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Simulation results of dense granulates with particles of different size are compared with
theoretical predictions concerning the mixture pressure. An effective correlation function
is computed which depends only on the total volume fraction and on the dimensionless
width of the size-distribution function. From simulation data of elastic and weakly dis-
sipative systems, one can predict how much disorder (size-dispersity) is necessary to
avoid ordering effects due to crystallization. Finally, a global equation of state is pro-
posed, which unifies both the dilute, disordered gas/fluid and the dense, solid regime.

1. Introduction

The hard-sphere (HS) system is a traditional and simple toy-model for various
phenomena like e.g. disorder-order transitions, the glass transition, or simple gases
and liquids [1-4]. A theory that describes the behavior of rigid particles in the gas
and disordered fluid regime is the kinetic theory [1, 5], where particles are assumed
to be rigid and collisions take place in zero time (they are instantaneous), exactly
like in the hard-sphere model. In a more dense system which resembles a solid or
a glass, particle-in-cell models or a free volume theory can be applied [6, 7]. In the
intermediate transition regime, no satisfactory theoretical description is available
at the moment [7-10].

When dissipation is added to the HS model, one has the inelastic hard sphere
(THS) model, i.e. the simplest version of a granular gas, a member of the more
general class of dissipative, non-equilibrium, multi-particle systems [4, 11]. Attempts
to describe granular media by means of kinetic theory are usually restricted to
certain limits like constant or small density or weak dissipation [12-16]. In general,
granular systems consist of particles with different sizes and properties, a situation
which is rarely addressed theoretically [17-19]. However, the treatment of bi- and
polydisperse mixtures is easily performed by means of numerical simulations [10, 20—
22].
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In this study, theories and simulations for situations with particles of equal
and different sizes are compared. In section 2, the model system is introduced
and, in section 3, theoretical results are reviewed and compared with numerical
results concerning the pressure. The disorder-order transition and the amount of
difference in particle size, necessary to avoid it, is discussed in section 4. The results
are summarized and discussed in section 5.

2. Model system

For the numerical modeling of the system, periodic, two-dimensional (2D) systems
of volume V = L, L, are used, with horizontal and vertical size L, and L,, respec-
tively. IV particles are located at positions r; with velocities v; and masses m;. From
any simulation, one can extract the kinetic energy E(t) = >, m;v?, dependent
on time via the particle velocity v; = v;(¢). In 2D, the “granular temperature” is
defined as T'= E/N.

2.1. Polydispersity
The particles in the system have the radii a; randomly drawn from mono-, bi-, and
polydisperse size distribution functions
d(a — ag) with (a) = ag
w(a) =< nd(a —ar) +n2d(a—az) with (@) = (n1 + (1 —n1)/R)ay ,
ma[(lfwo)ao,(l+wo)ao](a) with (a) = ao

with the two-sided step-function 6, z.j(x) = 1 for 23 < # < 22 and 6(z) = 0
otherwise.

In the bidisperse case, the number fractions are ny = Ny /N for particles with
size a1 in a system with N = N; 4+ N, particles in total and N> particles with radius
az. The size ratio R = a4 /a2 is needed to classify a bidisperse size distribution with
the volume fraction v = v; + v as the last relevant system parameter, since the
partial volume fractions can be expressed in terms of n; and R. The dimensionless
k-th moment is Ay = ny + (1 —n1)R™* = (a*) /ak, scaled by a;.

Since needed later on, the expectation values for the moments of a and their
combination, the dimensionless width-correction A = (a)?/{a?), are summarized in
table 2.1 in terms of a1, ni, and R for the bidisperse situations and in terms of ag
and wy in the polydisperse cases. Different values of v are realized by shrinking or
growing either the system or the particles.

| | | @ | (@) | @/ |
@) monodisperse ag a? 1
(11) bidisperse A]_ a; A2 a% A% /A2
(iii) polydisperse ao (1+wi/3) al 3/ (34 wd)

Tab. 2: Moments (a), (a?) and A = (a)?/(a®) of the size distribution functions
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2.2. Particle interactions

The particles are assumed to be perfectly rigid and follow an undisturbed straight
trajectory until a collision occurs as described below. Due to the rigidity, collisions
occur instantaneously, so that an event driven simulation method [23,24] can be
used. Note that no multi-particle contacts can occur in this model.

