalized collision distribution function becomes

C(θ; ν, e) = A(T )



exp

(

−fD(ν, e) sin2 θ cos2 θ

2fµ(ν)

)

− g(θ) sin θ cos θ

√

√

√

√

fD(ν, e)

fµ(ν)



 g(θ) (A9)

and the angular pair-distribution function

g(θ; ν, e) = erfc



sin θ cos θ

√

√

√

√

fD(ν, e)

2fµ(ν)



 , (A10)

It is clear that the angular dependence of C(θ; ν, e) is modified by both the inelastic dissi-

pation and the density.

[1] H. J. Herrmann, J.-P. Hovi, and S. Luding, editors. Physics of dry granular media - NATO

ASI Series E 350, Dordrecht, 1998. Kluwer Academic Publishers.
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LIST OF FIGURE CAPTIONS

FIG. 1. a) A snapshot of the sheared granular system at steady-state. The arrows indicate

the displacement of the image boxes. (b) Variations of the granular energy T and the cal-

culated shear rate γcal with time. For an explanation of the system and particle properties,

see the text. The parameters for both subplots are ν = 0.5, e = 0.7 and N = 1024.

FIG. 2. (a) Variation of the first normal stress difference N1 with the solid volume frac-

tion. The arrows on the left ordinate indicate corresponding analytical values for a two-

dimensional granular gas. (b) Variations of N1, N k
1 and N c

1 with ν at e = 0.7. In both

subplots, the symbols represent the simulation data and the lines are drawn to guide the

eye.

FIG. 3. The phase diagram, delineating regions of positive and negative first normal stress

difference, in the (ν, e)-plane. The filled circles and triangles represent zeros of N c
1 and N1,

respectively.

FIG. 4. Snapshots of the sheared system with e = 0.7 in the dense limit for different densi-

ties: (a) ν = 0.6, (b) ν = 0.7; (c) ν = 0.725; (d) ν = 0.75.

FIG. 5. Radial distribution function g(r) plotted against the normalized distance r/σ from

sheared simulations with dissipation e = 0.7 (solid lines) and from homogeneous, non-sheared

situations with γ = 0 and e = 1 (dotted lines): (a) ν = 0.6, (b) ν = 0.7; (c) ν = 0.725;

(d) ν = 0.75. The arrows indicate the peak values of g(r) at contact for the homogeneous

system.

FIG. 6. Variations of the pressure and viscosity functions with density at e = 0.7: fp = p/ρT

and fµ = µ/ρσ
√
T . The lines are drawn to guide the eye.
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FIG. 7. Distribution of collision angles C(θ) for different coefficient of restitutions at ν = 0.6.

The symbols represent simulation data and the lines theoretical predictions.

FIG. 8. Polar plots of the collision angle distribution for different densities at e = 0.7: (a)

ν = 0.6, (b) ν = 0.7; (c) ν = 0.725; (d) ν = 0.75.

FIG. 9. Variations of the average collision angle θav with density for different restitution

coefficients. The arrows indicate densities where N1 ≈ 0. The lines joining the data points

are to guide the eye.

FIG. 10. Evidence of crystallization in a sheared dense granular fluid at ν = 0.8 and e = 0.9.

(a) Particle distribution and (b) streamwise velocity at t = 390; (c) evolution of streamwise

velocity at early times; (d) collision angle distribution.

FIG. 11. Effect of the coefficient of restitution on crystallization: ν = 0.8 and e = 0.99. (a)

Particle distribution and (b) streamwise velocity at t = 150; (c) collision angle distribution.

FIG. 12. A schematic of the possible collision angles θ in uniform shear flow; θ is measured

anticlockwise from the positive x-axis. Note that the collisions are more likely to occur in

the second (π/2 < θ < π) and fourth (3π/2 < θ < 2π) quadrants of the colliding disks.
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FIG. 1. (a) A snapshot of the sheared granular system at steady-state. The arrows indicate the

displacement of the image boxes. (b) Variations of the granular energy T and the calculated shear

rate γcal with time. For an explanation of the system and particle properties, see the text. The

parameters for both subplots are ν = 0.5, e = 0.7 and N = 1024.

M. Alam (Physics of Fluids)

28



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
ν

10−3

10−2

10−1

100

N
1

0.65 0.7 0.75
−0.02

0

0.02
0.9

e=0.7

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
ν

10−3

10−2

10−1

100

N
1

Total
Kinetic
Collisional

0.65 0.7 0.75
−0.02

0

0.02

(b)
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arrows on the left ordinate indicate corresponding analytical values for a two-dimensional granular

gas. (b) Variations of N1, N k
1 and N c

1 with ν at e = 0.7. In both subplots, the symbols represent
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FIG. 5. Radial distribution function g(r) plotted against the normalized distance r/σ from

sheared simulations with dissipation e = 0.7 (solid lines) and from homogeneous, non-sheared

situations with γ = 0 and e = 1 (dotted lines): (a) ν = 0.6, (b) ν = 0.7; (c) ν = 0.725; (d) ν = 0.75.

The arrows indicate the peak values of g(r) at contact for the homogeneous system.
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FIG. 6. Variations of the pressure and viscosity functions with density at e = 0.7: fp = p/ρT

and fµ = µ/ρσ
√
T . The lines are drawn to guide the eye.
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FIG. 7. Distribution of collision angles C(θ) for different coefficient of restitutions at ν = 0.6.

The symbols represent simulation data and the lines theoretical predictions.
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FIG. 8. Polar plots of the collision angle distribution for different densities at e = 0.7: (a)

ν = 0.6, (b) ν = 0.7; (c) ν = 0.725; (d) ν = 0.75.
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FIG. 9. Variations of the average collision angle θav with density for different restitution coeffi-

cients. The arrows indicate densities where N1 ≈ 0. The lines joining the data points are to guide

the eye.
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FIG. 10. Evidence of crystallization in a sheared dense granular fluid at ν = 0.8 and e = 0.9. (a)

Particle distribution and (b) streamwise velocity at t = 390; (c) evolution of streamwise velocity

at early times; (d) collision angle distribution.
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FIG. 11. Effect of the coefficient of restitution on crystallization: ν = 0.8 and e = 0.99. (a)

Particle distribution and (b) streamwise velocity at t = 150; (c) collision angle distribution.
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FIG. 12. A schematic of the possible collision angles θ in uniform shear flow; θ is measured

anticlockwise from the positive x-axis. Note that the collisions are more likely to occur in the

second (π/2 < θ < π) and fourth (3π/2 < θ < 2π) quadrants of the colliding disks.
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