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Abstract
This paper aims to understand the effect of different particle/contact properties like friction, softness and cohesion on the 
compression/dilation of sheared granular materials. We focus on the local volume fraction in steady state of various non-
cohesive, dry cohesive and moderate to strong wet cohesive, frictionless-to-frictional soft granular materials. The results from 
(1) an inhomogeneous, slowly sheared split-bottom ring shear cell and (2) a homogeneous, stress-controlled simple shear 
box with periodic boundaries are compared. The steady state volume fractions agree between the two geometries for a wide 
range of particle properties. While increasing inter-particle friction systematically leads to decreasing volume fractions, the 
inter-particle cohesion causes two opposing effects. With increasing strength of cohesion, we report an enhancement of the 
effect of contact friction i.e. even smaller volume fraction. However, for soft granular materials, strong cohesion causes an 
increase in volume fraction due to significant attractive forces causing larger deformations, not visible for stiff particles. This 
behaviour is condensed into a particle friction—Bond number phase diagram, which can be used to predict non-monotonic 
relative sample dilation/compression.

Keywords  Granular materials · Cohesion · Friction · Granular rheology · Phase diagram · Homogeneous simple shear · 
Split bottom shear cell · Contact model · Inhomogeneous shear band · Shear dilatancy · Relative shear dilation/compression

1  Introduction

Granular materials are omnipresent in our daily life and 
widely used in various industries such as food, pharmaceuti-
cal, agriculture and mining. Interesting granular phenomena 
like yielding and flowing [2, 29, 41, 56, 70], jamming [6, 22, 

26, 33], dilatancy [7, 71, 80], shear-band localization [3, 9, 
64, 79], history-dependence [67], and anisotropy [28, 37, 
44, 45] have attracted significant scientific interest over the 
past decades. When subjected to external shearing, granular 
systems exhibit a non-equilibrium jamming transition from 
a static solid-like to a dynamic, liquid-like state [6, 26] and 
finally to a steady state [57]. This particular transition drew 
much attention for dry and wet granular systems in both 
dilute and dense regimes [8, 14, 38, 39, 43, 46, 49, 58, 62, 
65, 72, 73].

Material’s bulk responses like density/shear resistance are 
influenced strongly by different particle properties such as 
frictional forces, as well as dry or wet cohesion. How the 
microscopic particle properties influence the granular rheo-
logical flow behaviour is still a mystery and thus attracted 
more attention in the last few decades [15–17, 20, 30, 36, 
42, 51, 52, 63]. Although the influence of individual parti-
cle properties is better understood now, there is still very 
little known about the combined effect of particle friction 
and cohesion on the rheological behaviour of granular flows 
[48].
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For dry cohesive granular media, one needs to account for 
the dominant van der Waals force between particles when 
they are not in contact. This attractive force can be mod-
eled by a reversible linear long range interaction [54], if the 
interaction energy and dissipation are matched with the true 
non-linear force.

In contrast, in wet granular media, particles attract each 
other, as liquid bridges cause capillary forces [66, 74, 78]. 
The capillary bridge force becomes active at first contact, 
but then is active up to a certain cut-off distance where the 
bridge ruptures. This gives asymmetric loading/unload-
ing behaviour. Recent studies based on Discrete Element 
Method (DEM) confirmed that the specific choice of capil-
lary bridge models (CBMs) has no marked influence on the 
hydrodynamics of granular flow [11, 24] for small volumes 
of interstitial liquids. In the present paper, our focus is thus 
to investigate the effect of two qualitatively different cohe-
sion mechanisms, dry vs. wet, on the bulk density of cohe-
sive granular materials. We quantify the cohesion associated 
with different contact models by the dimensionless Bond 
number, Bo, which is defined as the ratio of time scales 
related to confining stress and adhesive force. In this way, 
we generalize the existing rheological models with cohesion 
dependencies.