A change in velocity — and thus a change in energy — can occur only at a collision.
The standard interaction model for instantaneous collisions of particles with radii
a;, mass m; = (4/3)wpa?, and material density p is used in the following. (Using
the mass of a sphere is an arbitrary choice.) The post-collisional velocities v’ of two
collision partners in their center of mass reference frame are given, in terms of the
pre-collisional velocities v, by v’L2 = vl,zq:(l't;)%vn, with v, = [(v1 — v2) - 1] 7,
the normal component of the relative velocity v; — v+, parallel to 7, the unit vector
pointing along the line connecting the centers of the colliding particles, and the
reduced mass miy = myma/(my + mz). If two particles collide, the change of the
translational energy is AE = —mq2(1 — r?)v2 /2.

3. Simulation and theory

In the following, we examine situations with different polydispersity. Most of the
simulations were performed in the elastic limit, » = 1, however, we checked that
also simulations with weak dissipation and some weak driving force lead to the
same results. Due to the scaling of the pressure with the energy of the system, as
introduced below, also homogeneously cooling situations [25] are well fitted by the
elastic results, if the factor 2 is replaced by (1+7). A more detailed discussion of the
range of applicability of the elastic results with respect to density and dissipation-
strength is far from the scope of this study.

3.1. Particle correlations

In monodisperse systems, the particle-particle pair correlation function at con-
tact
1-"Tv/16 v3/16
= — 3.1
g4(1j) (1 — V)2 8(1 — V)4 ) ( )

can be derived theoretically from a low density expansion [1,3,7,13,24], and it
depends on the volume fraction only. The first term of g4 is denoted as g2 =
(1 = 7v/16)/(1 — v)?, on which the polydisperse equations are based, see below.
The particle-particle correlation function as a function of the distance is obtained
from the simulations by averaging over several snapshots, normalized to the value
g(r > 2a) = 1 for long distances [10]. At densities around v, = 0.7, a disorder-order
transition is evidenced, where the ordered regime, v > v, is not described by Eq.
(3.1). For some data and a more detailed discussion of g(r), see Refs. [7,10].

For bidisperse situations, the correlation functions gi1, g22, and g;o are different
for different species combinations [10]. The mixed correlation functions [10,17], are
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here expressed in terms of A; 5, R, and v:

9 A
v (1)

gi1 = (1 — V)2 3 (32)

1-v (1 )
goy = e 22 and (3.3)

9 A

1-v (1 ~ SR A—)

912 = A=) . (3.4)
Note that all g;; are identical to g>(v) in the monodisperse case with R = 1 and
A; = A, = 1. Within the statistical error, agreement between the theoretical

predictions and simulation results is obtained [10].

The particle correlation functions from polydisperse mixtures are smooth
functions with much less variety in magnitude than in the mono- and bidisperse
situations. Interestingly, they resemble the distribution function of a gas or liquid
with a smooth interaction potential [3].

Note that there is no indication of long range order even for the highest densities
if the size distribution (bi- or polydisperse) is sufficiently wide, as discussed later
in section 4.

3.2. Stress and the equation of state

The stress tensor, defined for a test-volume V', has two contributions, one from the
collisions and the other from the translational motion of the particles. Using a and b
as indices for the cartesian coordinates one has the components of the stress tensor

Jab _ % ;mivgvg_ iz > ane (3.5)

n j=1,2

with K;’-, the components of the vector from the center of mass of the two colliding
particles j to their contact points at collision n, where the momentum Ap;-‘ is
exchanged. The sum in the left term runs over all particles 4, the first sum in the
right term runs over all collisions n occuring in the time-interval At, and the second
sum in the right term concerns the collision partners of collision n — in any case the
corresponding particles must be inside the averaging volume V. The mean pressure
p = (01+02)/2 , with the eigenvalues o1 and o4 of the stress tensor, is now obtained
from the simulations for different volume fractions [10].

In the monodisperse system, we obtain crystallization around v, = 0.7, and the
data clearly deviate from Py, i.e. the pressure is strongly reduced due to crystal-
lization and, thus, enhanced free volume. The monodisperse data diverge at the
maximum packing fraction y1o1° = 7/(24/3) in 2D. The deviations of the poly-
disperse simulations increase with the width of w(a) and with increasing volume
fraction. Note that there exists a deviation already for small v — 0.
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3.3. Mixture pressure

