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ABSTRACT

Powder flow behavior can be measured by experiments on a Jenike cell, a ring shear tester, or a bi-axial box. We
choose the latter boundary condition for our discrete element simulations and examine the effect of friction and other
"microscopic" forces. From the discrete particle simulation, macroscopic field variables like stress can be obtained from
averaged micro-quantities on the contact- level. The outcome of such a coarse-grained homogenization procedure can
be compared to the macroscopic observations on the boundaries of the system, and the macroscopic parameters, as
obtained here from the simulations, can be used for the constitutive modeling of the powder flow behavior.

1 INTRODUCTION

The flow behavior of powders under large defor-
mations is studied, using the discrete element
method (DEM), a convenient tool to gain insight into
the evolution of, e.g., shear localization. Powders
are typically inhomogeneous, non-linear, disordered,
and an-isotropic on a “microscopic”’ scale [1-3],
where the typical microscopic size is the particle
size. An irregular, random packing responds to
deformations via inhomogeneous and an-isotropic
rearrangements and stress-response. An initially
isotropic contact network becomes an-isotropic
before the structure of the network reaches its limit
of stability, i.e., the yield stress. Before the peak,
one has softening, and beyond weakening is
obtained [2-5], which is typical for over-consolidated
powders. Our work complements recent studies on
shear band formation in frictional-cohesive granular
media [4-8], for micro- and macro-modeling [9,10],
and in various systems [11-14] for different
materials.

Besides spheres, non-spherical particles like poly-
gons can also be used [10], or rougness can be
mimicked by additional torques [15]. The recently
developed micro-macro transition procedures [6-13]
aim at a better understand of the macroscopic
powder flow behavior on microscopic foundations.
Besides the experimental verification of the
simulation results [14], the formulation of constitutive
relations in the framework of continuum theory is the
great challenge. One promising material model for
sand is the hypoplastic theory [16-20], for which the
material parameters can be determined experimen-
tally, or from DEM simulations, as shown in this
study.

2 Model
2.1 Simulation Details

The elementary units of granular materials are
"mesoscopic” grains that locally, at the contact point,
deform under stress. Since the realistic modeling of

the deformations of the particles is much too
complicated, the interaction force is related to the
overlap A of two particles, see Fig. 1. Two particles
interact only if they are in contact, and the force
between these two particles is decomposed into a
normal and a tangential part. For the sake of
simplicity, we restrict ourselves to spherical particles
here. The normal force is, in the simplest case, a
linear spring that takes care of repulsion, and a
linear dashpot that accounts for dissipation during
contact. The tangential force involves dissipation
due to Coulomb friction, but also some tangential
elasticity that allows for stick-slip behavior on the
contact level [4,9,10,13,14].

/<
Figure 1: Two particle contact with overlap A.

If all forces acting on a selected spherical particle
(either from other particles, from boundaries or from
external forces) are known, the problem is reduced
to the integration of Newton's equations of motion
for the translational and rotational degrees of

freedom:
2

1
m (1)

with the gravitational acceleration g, mass m, of

— 1, =f+mg and Iim =t ,
tdt

the particle, its position r,, the total force f, = fof ,
acting on it due to contacts with other particles or



with the walls, its moment of inertia I, , its angular
velocity @, and the total torque t, =chfxff,

with the center-contact “branch” vector 1.

2.2 Model System

The simulations with the discrete element model [4-
10] use a two-dimensional bi-axial box, see Fig. 2,
where the left and bottom walls are fixed. Stress- or
strain-controlled deformation is applied to the side-
and top-walls, respectively. In a typical simulation,
the top wall is slowly shifted downwards, while the
right wall moves, controlled by a constant stress p,
responding on the forces exerted on it by the
material in the box. The motion of the top-wall
follows a cosine function, in order to allow for a
smooth start-up and finish of the motion so that
shocks and inertia effects are reduced, however, the
shape of the function is arbitrary as long as it is
smooth.
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Figure 2: (Left) Schematic drawing of the model system.
(Right) Position of the top-wall as function of time for the
strain-controlled situation.

2.3 Initial conditions

Initially, the particles are randomly distributed in a
huge box, with rather low overall density. Then the
box is compressed by defining an external pressure
p, in order to achieve an isotropic initial condition.
Starting from this relaxed, isotropic configuration,
the strain ¢, is applied to the top wall and the
response of the system is examined.

3 Results

The system examined in the following contains
N=1950 particles with radii randomly drawn from a
homogeneous distribution with minimum 0.5 mm
and maximum 1.5 mm. The friction coefficient used
in the two-dimensional simulations is p=0.5.