For dry, non-cohesive but frictional granular materials, 
the bulk density under steady shear decreases [17]. Cohe-
sive grains are more sensitive to stress intensity as well as 
direction, and exhibit much larger variations in their bulk 
densities [55]. Dry granular media with median particle size 
below 30 μ m flow less easily and show a bulk cohesion due 
to strong van der Waals interactions between particle pairs 
[60]. Unsaturated granular media with interstitial liquid in 
the form of liquid bridges between particle pairs can also 
display bulk cohesion which can be strongly influenced by 
the flow or redistribution of the liquid [47, 53]. Fournier 
et al. [10] observed that wet systems are significantly less 
dense than dry granular materials even for rather large par-
ticles. The packing density is only weakly dependent on 
the amount of wetting liquid, because the forces exerted by 
the liquid bridges are very weakly dependent on the bridge 
volume [78]. In general, one expects that the steady state 
local volume fraction decreases with increasing either par-
ticle friction or cohesion [16, 69]. This decrease of volume 
fraction is related to both structural changes and increasing 
bulk friction of the materials [64]. However, Roy et al. [51] 
reported an opposing increase of local steady state volume 
fraction proportional with cohesive strength. Thus whether 
the particle cohesion enhances or suppresses the frictional 
effects that causes dilatancy or compression remains still a 
debate. Therefore, the second focus of this paper is to under-
stand the interplay between particle friction and cohesion 
on the steady state volume fraction of the granular systems 
under shear.

Dilatancy, or shear dilatancy in classical plasticity and 
soil mechanics, has a specific definition as the ratio of incre-
mental volumetric strain to the shear strain. While the “rela-
tive dilatancy” discussed in this work is a dynamic effect that 
is distinct from the classical dilatancy since in the steady 
simple shear flow the volumetric strain is zero. Choosing dif-
ferent dynamic steady states based on different inter-particle 
cohesion, it represents the bulk density change between two 
different steady states.

The work is structured as follows: in Sect. 2.1, we provide 
information on the two simulation geometries; in Sect. 2.2, 
the two cohesive contact models are introduced; in Sect. 2.3 
the important dimensionless number and their related time 
scales are elaborated; and in Sect. 2.4, the input parameters 
are given. Section 3 is devoted to the discussion of major 
findings of rheological modelling with a focus on the com-
bined influences of several particle parameters, while con-
clusions and outlook are presented in Sect. 4.

2 � Simulation methods

The Discrete Particle Method (DPM) or Discrete Element 
Method (DEM) is a family of numerical methods for simu-
lating the motion of large numbers of particles. In DPM, the 
material is modeled as a finite number of discrete particles 
with given micro-mechanical properties. The interactions 
between particles are treated as dynamic processes with 
states of equilibrium developing when the internal forces 
balance. As previously stated, granular materials are consid-
ered as a collection of discrete particles interacting through 
contact forces. Since the realistic modeling of the shape and 
deformations of the particles is extremely complicated, the 
grains are assumed to be non-deformable spheres which are 
allowed to overlap [32]. The general DPM approach involves 
three stages: (1) detecting the contacts between elements; (2) 
calculating the interaction forces among grains; (3) comput-
ing the acceleration of each particle by numerically inte-
grating Newton’s equations of motion after combining all 
interaction forces. This three-stage process is repeated until 
the entire simulation is complete. Based on this fundamental 
algorithm, a large variety of codes exist and often differ only 
in terms of the contact model and some techniques used in 
the interaction force calculations or the contact detection. 
After the discrete simulations are finished, there are two 
popular ways to extract relevant continuum quantities for 
flow description such as stress, bulk density from discrete 
particle data. The traditional one is ensemble averaging of 
“microscopic” simulations of homogeneous small samples, a 
set of independent RVEs [19, 27, 40]. A recently developed 
alternative is to simulate an inhomogeneous geometry where 
dynamic, flowing zones and static, high-density zones coex-
ist. By using adequate local averaging over a fixed volume 
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(inside which all particles can be assumed to behave simi-
larly), continuum descriptions in a certain parameter range 
can be obtained from a single set-up [30, 35, 64, 65].

2.1 � Geometries

In this study, we use MercuryDPM [68, 76, 77], an open-
source implementation of the Discrete Particle Method 
(DPM) to simulate granular flow in two geometries: a homo-
geneous stress controlled simple shear box (RVEs) and an 
inhomogeneous split bottom shear cell, where the local 
stress is given by the weight of the particles above.

