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Abstract.  In granular matter, consisting of discrete particles, long-range interactions imply that each of the particles is 

interacting with all others. For many charged granular materials with Coulomb repulsion or large-scale gravitationally 

attractive systems, a Molecular Dynamics environment is developed. In granular systems with long-range interaction 

forces and dissipative collisions, both effects can lead to large-scale structure formation, whereas already dissipation 

alone leads to ever growing clusters. For our three-dimensional mono-charged dissipative homogeneous systems we 

present the effect of both repulsive and attractive mutual long-range forces and make an attempt to predict the collision 

frequency and the temperature decay in the system by means of a modified pseudo-Liouville operator formalism. The 

theoretical predictions are in perfect agreement with the simulations, but only in the limit of low density and for not too 

strong interaction potential enrgy. 
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INTRODUCTION 

Treating long-range potentials by computer 

simulations of discrete particles correctly has always 

been a challenge in various research fields such as 

protein folding in aqueous solutions, the evolution of 

star clusters in astrophysics [1] or simply the collision 

behavior of electrostatically charged particles [7]. 

Algorithms have been developed, e.g., [2] in order to 

encounter these highly specialized problems in a 

computationally effective way and have also been 

implemented in discrete element methods such as 

Molecular Dynamics. 

In this study, we perform Molecular Dynamics 

simulations of dilute homogeneous dissipative particle 

systems where particles either mutually repel or attract 

each other via a 1/r-long-range potential [10]. As 

reference, we make use of the inefficient pair-wise 

summation, i.e., we sum up the forces of all particles 

acting on the particle of interest. We then compare the 

reference with results that are obtained by our new 

hierarchical cell algorithm that is more efficient 

regarding the computational time expense. Finally, we 

develop a theory for long-range binary particle 

interactions that is based on the so-called pseudo-

Liouville operator formalism, e.g., [3] and compare it 

with our simulation results. 

MOLECULAR DYNAMICS 

“Short” and “Long”-range Forces 

We use soft-sphere Molecular Dynamics where 

within each time step Newton’s equations of motion 

for each particle are solved by the simple Verlet 

integration method. For this, all currently acting forces 

on each particle have to be known. During a collision 

between particles i and j with radii ai = aj = a, a linear 

repulsive force and dissipation of kinetic energy in 

normal direction, nij = rij/rij = (ri - rj)/| ri - rj |, is 

considered. The loss of kinetic energy at each collision 

is expressed by the coefficient of normal restitution r = 

υij
’(n)

/ υij
(n)

 that gives the ratio of the relative velocities 

υij in normal direction after (primed) and before 

(unprimed) the collision. During a time step, on one 

particle i always long-range forces are acting due to 

the pair-wise summation, 
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and, if rij<2a, short-ranged contact forces as well 
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x denotes here either the charge or mass of particles if 

we deal with an electrostatic or gravitational problem 

with mono-charged particles of the same mass. 

According to the spring-dashpot model [4], γn is a 

measure for how much kinetic energy is dissipated at 

each collision whereas k is the spring constant that 

defines the stiffness. K = cG defines via c (which is 

positive for repulsive and negative for attractive 

forces) the strength of the long-range force, where G 

denotes a constant. 

Pair-wise Summation 

Pair-wise summation computes the distances 

between each of the N particles and all others. The 

computational time expense then scales with the order 

of the squared particle number, O(N
2
). In presence of 

short-ranged (contact) potentials only, when particles 

far from each other do not interact, there is no need to 

apply the pair-wise summation. In such a case we can 

reduce the time expense to O(NM) if we check only M 

neighboring particles for collision [5]. 

In case of long-range potentials, when even 

particles far from each other do interact via weakly 

repulsive or attractive potentials, we will apply the 

expensive pair-wise summation method in order to 

obtain most accurate results. In the following, we 

discuss homogeneously distributed mutually short and 

long-ranged interacting particles in a three 

dimensional box with periodic boundaries. The 

implementation of periodic boundaries suppresses box 

surface effects and keeps the particle system 

homogeneous during its time evolution. 

RESULTS 

Pseudo-Liouville Operator Theory 

For derivation and explanation of the pseudo-

Liouville operator formalism, we refer to [3]. Here, we 

only will outline this idea briefly. 

According to classical mechanics, the total time 

derivative of a dynamical variable, A(t), of a N-body 

system contains the Hamiltonian which represents the 

total energy of the system and its spatial derivatives. 

Moreover, the system obeys the Liouville-equation 

that says that during its time evolution all possible 

states can be taken with the same probability, i.e., the 

probability density in phase space is conserved. For 

hard sphere systems the interaction potential within the 

Hamiltonian represents a discontinuous function and 

problems will arise if we apply spatial derivatives. 