A more elaborate calculation in the style of Jenkins and Mancini [17], leads to the
partial translational pressures pt = n;E/V for the species i and to the collisional
pressures pf; = mN;Njgijaz;(1 + ri;)T/(4V?). In elastic simulations, the species
temperatures are equal, so that the corresponding correction term can be dropped.
Thus, the global mixture pressure is

p™ = p} +ph + pf; + 205 + Py
E
= C I+ (4] (36)

with the effective correlation function
1+A)—-v(1-A/8)
2(1 —v)? ’
dependent on A = (a)?/{a?). Note that A is well defined for any size distribution
function, so that Eq. (3.7) can also be applied to polydisperse situations. However,
we remark that Eq. (3.7) is not appropriate for very wide size distribution functions
[26], when higher order corrections have to be taken into account. Using the effective
particle correlations, one can define the dimensionless pressure Py(v) = meV -
1 =(1+7r)rvga(v), and compare it with simulation results P. An almost perfect
agreement between P and P»(v) is obtained for v < 0.4 and even up to larger
v & 0.65, the difference is always less than about two percent. Note that the quality
factors for all simulations collapse and that the quality is perfect (within less than
0.5 percent for all v < 0.65) if P»(v) is multiplied by the empirical function 1—v%/10,
as fitted to the quality factor P/P,. Thus, based on our simulation results, we

propose the corrected, non-dimensional mixture pressure
"V 4

Py(v) = = 1=(1+r)vgalv) [l -ag'] , (3.8)
with the empirical constant ay ~ 0.1, for all » < 0.65. Only in the monodisperse
case, we use Py(v) = (1+7)rgs(v), since this form is of higher order in the expansion
around small v and needs no empirical correction. For larger v the excluded volume
effect becomes more and more important, leading to a divergence of P. In the
high density regime, the behavior is strongly dependent on the width of the size
distribution function.

galv) = (3.7)

3.4. A global equation of state (monodisperse)

Based on both kinetic theory for the disordered regime and hard sphere simulations,
a mixture pressure was proposed in a simple form, dependent only on the width
of the size distribution .A. For higher densities and small width, 1 — A, an ordered
situation is obtained, whereas no order is evidenced for wide size distributions.
The presence of an ordered situation is discussed below, in section 4. The dense
situations, however, deviate from the prediction in Eq. (3.8) due to the excluded
volume in a dense packing.
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The equation of state in the dense phase can been computed by means of a
free volume theory [6,27,28], which leads in 2D to the reduced pressure Py =
1/(v/Vmax/v—1) [7], with the maximum volume fraction vmax. Also slightly different
functional forms Pym = (Vmax + V) /(Vmax — V) — 1 [29], and Pty = 2Vmax/(Vmax — V)
[10], do not lead to much better agreement. Note that the above functions are
identical, in leading order for small vy, — v, so that we use Pr,. Based on our
numerical data, we propose the corrected high density pressure

2Vmax
Pyense = Ka_y}m(ymax - V) -1, (39)
where h3(z) = [1 + c1z + c32®] is a fit function with ¢; = —0.04 and ¢3 = 3.25. To
our knowledge, no theory exists, which combines the disordered and the ordered

regime [8,9]. Therefore, we propose a global equation of state
Q :P4+m(V)[Pdense_P4] ) (310)

with an empirical merging function m(v) = [1 + exp (—(v — v,)/mg)]”" which se-
lects Py for v < v, and Pyense for v > v, with the width of the transition mq.

When the fit parameters v. = 0.701 and mg ~ 0.009 are used, quantitative
agreement between () and the simulation results is achieved within about 1.5 per-
cent (the agreement outside the transition region is much better than 0.2 per-
cent). However, also a simpler version @)y without numerical corrections leads to
reasonable agreement when mg = 0.012 and v, = 0.700 is used. In the transition
region, the function @)y has no negative slope but is continuous and differentiable,
so that it allows for an easy and compact numerical integration of the pressure. We
selected the parameters for ()¢ as a compromise between the quality of the fit on
the one hand and the treatability of the function on the other hand.

The global equation of state can also be used for mixtures of particles with
different sizes (data not shown here) if vpax is adjusted accordingly. For a more
detailed comparison of the global equation of state with simulation data, see Refs.
[7,10].