2.1.1 � Stress controlled simple shear box (SS)

The first simple geometry is a cuboid shear volume with 
Lees-Edwards periodic boundaries in x and y directions [25] 
and normal periodic boundaries in z direction as shown in 
Fig. 1. The initial length of each box side is set to L, but 
the box side length in y-direction, L y , can vary in time. The 
polydispersed granular sample contains 4096 soft particles. 
The system is sheared along the x direction with a constant 
shear rate 𝛾̇ = 2Vx∕Ly

1 by moving all the particles at each 
timestep to achieve homogeneous shearing. Meanwhile, 
the normal stress along y direction, �yy is kept constant by 
allowing Ly to dilate/compact, so that it smoothly reaches 
its steady state [59, 61]. Using this setup, one can keep both 
shear rate and normal stress constant while measuring the 
shear stress responses in both transient and steady state. 
Although this setup is not achievable in reality, it still repre-
sents typical lab experiments, sand or/and powders sheared 
in different shear cells. This setup allows the user to explore 
two variables (shear rate and stress) independently with low 
computational cost. Therefore, in the current study, we sys-
tematically vary the shear rate 𝛾̇ = 𝜕Vx∕𝜕y and confining 
stress �yy to understand the shear flow in both quasi-static 
and dynamic regimes, as well as the influence of particle 
Softness.

2.1.2 � Split‑bottom ring shear cell (SB)

In our present study, we also simulate a shear cell with annu-
lar geometry and a split bottom, as described in detail in [50, 
64]. The geometry of the system consists of an outer cylinder 
(radius Ro = 110mm ) rotating around a fixed inner cylinder 
(radius Ri = 14.7mm ). We vary the rotation frequency from 
� = 0.06 to 4.71 rad/s (0.01 to 0.75 rotation/s). The granular 

material is confined by gravity between the two concentric 
cylinders, the bottom plate, and a free top surface. The grav-
ity varies from 1 to 50ms−2 . The bottom plate is split at 
radius Rs = 85mm . Due to the split at the bottom, a narrow 
shear band is formed. It moves inwards and widens towards 
the free surface. The filling height ( H ≈ 40 mm) is chosen 
such that the shear band does not reach the inner wall. Fig-
ure 2 shows the 3D schematic presentation and side view of 
the split bottom shear cell geometry with colors blue to red 
indicating low to high kinetic energy of the particles. It is 
visible that a wide shear band is formed away from the walls, 
which is thus free from boundary effects.

In earlier studies [64, 65], a quarter of this system 
( 0◦ ≤ � ≤ 90◦ ) was simulated using periodic boundary 
conditions. All the data corresponding to different gravities 
and different rotation rates belong to this system. In order to 
save computation time, we simulate only a smaller section of 
the system ( 0◦ ≤ � ≤ 30◦ ) with appropriate periodic bound-
ary conditions in the angular coordinate. No noticeable dif-
ferences in the macroscopic flow behavior were observed 
between simulations performed using a smaller ( 30◦ ) and a 
larger ( 90◦ ) section.

2.2 � Force models

In our non-cohesive simulations, we use the linear visco-
elastic frictional contact model between particle contacts in 
both geometries mentioned above: Simple Shear Box (SS) 
and Split Bottom Shear Cell (SB) [31].

The dry cohesive particles are simulated in the geom-
etry SS using a linear reversible adhesive visco-elastic 
contact model as shown in Fig. 3a , where we combine 

Fig. 1   Simulation of a 3D system of polydisperse particles simple 
shear using Lees–Edwards periodic boundary conditions, with L y 
controlled to keep the normal stress �yy constant

1  The strain-rate defined using the Frobenius norm [23], 𝜖̇ = 1∕2 𝛾̇ , 
is applicable for arbitrary deformation modes [35, 52, 65]. The shear 
rate 𝛾̇ defined here is the same as in [72] as used in most simple shear 
studies.
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a linear attractive non-contact force with a linear visco-
elastic frictional contact force [31] as the sum of Eqs. (2) 
and (3). This reversible attractive model is chosen as a 
(linearized) representation of the van-der-Waals attractive 
non-contact force.

And in the geometry SB, we simulate wet cohesive particles 
using an irreversible adhesive non-contact force with a linear 
visco-elastic frictional contact force as shown in Fig. 3b, which 

only differs in the attractive non-contact part compared to the 
dry cohesive simulations as shown in Eq. (4).

2.2.1 � Classical linear contact force

When two particles i, j are in contact, the overlap � can be 
computed as,

with positions �i and �j , radii ai and aj , for the two 
primary particles, respectively and the unit vector 
� = �ij = (�i − �j)∕|�i − �j| pointing from j to i.

Thus the normal force fn between two particles is simply 
computed when 𝛿 > 0 (Fig. 3) as

with a normal stiffness kn , a normal viscosity �n and the rela-
tive velocity in normal direction vn [31].

On top of this simple elastic contact force law, we sepa-
rately add two types of adhesive forces: reversible adhesive 
force and jump-in liquid bridge capillary force. The details 
of these two adhesive forces are elaborated in the following.