Therefore, for dissipative hard sphere systems, the 

pseudo-Liouville operator was introduced in order to 

bypass these problems and to preserve the formal 

structure of the Liouville-equation. Although we 

simulate soft spheres, we can make use of the pseudo-

Liouville operator formalism because the soft spheres 

behave anyway nearly like hard spheres in our 

simulations besides the effect of strong long-range 

forces. For dynamical variables that are determined by 

dissipative particle collisions, the interaction part, L
+
, 

of the pseudo-Liouville operator is used for the total 

time derivative and selects only those pairs of particles 

that are in physical contact and neglects all others. The 

total time derivative expressed by the pseudo-Liouville 

operator reads 
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where j and k are two arbitrary particles. The sums go 

over all particle pairs. δ(|rjk|-2a) is the delta function 

that considers only touching particle pairs, i.e., it 

vanishes if the distance is larger than twice the radius 

of the particles. Θ(-υjk·njk) is the step function that 

selects only those normal velocities between two 

particles that are negative, i.e., that lead to an approach 

and, thus, to a collision between both particles if they 

are in contact. |υjk· njk| is the normal component of 

relative velocity and increases the number of collisions 

per time unit because higher travel speed will lead to 

more collisions with other particles. (b
+
-1) is the 

binary collision operator that acts on A(t) and changes 

the velocity and position variables of the particles in 

A(t) due to the current collision. 

Using the collision frequency, fE(t)=(2/N)(dC(t)/dt), 

and the (kinetic) energy dissipation rate, dEkin(t)/dt, as 

dynamical variables in Eq. (3), we apply the concept 

of ensemble averages by using the N-body distribution 

function. C(t) is the total number of collisions in the 

system so far. Skipping all the formal details 

containing integrations over all phase space 

coordinates, we only will provide here the solution. 

Note, that for the velocity integrations we have to 

distinguish between the presence and absence of long-

range forces, between repulsive and attractive forces. 

We obtain for the case without long-range potentials 
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for the case of long-range repulsive potentials 
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and for the case of long-range attractive potentials 
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Here, υn,b = (2cbkx
2
/(ma))

1/2
 is the critical normal 

relative velocity both particles have to exceed in order 

to overcome the repulsion potential barrier and collide. 

On the other hand, the normal relative velocity has to 

be less than υn,e = (2cekx
2
/(ma))

1/2
 in order to be caught 

by the attractive potential and to have a collision. Tg(t) 

is the granular temperature, m the mass of the mono-

dispersed particles, g
0
(2a) the pair distribution 

function for hard spheres at contact that describes the 

probability to find a neighbor particle exactly at |rjk| = 

2a and n denotes the particle number density. 

 

 

FIGURE 1.  Pair-wise summation method applied for 

repulsive (top) and attractive systems (bottom). fE(t) is 

plotted against mTg(t) for different cb and ce. 

 
FIGURE 2.  Pair-wise summation method applied for 

repulsive (top) and attractive systems (bottom). Ekin(t)/N is 

plotted against time for different cb and ce. 

Computer Simulations 

In order to compare with theory we used the 

accurate pair-wise summation method. Fig. 1 shows 

the collision frequency, fE(t), plotted against the 

system’s temperature for both the repulsive (top) and 

attractive case (bottom panel) in a double logarithmic 

plot. fE(t) decreases because the system cools down 

due to dissipative collisions (r = 0.85). For different 

potentials, the simulation results are compared with 

Eqs. (5a) and (6a). In both cases, for high temperatures 

in the beginning, the equations and the data approach 

the classical results, expressed by Eq. (4a) and Haff’s 

law (4b) [9]. For low temperatures, the interaction 

potential becomes important and deviations from 

Haff’s law occur. For repulsive particles there are also 

deviations between theory and simulation because 

theory does not take many body effects into account. 

The many-body effect is responsible for small 

deviations between theory and simulation but 

discussed in [10]. In the attractive case, theory 



indicates pretty well the point when the collision rate 

increases rapidly and the system becomes strongly 

inhomogeneous. This corresponds to the hump in 

Ekin(t) shown in Fig. 2 (bottom) where the particles are 

close to each other and have higher kinetic energy due 

to the higher attractive forces. The solutions of Eqs. 

(5b) and (6b) are also shown in Fig. 2. Here, due to the 

many-body effect, theory qualitatively predicts the 

simulation data, where for high temperatures both 

theory and data approach the classical result (4a) and  

(4b) whereas for low temperatures, deviations between 

Ekin(t) and the classical result occur as well. 

CONCLUSIONS 

We used the pseudo-Liouville operator formalism 

that is a two-particle theory for hard spheres, extended 

it for both repulsive and attractive long-range 

interactions and applied it to our simulation results. It 

turned out that for repulsive forces theory approaches 

the results reported in Ref. [7]. For attractive forces it 

successfully predicts when the transition between the 

homogeneous and inhomogeneous regime takes place. 

Additionally, in the limit Tg(t) >> υn,b/e
2
 it contains the 

classical results as required. 

The discrepancies between theory and simulation 

in the repulsive case result from the fact that the 

pseudo-Liouville theory is a two-particle theory that 

perfectly works only for systems in the dilute limit. 

We lack of an analytical prediction for systems with 

high densities where many-particle effects become 

important. Anyway, a good agreement in theory and 

simulation is achieved when we simulate systems with 

very low density [10].  

OUTLOOK 

An interesting task will be the analytical prediction 

of the cooling behavior of repulsive and attractive 

systems at moderate and high densities. At this 

moment we are not able to meet this challenge, but 

 

we already have approached this aim in an empirical 

way. In [10] an empirically developed, density-

dependent correction to Eqs. (5a)-(6b) was proposed, 

using data from finite density simulations. 
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