3.1 Stress-strain measurement

In Fig. 3 (top), the volume change of a typical
simulation shows first compression, then dilatancy,
and eventually a very weak change at very large
deformations, up to 20 per-cent. At the same time,
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the stress response, in Fig. 3 (bottom) (where the
indices xx and zz denote horizontal and vertical
stresses, respectively), shows elastic, softening, and
critical state flow behavior. First, the vertical stress
increases linearly; then the slope gradually
decreases (softening), until the stress reaches its
maximum (peak yield stress). After the peak, further
softening/weakening behavior (with negative slope)
is followed by a constant, strongly fluctuating stress
for larger deformations.
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Figure 3: Volumetric strain (top) and stresses (bottom)
during large deformations, both plotted against vertical
strain, for different side pressure, as indicated in the inset.
The peak yield stress is marked by arrows.

3.2 Macroscopic material parameters

From the simulation data presented in Fig.3, it is
possible to obtain the following material parameters,
as based on an isotropy assumption:
(i) The initial slope (-0.59) of the volumetric
strain allows to determine the Poisson ratio.
(i) The slope of the volumetric strain in the
dilatancy regime (0.80) is related to the
dilatancy angle.
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(i) The initial slope of the stress is related to the
bulk modulus (data not shown here).

(iv) The peak (yield) stress is related to the flow
function of the material, as discussed in detail
in the next subsection.

3.3 Peak flow function

It is possible to examine the flow behavior of the
system by plotting Mohr-circles for the maximum
stress (right-most point on the circle) for different
confining pressures (left-most point), see Fig. 4. The
eigen-directions of the system are parallel to the
walls, because there is no friction active between
particles and walls, so that the left- and right-most
points on the circles are indeed corresponding to the
wall stresses; note that in an arbitrary geometry, it is
not necessarily that simple. The tangent to the
circles (slope 0.588) can be seen as the flow
function for peak stress. It is linear for the examined
parameters, with its slope only slightly larger than
expected from the microscopic friction at the
contacts alone. Since we have not used cohesive
forces, the macroscopic cohesion c is non-existent,
i.e., the flow function hits the origin.

Figure 4: Mohr circle representation of the fibw function at
peak stress, see the arrows in Fig. 3 (bottom).

3.4 Some material parameters for Hypoplasticity

Some of the material parameters involved in a
hypoplastic material theory [16-20] can also be
extracted from the simulation data. An essential
ingredient of the theory is the functional behavior of
the pore number:

e =el exp(—[p/hs]n) : )
as a function of the pressure. The empirical model
parameters for this function (based on experimental
findings) involve the pore number at vanishing
stress, ¢/, the so-called granular hardness, /_, and

an empirical power n.
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The function in Eq. (2) is astonishingly close to the
fit-function for the initial and the critical state pore-
number envelope, see Fig. 5:

e(epn)=e,~[p/h] )
where the parameters ¢, and n can be read off
from the inset, and the granular hardness was set
equal to the spring stiffness 1, =10° in the DEM

contact model. Egs. (2) and (3) can be related to
each other via a series expansion in the small
variable p/h, .
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Figure 5: Pore number plotted against side stress (top),
and deviatoric stress ratio plotted against pore number
(bottom) — for different confining pressures.

The representation of the deviatoric stress ratio

siny =2~ % 4)

O-ZZ + o-xx

in Fig. 5 (bottom) is another way to extract the
macroscopic friction angle. For peak stress, the
simulations are almost in agreement with the
microscopic friction coefficient p=0.5, whereas for
the peak stress (besides strong scatter due to
fluctuations), the macroscopic friction angle
decreases with increasing pressure. For the largest
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media based on numerical simulation

pressure used here, the friction coefficient is smaller
than p=0.4.

4 Summary and Conclusions

In summary, a set of DEM simulations was presen-
ted, and several macroscopic material parameters
like, e.g., the friction angle were extracted from the
data. Also the behavior of density (pore-number)
and friction angle as function of the confining
pressure were discussed and related to a
hypoplastic material law [16-20].

The present results are a first step of a micro
modeling approach for cohesive frictional powders.
Further material parameters have to be identified,
and also the effect of cohesion has to be examined
more closely, not only for frictionless [11-13], but
also for frictional materials.

Also the role of particle rotations is an open issue,
as related to micro-polar constitutive models. In both
simulation and experiment, rotations are active in
the shear band - like in micro-polar hypoplastic
material models, where the rotational degree of
freedom is activated in the shear band too. The
corresponding parameter identification and the
micro-macro-transition is another task for the future,
like the implementation and simulation in three-
dimensional systems.
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