2.2.2 � Reversible adhesive force

For the dry granular material, we assume a (linear) van-der-
Waals type long-range adhesive force, fa , as shown in Fig. 3a. 
The adhesive force law between two primary particles i and j 
can be written as,

(1)� = (ai + aj) − (�i − �j) ⋅ �

(2)fn = frep ∶= kn� + �nvn

Fig. 2   3D Schematic representation of split bottom ring shear cell 
(top) and side view, showing shear band formation in the simulation 
(bottom) [50]

Fig. 3   a Reversible adhesive force; b jump-in (irreversible) adhesive capillary force; both combined with a linear visco-elastic contact force as in 
Eq. (2)
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with the range of interaction �a ∶= f max
a

∕ka
c
 , where ka

c
 is the 

adhesive strength of the material and f max
a

 is the (constant) 
adhesive force magnitude, active for the overlap 𝛿 > 0 in 
addition to the contact force.

When � = 0 , the force is −f max
a

 . The adhesive force fa 
is active when particle overlap is greater than −�a , when it 
starts increase/decrease linearly with slope ka

c
 independent of 

the two particles approaching and separating. In the current 
study, this contact model is applied in the case of homogene-
ous stress controlled simple shear box simulations.

2.2.3 � Jump‑in liquid bridge capillary force

The capillary attractive force between two particles in a wet 
granular bulk is modeled with a discontinuous, irreversible 
attractive law as shown in Fig. 3b. The jump-in capillary 
force can be simply written as:

where S̄ = S
√
(r∕Vb) is the normalized separation distance, 

S = −� being the separation distance, r the reduced radius 
and Vb the volume of liquid bridges. The maximum capil-
lary force at contact ( S = 0 ) is given by f max

a
= 2�r�s cos � , 

with the surface tension of the liquid, �s , and the contact 
angle, � [54].

There is no attractive force before the particles come first 
into contact; the adhesive force becomes active and sud-
denly drops to a negative value, −f max

a
 , when � = 0 (the 

liquid bridge is formed). Note that this behavior is defined 
here only during first approach of the particles. We assume 
the model to be irreversible: the forces will not follow the 
same path, i.e. the attractive force is active until the liquid 
bridge ruptures at � = −Sc . This attractive force is following 
Willet’s capillary bridge model [78], as explained in [54]. 
Similar to the reversible model, we combine the attrac-
tive capillary adhesive model with the linear visco-elastic 
contact model defined in Sect. 2.2.1 and use this combined 
model to simulate wet granular materials under shear in the 
split bottom shear cell.

2.2.4 � Friction

Introducing the additional cohesive force in the normal 
direction between the two particles also influences the 

(3)fa =

⎧
⎪⎨⎪⎩

0 if 𝛿 ≤ −𝛿a;

−ka
c
𝛿 − f max

a
if − 𝛿a ≤ 𝛿 < 0;

−f max
a

if 𝛿 ≥ 0

(4)fa =

⎧⎪⎨⎪⎩

0 if 𝛿 < 0, approaching;
−f max

a

(1+1.05S̄+2.5S̄2)
if − Sc ≤ 𝛿 < 0, separation;

−f max
a

if 𝛿 ≥ 0

frictional force in the tangential direction. The tangential 
force is calculated in a similar fashion like the normal force 
through a “spring-dashpot” model ( ft = kt�t ) and coupled to 
the normal force through Coulomb’s law, ft ≤ f C

s
∶= �sfrep , 

where for the sliding case one has dynamic friction with 
ft ≤ f C

t
∶= �df

rep . In this study, we use �p = �s = �d . For a 
non-adhesive contact, frep = fn > 0 , and the tangential force 
is active and calculated based on the history in tangential 
direction. For an adhesive contact, Coulomb’s law has to 
be modified in so far that f rep is replaced by fn − fa . In the 
current model, the reference for a contact is no longer the 
zero force level, but it is the adhesive, attractive force level 
[31, 32].

