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Abstract. The jamming transition in granular packings is characterized by a sudden change in the coordination number. In this
work we investigate the evolution of coordination number asfunction of volume fraction for frictionless packings of spheres
undergoing isotropic deformation. Using the results obtained from Discrete Element Method simulations, we confirm that the
coordination number depends on volume fraction by a power law with exponentα ≈ 0.5 above the critical volume fraction
and up to rather high densities. We find that the system size and loading rate do not have an important effect on the evolution
of the coordination number. Polydispersity of the packing seems to cause a shift in the critical volume fraction, i.e., more
heterogeneous packings jam at higher volume fractions. Finally, we propose and evaluate alternative methods to determine
the critical volume fraction based on the number of rattlers, the pressure and the ratio of kinetic and potential energies. The
results are all consistent with the critical volume fractions obtained from the fits of the power law to the simulation data.
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INTRODUCTION

A common property of materials like molecular liquids,
colloids, foams or granular materials is that they have an
amorphous structure and they behave like a solid when
either temperature or applied shear force is decreased or
volume fraction is increased. The transition from fluid to
solid-like behavior in disordered states is generally re-
ferred to as jamming. Liu and Nagel [1] have proposed a
“jamming phase diagram” to unify this concept for dif-
ferent materials with temperature, volume fraction and
applied shear stress as control parameters. For athermal
systems such as granular materials, temperature has no
effect and at zero applied shear stress, there is a well de-
fined point on the volume fraction axis at which jamming
first occurs [2]. The objective of this study is to gain a
better understanding of this critical volume fraction, the
effect of various system parameters on it and how to best
identify it.

In particular, we analyze the evolution of the coordi-
nation number as function of the volume fraction and ex-
amine the discontinuity with power law shape above the
critical volume fraction [2, 3, 4]. We perform DEM sim-
ulations of isotropic compression in frictionless packings
of spheres. We vary system properties such as the num-
ber of particles, polydispersity and loading rate.

SIMULATION SETUP

The Discrete Element Method [5, 6, 7] is used. Fric-
tionless spherical particles are enclosed in a cubic vol-

ume with periodic boundary conditions. A linear vis-
coelastic contact model defines the particle normal con-
tact forces. Besides the damping at the contact, an arti-
ficial background dissipation is introduced to reduce dy-
namical effects. Furthermore, in all simulations we ne-
glect gravity. Typical values of the simulation parameters
are: system sizeN = 1000,5000,10000particles, density
ρ = 2000 [kg/m3], elastic stiffnesskn = 5000 [N/m], par-
ticle damping coefficientγ = 1000 [kg/s], background
dissipationγb = 100 [kg/s] (see Ref. [6] for a discussion
of the units). The contact duration of two average par-
ticles istc = 0.31 seconds and the coefficient of restitu-
tion is r = 0.85. Polydispersity is measured by the width
w = rmax/rmin of the uniform particle radius distribution.
Typical values ofw are 1, 2 and 3. Note thatw= 1 corre-
sponds to a monodisperse packing. The (average) load-
ing rate is defined as the ratio of relative volume change
over the total simulation time. Since we are interested in
relative rates for identical deformations, we use instead
D = Tref/Tsim whereTref is the simulation time of the
fastest simulation which is 1000 seconds. Typical values
of D are 0.1, 0.5 and 1.

EFFECT OF SYSTEM SIZE

Figure 1 shows the evolution of coordination number

C∗(ν) = C0 +A

(

ν
νc

−1

)α
(1)

with volume fractionν for polydisperse packings (w= 3)
with different sizes. The power law is quantified by an
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FIGURE 1. Coordination numberC as function of densityν
for different system sizes. Inset: Fit of Eq. (1) to the corrected
coordination numberC∗ computed from the data recorded dur-
ing decompression withD = 0.5. The red, green and blue lines
are the fits of the systems containing 1000, 5000 and 10000
particles, respectively.

algebraic behavior with powerα, whereνc is the crit-
ical volume fraction andC∗ is the corrected coordina-
tion number obtained by excluding the particles without
contacts, i.e. the rattlers. Frictionless particles cannot be
mechanically stable unless they have at least 4 contacts.
Therefore we define as rattlers those particles having less
than 4 contacts.C0 corresponds to the isostatic limit [2]
which isC0 = 6 for 3D andC0 = 4 for 2D.