3.5. Inhomogeneous systems

Most of the data were obtained from elastic, homogeneous simulations. A few tests
showed that also weakly inelastic situations lead to equivalent results as long as
they are homogeneous. Data obtained from inhomogeneous systems which are not,
in general, in global equilibrium due to strong dissipation can not be compared to
the results presented. Work is in progress to check in how far subsystems in local
equilibrium (or at least close to it) can be understood by the predictions valid for
homogeneous, almost elastic systems. Note that the averaging in subsystems over
short times introduces large statistical fluctuations, so that conclusions about one
realization are not necessarily helpful. Furthermore, averaging is not possible over
different realizations, since various local situations are incomparable from one run
to the next and possibly even the global results differ.
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4. How much disorder is necessary to avoid order 7

In order to study the deviation of the pressure p in the simulations from the theo-
retical value P it is helpful to examine the quality factor ¢ = P/P; more closely.
In Fig. 1, ¢ is displayed for various densities and dimensionless distribution widths
of bidisperse systems with ny = 0.744 and R € [0.5;1]. In the contour plot (Left),
q is plotted against the density, v, and the width of the size distribution, /1 — A.

A valley in the g-surface corresponds to a reduction in pressure which we relate
to order (which leads to a larger free path and thus to a reduced collision rate). The
steep increase in the g-surface is due to the excluded volume of the particles. For
every value of 4, one can obtain a specific value of the maximum packing density
Vmax Dy extrapolation.

\

Fig. 1. Quality factor ¢ = P/Pjy, from simulations with different R- and v-values, plotted against
the volume fraction v and +/1 — A. The base of the left diagram and the right plot show the
contourplot. Shown are the iso-lines for ¢ = 0.99 (dashed), ¢ = 1.01 (dotted), and ¢ = 0.75, 0.85,
0.95, 1.05, 1.15, 1.5, 2, 3, and 5 (thin solid lines), as well as the maximum density (thick solid line).
The maxima of the contour ¢ = 0.99 is A = 1 — 0.093643% = 0.99123, v = 0.75199, R = 0.8143

Tt can be evidenced that P deviates from P, by less than 1% at densities v < 0.65
regardless of the type and width of the size distribution function. For smaller A-
values, the prediction from kinetic theory is correct up to even larger densities.
In the domain of agreement between theory and simulations, we assume that the
system is in the disordered, fluid state. Consequently, the system is ordered, if a
pressure drop occurs, i.e. if ¢ — 1 < —0.01. The increase in pressure is related to
the dense packing of the system and thus to the solid state, i.e. a solid has a much
lower compressibility than a fluid. Note that the corresponding plots for other a
polydisperse size distribution look very similar.

For broad enough size distributions, 4 < 0.99, the disorder caused by the differ-
ent particle sizes is sufficient to suppress the formation of an ordered structure. For
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our bidisperse systems with n; = 0.744, global disorder is predicted for R < 0.814.
As a consequence, the pressure drop disappears and the validity of Eq. (3.8) is
extended to densities up to v = 0.75 for very broad size distributions. For densities
above v = 0.75 the pressure starts to increase strongly, exceeds the predicted value,
and finally diverges when v approaches vpax-

The maximum packing density depends on the size distribution function and
on the rate used to increase the density. Rapidly growing the particles increases
the probability of trapping defects in the structure which results in a reduced v ax-
Here, we changed the density rather slowly, corresponding to the adiabatic limit,
however, the rates of change are always finite in a numerical simulation.

5. Summary and outlook

A global equation of state for almost elastic 2D granular gases with mono-, bi-, and
polydisperse size distributions was presented. For low and intermediate densities,
the equation of state can be written in a closed form which only contains the width-
correction A < 1 of the size-distribution function. A small, empirical correction can
be added to the theories to raise the quality even further for medium densities.
At high densities, the maximum packing density was obtained by extrapolation
of the numerical data and a functional form was fitted to the high density, solid
regime based on free volume arguments. Both the liquid and the solid regime were
connected via an empirical merging function to give a global equation of state for
all densities.

The simulations and the theories presented here were applied to homogeneous
systems. The range of applicability may be reduced by the fact that dissipation
can lead to strong inhomogeneities in density, temperature, and pressure. In a
freely cooling system, for example, clustering leads to all densities between v = 0
and v & Vpax [24,30]. The proposed global equation of state is a necessary first
step to account for such strong inhomogeneities with very high densities above
which the low-density theory fails. Since the results are based on a limited amount
of data, it has to be checked whether it still makes sense in the extreme cases
of narrow w(a), where crystallization effects are rather strong, and for extremely
broad, possibly algebraic w(a), where A is not defined. What also remains to be
done is to find similar expressions not only for pressure and energy dissipation rate
but also for viscosity and heat-conductivity and to extend the present results to
three dimensions.
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