2.3 � Time scales and dimensionless numbers

Dimensional analysis is often used to define the charac-
teristic time scales for different physical phenomena that 
involved in the system. Even in a homogeneously deform-
ing granular system, the deformation of individual grains is 
not homogeneous. Due to geometrical and local parametric 
constraints at grain scale, grains are not able to displace 
as affine continuum mechanics dictates they should. The 
flow or displacement of granular materials on the grain 
scale depends on the timescales for the local phenomena 
and interactions. Each time scale can be obtained by scal-
ing the associated parameter with a combination of particle 
diameter dp and material/particle density �p . While some 
of the time scales are globally invariant, others are varying 
locally. The dynamics of the granular flow can be character-
ized based on different time scales depending on local and 
global variables. First, we define the time scale related to 
contact duration of particles which depends on the contact 
stiffness kn as given by [65]:

In the special case of a linear contact model, this is invari-
ant and thus represents a global time scale. Two other time 
scales are globally invariant, the cohesive time scale tc , i.e. 
the time required for a single particle to traverse a length 
scale of dp∕2 under the action of an attractive force, and the 
gravitational time scale tg , i.e. the elapsed time for a single 
particle to fall through half its diameter dp under the influ-
ence of the gravitational force. The time scale tc could vary 
locally depending on the local capillary force fc . However, 
the capillary force is weakly affected by the liquid bridge 
volume while it strongly depends on the surface tension of 
the liquid �s . This leads to the cohesion time scale as a global 
parameter given by:

(5)tk =

√
�pdp

3

kn
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with maximum adhesive force f max
a

 between two particles. 
The global time scales for granular flow are complemented 
by locally varying time scales. Granular materials subjected 
to strain undergo constant rearrangement and thus the con-
tact network re-arranges (by extension and compression and 
by rotation) with a shear rate time scale related to the local 
shear rate field:

the shear rate is high in the shear band and low outside, 
so that also this time scale varies between low and high, 
respectively.

The time for rearrangement of the particles under a cer-
tain pressure constraint is driven by the total local pressure 
p. This microscopic local time scale based on pressure is:

As the shear cell has an unconfined top surface, where the 
pressure vanishes, this time scale varies locally from very 
low (at the base) to very high (at the surface).

Finally, one has to also look at the granular temperature 
time scale due to the velocity fluctuations ( Tg ∝

∑
(vi − v̄)2 ) 

among all the particles which is of significance of determin-
ing how “hot” the system is [13, 34, 72, 75]:

Dimensionless numbers in fluid and granular mechanics are 
a set of dimensionless quantities that have a dominant role 
in describing the flow behavior. These dimensionless num-
bers are often defined as the ratio of different time scales or 
forces, thus signifying the relative dominance of one phe-
nomenon over another. In general, we expect four time scales 
( tp , tc , t𝛾̇ and tk ) to influence the rheology of our system. Note 
that among the four time scales discussed here, there are six 
possible dimensionless ratios of different time scales. We 
propose three of them that are sufficient to define the rheol-
ogy that describes our results. We do not expect a strong 

(6)tc =

√
�pdp

4

f max
a

(7)t𝛾̇ =
1

𝛾̇

(8)tp = dp

√
�p

p

(9)tT =
dp√
Tg

influence of the timescale related to the granular temperature 
on such dense granular flow and thus the tT is not included 
in the dimensionless study.

The first dimensionless number is the Inertial number,2 
which is the ratio between tp and t𝛾̇,

The second Softness characterizes how “soft” the system 
is and is the square of the ratio between contact collision 
timescale tk and pressure timescale tp,

The last one studied in this paper which is important to 
characterize the cohesiveness in the whole system is Bond 
number. It is also the square of the ratio between pressure 
timescale tp and cohesion timescale tc,

Interestingly, all three dimensionless ratios are based on the 
common time scale tp . Thus, the time scale related to con-
fining pressure is important in every aspect of the granular 
flow [52, 65].

Even though not used, for completeness, we also pro-
pose the dimensionless granular temperature, T∗ = (tp∕tT )

2 , 
which is much smaller than 1 in all data analyzed further 
on.

2.4 � Simulation parameters

2.4.1 � Fixed particle parameters

The fixed input parameters for the two different simulation 
set-ups are summarized in Table 1. In the liquid bridge cap-
illary contact model, there are two extra input parameters 
compared to the dry adhesive model: contact angle and liq-
uid bridge volume. These two parameters are kept constant 
for all the simulations. Apart from that, we use restitution 
coefficient, e = 0.8 to compute the normal viscosity in the 
dry adhesive model but directly input the normal viscosity 
in the liquid bridge capillary contact model, which gives the 
same damping in the two contact models.

2.4.2 � Control parameters

Apart from the fixed particle parameters, there are also sev-
eral control parameters which we vary to explore their influ-
ences. For instance, varying shear rate, pressure, gravity and 
cohesion, we explore our rheology towards different iner-
tia, softness and cohesion regimes. The details of parameter 
ranges are summarized in Table 2.