The fluctuations and the finite values of the coordina-
tion numberC during compression prior to jamming are
due to dynamical effects caused by the moving bound-
aries of the simulation domain. After jamming, these
effects are less visible since the ratio between the ki-
netic and potential energies is much smaller, i.e.,e =
Ekin/Epot ≪ 1. The strong jump in the coordination num-
ber is only clean during decompression at the transition
from solid to fluid phase.

The inset of Figure 1 shows the fit of Eq. (1) to
the decompression branch of the simulation data. The
critical densities obtained from the fits are 0.6650±

0.0002, 0.6647± 0.0002 and 0.6652± 0.0001 forN =
1000,5000 and 10000, respectively. Other parameters are
reported in Table 1. It is clear that the system size has no
significant effect on the critical volume fraction.

INFLUENCE OF POLYDISPERSITY

We have performed simulations using three packings of
1000 particles with respective widths of the size distri-
bution w = 1,2,3. All of the samples were compressed
from ν = 0.5 to ν = 0.9 and then decompressed. Figure
2 shows coordination number as function of the volume
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FIGURE 2. The evolution of the coordination numberC with
the volume fractionν for different polydispersities. The arrows
indicate the compression (up) and decompression (down) di-
rections. Inset: The solid lines are the fits according to Eq.(1).

fraction for the corresponding packings. The inset shows
the fit of Eq. (1) to the decompression branch of the sim-
ulation data. The critical volume fractions obtained from
the fits are 0.649± 0.002, 0.658± 0.002 and 0.671±
0.002 forw = 1,2 and 3, respectively. This indicates that
more heterogeneous packings jam at higher volume frac-
tions.

EFFECT OF LOADING RATE

Figure 3 shows the coordination number as function of
the volume fraction for a polydisperse packing (w = 3)
of 10000 particles deformed at three different rates. The
relative rates of loading areD = 0.1,0.5 and 1. Jamming
occurs at vanishing deformation rates, which is consis-
tent with the observation that the slower the system is
deformed, the sharper the transition gets. The evolution
of the corrected coordination number and the fits of Eq.
(1) are shown in the inset of Figure 3. It seems that by
removal of rattlers the effect of loading rate disappears
in high volume fraction. The critical volume fractions
obtained from the fits are 0.6648± 0.0002, 0.6652±
0.0001 and 0.6654± 0.0001 forD = 0.1,0.5 and 1, re-
spectively. However, these values are questionable since
the derivative of Eq. (1) has a singularity atνc which
makes the results very sensitive to the fit range. Conse-
quently, the exponentα ≈ 0.5 which is reported in 2D
experiments and simulations [3, 4] cannot always be re-
covered (see Table 1). Furthermore, knowing that the rate
effects are important close toνc, using the fit of Eq. (1)
to analyze the effect of the compression rate might be
unreliable. Therefore we propose and evaluate different
alternatives.



TABLE 1. Critical volume fractions and fit parameters for polydisperse (w = 3) packings ob-
tained from the fits of Eq. (1) and alternative methods for different system sizes and loading rates.

C0 A α νc νc
∗ νc

† νc
∗∗

N = 1000 D = 0.5 5.8221 8.4875 0.5572 0.6650 0.6641 0.6644 0.6705
D = 1 5.0256 7.5938 0.3904 0.6650 0.6634 0.6652 0.6669

N = 5000 D = 0.5 5.8838 8.1661 0.5431 0.6647 0.6622 0.6620 0.6658
D = 1 5.7645 8.2019 0.5279 0.6654 0.6623 0.6624 0.6685

N = 10000
D = 0.1 6.0643 8.4204 0.5909 0.6648 0.6636 0.6624 0.6647
D = 0.5 5.7887 7.9915 0.5199 0.6652 0.6624 0.6632 0.6665
D = 1 5.7645 8.2019 0.5279 0.6654 0.6634 0.6627 0.6675

∗ Obtained from the peaks in the evolution of fraction of rattlers.
† Obtained from the fits of Eq. (3).
∗∗ Obtained from the intersection points in thee–ν graphs.
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FIGURE 3. Coordination numberC as function of densityν
for different loading rates. Inset: The fits of Eq. (1).