(10)I = 𝛾̇dp∕
√

p∕𝜌p

(11)p∗ = pdp∕kn

(12)Bo = f max
a

∕pd2
p

2  Alternative Inertial numbers could be defined using the bulk den-

sity, so that I� = I
√
𝜙 = 𝛾̇dp∕

�
p∕𝜌p𝜙 , or the strain rate ( 𝜖̇ = 1∕2 𝛾̇ ), 

so that Î = I∕2 = 𝜖̇dp∕
√

p∕𝜌p , or both so that Î� = I
√
𝜙∕2 , which 

will lead to small differences in fitted characteristic numbers. For 
sake of brevity, we use the definition in Eq. (10).
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To study the effect of inertia and contact stiffness on the 
dry-non-cohesive materials rheology in the geometry SS, 
we vary the shear rate, 𝛾̇ , between 0.0001 and 1 s−1 , as 
well as the pressure, p, between 125 and 4000 Pa. Thus, we 
obtain Inertial numbers, I, between 0.001 and 1; Softness, 
p∗ , between 0.001 and 0.1.

For the dry-cohesive simulations in the same set-up, we 
keep the shear rate, 𝛾̇ = 0.005 s −1 , pressure, p = 500 Pa, and 
vary only the maximum adhesion force, f max

a
 , between 0 

and 0.01 N. This leads to the range of Bond number, Bo, 
between 0 and 5.

For the dry non-cohesive simulations using the geometry 
SB, we vary the rotation rate, � , between 0.063 to 4.712 
rad/s (0.01 and 0.75 rotation/s), of the outer wall to vary the 
system inertia and therefore match the case of the simple 
shear box. And to change the pressure in this free surface 
system, we achieve low or high pressure by varying the grav-
ity, g, between 1 and 50 ms−2.

In the case of wet granular material in SB, we vary the 
intensity of the maximum capillary force f max

a
= 2�r�s cos � , 

by varying the surface tension of the liquid �s , while keep-
ing the volume of liquid bridges Vb constant at 75 nl, 

corresponding to a liquid saturation of 8% of the volume of 
the pores and the contact angle � is fixed at 20◦ . The cho-
sen values of surface tensions are between 0 and 0.3 Nm−1 . 
The rotation rate, � = 0.063 rad/s (0.01 rps) and the grav-
ity, g = 9.81 ms−2 are kept constant for all the wet cohesive 
simulations.

Note that for all the simulations performed using geom-
etry SB, the inter-particle friction is kept constant at 
�p = 0.01 , while for the simulations performed in geometry 
SS, we vary �p from 0 to 1. Therefore, for the comparison 
between the two geometries, we choose only the data with 
�p = 0.01 , and in each simulation performed, the Coulomb 
friction static and dynamic are always kept the same and 
referred to by the inter-particle friction, �p = �s = �d.

3 � Rheology

Our first goal is to check the consistency of bulk densities 
from two different geometries: SS and SB when using the 
same non-cohesive contact model. And the second goal is to 
investigate how different cohesive contact models influence 

Table 1   Summary and 
numerical values of fixed input 
particle parameters used in the 
DPM simulations

Parameter Symbol Simple shear (dry) Split-bottom (wet)

Average diameter dp 2.2 mm 2.2 mm

Polydispersity w = rmax∕rmin 2 and 3 2
Particle density �p 2000 kg/m3 2000 kg/m3

Normal stiffness kn 100 kg/s2 100 kg/s2

Tangential stiffness kt∕kn 2/7 2/7
Rolling/torsion stiffness kr∕kn 2/7 2/7
Inter-particle friction �p 0 to 1 0.01
Rolling friction �r 0 0
Torsion friction �t 0 0
Restitution coefficient e 0.8 0.8
Normal viscosity �n 0.002 kg/s 0.002 kg/s

Friction viscosity �fr∕�n 2/7 2/7
Rolling viscosity �ro∕�n 2/7 2/7
Torsion viscosity �to∕�n 2/7 2/7
Adhesion stiffness kadh∕kn 1 [-]
Contact angle � [-] 20◦

Liquid bridge volume Vb [-] 75 nl

Rupture distance Sc [-] 4.95 nm

Table 2   Summary of variable 
control parameters used in two 
geometries: simple shear box 
(SS) and split bottom shear cell 
(SB)

SS SB

𝛾̇ (s−1) p (Pa) f max
a

 (N) � (rad/s) g (ms
−2) �s (Nm

−1)

Input range 0.0001–1 125–4000 0–0.01 0.063–4.712 1–50 0–0.3
Dimensionless 

numbers
I p∗ Bo I p∗ Bo

Input range 0.001–1 0.001–0.1 0–5 0.001–0.1 0.002–0.05 0–4
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the bulk density at steady state. Therefore, in Sect. 3.1, we 
check whether the shear behaviour of the non-cohesive 
granular media is the same in the two different geometries, 
by comparing the steady state volume fractions. And then 
in Sect.  3.2, we compare the rheological behaviours of 
cohesive granular materials using the reversible adhesive 
contact model (stress controlled simple shear box) and irre-
versible liquid bridge capillary contact model (split bottom 
shear cell). In addition, we also check the validity of exist-
ing frictional rheology and consummate it towards cohesive 
materials. Finally, in order to achieve our second goal, we 
explain the interplay between particle friction and cohesion 
in Sect. 3.3.

3.1 � Non‑cohesive granular materials

For dry granular materials, which have rather large particle 
size and negligible attractive forces ( Bo ≈ 0 ). The rheology 
(i.e. the equations of state for volume fraction and macro-
scopic friction) depend mainly on the Inertial number, I, 
and the Softness, p∗ , which are the competition between the 
time scales tp∕t𝛾̇ and (tk∕tp)2 , respectively. The dependence 
of the macroscopic friction coefficient � = �∕p on p∗ and I 
has been studied earlier [52, 65] as summarized in Appendix 
1. In order to complete the rheology for soft, compressible 
particles, a relation for the volume fraction, � , as function of 
pressure and shear rate is still missing for cohesive frictional 
materials. In previous work [35], the following dependency 
was reported:

with the critical or steady state volume fraction under shear, 
i.e., the limit for vanishing pressure and Inertial number, 
�0|�p=0.01

= 0.64 . Luding et al. [35] found that the typical 
shear rate for which shear dilation would turn to extreme 
fluidization is Î�

𝜙
= 0.85 (for more details on number, see Eq. 

(10) and Table 3), and the typical pressure level for which 
Softness leads to too huge densities is p�∗ = 0.33 . Note that 
both correction functions are first order Taylor expansions 
with respect to full, higher order functions, i.e. they are valid 
only for sufficiently small arguments. In slow, quasi-static 
flows in the split bottom shear cell simulations, weak dila-
tion is observed, i.e., no strong dependence of � on the local 
shear rate [35]. On the other hand, large Inertial numbers 
fully fluidize the system so that the rheology should be that 
of a granular fluid, for which kinetic theory applies. Small 
pressure, i.e. small overlaps have little effect, while too large 
pressure would lead to enormous overlaps, for which the 
contact model and the particle simulation with pair forces 
become questionable. Therefore, we focus on the linear 
expansion as shown in Eq. (13), valid in the quasi-static to 

(13)�(I, p∗) = �0gI(I)gp(p
∗) ≈ �0(1 − I∕I�)(1 + p∗∕p�

∗)

moderate inertial regime ( I < 0.25 ≈ I𝜙∕10 ) and low to 
moderate overlaps between particles ( p∗ < 0.03 ≈ p𝜙

∗∕10 ) 
with only few data outside this regime [35, 59].

Note that in Eq. (13), we do not include inter-particle fric-
tion �p as functional variable although the volume fraction 
depends on �p . We consider inter-particle friction as a mate-
rial micro-parameter like polydispersity or restitution coef-
ficient, which is different from the dimensionless state vari-
ables in our functions, e.g. shear rate and pressure. However, 
we did explore this dependency in detail in "Appendix 2".

In Fig. 4, we plot the volume fraction in steady state as 
a function of Inertial number for both the stress controlled 
simple shear box (SS) as well as the split bottom shear cell 
(SB) with the same friction coefficient �p = 0.01 . For the 
case of SS, when we we keep Softness p∗ constant and vary 
only shear rate (black squares and dashed lines), the volume 
fractions decrease with Inertial number, as the increase of 
shear rate leads to higher collisional/dynamic pressure. Cor-
respondingly in the case of SB, when we vary the rotation 
velocity (red triangles), the volume fraction follows the same 
trend and the data collapse well with the data from SS but 
with slightly more scatter due to the local, small volumes 
used for averaging. The red triangles are not following any 
single of the dashed lines since both I and p∗ are small but 
neither is constant. When we fix shear rate and vary only 
pressure (blue circles and solid lines), the larger pressures 
lead to considerable compaction.