THE FRACTIONS OF RATTLERS

An alternative way to determine the critical densityνc at
which the jamming transition occurs is to examine the
number of rattlers, i.e. particles with fewer than 4 con-
tacts. Typically, it has a reverse behavior to the coordina-
tion number, i.e. whenC decreases it increases and vice
versa. However the number of particles with less than
four but more than zero contacts increases or decreases
only during the transition. Figure 4 shows the evolution
of the fraction of particles having different number of
contacts during decompression. The critical volume frac-
tions are determined by taking the average of the volume
fractions at which the the peaks occur in theν–φ graphs
for the fractions of particles with 0< C < 4. Theνc ob-
tained using this method are 0.6634, 0.6623 and 0.6634
for packings withN = 1000,5000 and 10000, respec-
tively. These values are close to those obtained from the
fits of Eq. (1). The advantage of this method is that it
can be given a physical explanation. During the transi-
tion from the solid to fluid phase, most of the contacts
will open and as mentioned earlier the number of rattlers
will quickly increase. However, after the transition the

0.64 0.66 0.68 0.7 0.72 0.74
0

0.2

0.4

0.6

0.8

1

ν

 φ

 

 

C<4
C=0
C=1
C=2
C=3

FIGURE 4. Evolution of fractions of rattlers during decom-
pression.

coordination number is normally equal to zero. There-
fore, the number of particles with less than four but more
than zero contacts will first increase then decrease, which
results in the peaks in their fraction.

PRESSURE

The static pressurep in a packing is obtained from the
(1/3) trace of the averaged micromechanical stress:

σ i j =
1
V ∑

c∈V
f c
i lcj (2)

whereV is the total volume of the packing,lcj is the
branch vector of contactc and f c

i is the force associated
with the contact. During decompression most of the con-
tacts open at the jamming point and the static pressure
drops to zero. Hence, an alternative definition ofνc can
be given as the volume fraction at which the pressure
vanishes. In order to determine numerical values ofνc
we use the relation:

P
Cν

= Pref log

(

ν
νc

)

(3)
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FIGURE 5. P/(Cν) as a function of volume fraction for a
polydisperse (w = 3) packing.

whereP = pa0/kn is the pressure normalized bykn and
the average particle radiusa0. Figure 5 shows the fit
of Eq. (3) to the simulation data. The critical volume
fractions obtained from the fits are shown in Table 1.
Note the good agreement between the values obtained
from the peaks in the fraction of rattlers and the pressure.

AN ENERGY BASED CRITERION

The values of the critical densityνc and coordination
numberC0 at the jamming transition can also be obtained
from considerations of the ratio of the kinetic and poten-
tial energies of the systeme = Ekin/Epot [8]. We iden-
tify the jammed state as the point where the compres-
sion branch of thee–ν curve crosses its decompression
branch (Fig. 6). At this pointe diverges, which implies a
sudden drop in the elastic energy as a clear signature that
the unjammed state is reached. This method leads to the
expected coordination numberC0 ≈ 6 which corresponds
to the mechanical stability of an isostatic system [2].
The critical volume fractions found using this method are
νc = 0.652±0.005, 0.659±0.005 and 0.6666±0.0006
for polydisperse samples withw = 1, 2 and 3, respec-
tively. The accuracy of this method is limited by the spac-
ing of the data points around the crossing point.

CONCLUSIONS

We have analyzed the effect of different system prop-
erties on the critical volume fraction in jamming and
the evolution of the coordination number. We find that
system size does not have a significant effect on both
of these parameters. On the other hand, polydispersity
causes a shift in the critical volume fraction, i.e. less ho-
mogeneous packings jam at higher volume fractions. We
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FIGURE 6. Corrected coordination numberC∗ and volume
fraction ν as functions of the energy ratio for a polydisperse
(w = 3) packing of 10000 particles. The arrows indicate the
compression (up) and decompression (down) directions.

find that the jump in the coordination number becomes
sharper as the loading rate is lowered. A more detailed
study of the effects of much slower loading rates on the
critical volume fraction are required. However, the load-
ing rate has no visible effect on the evolution of the co-
ordination at high volume fractions – after the removal
of the rattlers. Finally, we proposed alternative methods
to identify the critical volume fraction based on (1) the
fraction of rattlers, (2) the energy ratio, and (3) the pres-
sure. A summary of the fits to the power law Eq. (1) and
the νc obtained from the proposed methods for differ-
ent system sizes and compression rates is given in Table
1. in conclusion, we recommend to not rely on a single
method but, e.g., use the fits to coordination number and
pressure in parallel.
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