Fig. 4   Volume fraction, � , plotted against Inertial number, I, using 
stress controlled simple shear box (SS) and split bottom shear cell 
(SB) with �p = 0.01 . For SS, two sets of parameters are chosen: (1) 
fix Softness at p∗ = [0.0025, 0.005, 0.01], vary shear rate 𝛾̇ between 
0.0001 and 1 (black squares); (2) fix shear rate at 𝛾̇ = [0.0005, 0.005, 
0.05], vary Softness p∗ between 0.001 and 0.1 (blue circles). For SB, 
the range of values of gravity g and rotation frequency � are given in 
Table 2 and the cloud of points represent center of shear band data 
from 12 SB simulations. The lines are the predictions Eq. (13), fitted 
using SS data, with �

0
= 0.65 , I� = 2.25 and p∗

�
= 0.27 . Solid and 

dashed lines represent constant 𝛾̇ and p∗ , respectively
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In order to focus on the dependency of � on Softness p∗ , 
in Fig. 5, we plot the same data as in Fig. 4 against Softness. 
For the case of SS, when the shear rate 𝛾̇ is kept constant 
while Softness p∗ is varying (blue circles), we observe an 
increase of volume fraction with Softness. For the corre-
sponding case in SB, when we keep the rotation velocity 
constant and vary gravity (brown crosses), the volume frac-
tions follow the same trend as in the case of SS and increase 
with Softness in a linear relation as specified in [65]. Dif-
ferent gravity data from the split bottom shear cell collapse 
also well with the simple shear box data but with slightly 
more scatter. The increase in Softness p∗ can be due to the 

pressure increase in the system or the particles becoming 
softer [61, 72]; in either case the particles will overlap more 
thus leading to an increase in the volume fraction.

In the same Figs. 4 and 5, we also plot the prediction 
of Eq. (13) fitted using data from SS and with the fitting 
parameters summarized in Table 3. The coefficients for 
�p = 0, 0.01 and 0.5 are from the fitting whereas the others 
are from estimation of the curve fitting, which are further 
tested and confirmed in this paper. Since the two systems 
have similar rheological behaviour, one would expect the 
rheological model developed from SB to capture also the 
behaviour of SS and vice versa. The prediction of fitted func-
tion looks promising and it captures well both the dependen-
cies on inertia and Softness as shown in dashed and solid 
lines, respectively. All the fitting deviations are within 5%, 
even for data with relatively high inertia ( I > 0.25 ). How-
ever, when the volume fraction gets too low (below 0.5), 
the predictions of our rheological model deviate from the 
simulation data because the system goes from the dense state 
towards a loose granular fluid, which our model does not 
take into account. Alternative rheological models for this 
transition region are reviewed in [72], while the appropriate 
model for the liquid/gas state is standard kinetic theory as 
studied in [1, 5, 12, 18]. This indicates the limits of using 
the rheological model Eq. (13); it predicts well moderate 
to dense granular flows with finite contact stresses, but 
not dynamic, less dense granular gases. Note that here in 
Table 3, we have also included the I� = 2.11 from [34, 35, 
52],3 which is very close to our I� = 2.246 obtained from 
the SS setup.

3.2 � Cohesive granular materials

For cohesive granular materials, attractive forces enhance 
the local compressive stresses acting on the particles, thus 
leading to an increase in the volume fraction. On the other 
hand, rough and frictional particles will display a stronger 
dilatancy, i.e, a reduced volume fraction under shear at 
steady state, compared to their initial (over-consolidated) 
volume fraction. We systematically vary the inter-particle 
friction ( �p from 0 to 1) and then for each inter-particle fric-
tion value we vary cohesion (Bo from 0 to 5) to study the 
volume fraction variations in steady state. Then we intro-
duce a generalized rheological model involving cohesion, 
as based on evidence from the simulations.

The Bond number quantifies the competition between 
cohesion and pressure. Low Bond numbers refer to weak 
cohesion, or tp ≪ tc , while high Bond numbers indicate the 

Fig. 5   Volume fraction, � , plotted against Softness, p∗ , for the same 
data as in Fig. 4

Table 3   The fitting coefficients of the non-cohesive rheological 
model for � in Eq. (13) for various �p

Note that in this study, we use shear rate 𝛾̇ and particle density �p in 
the Inertial number, whereas strainrate 𝜖̇ and bulk density �b = �p� 
are used in other literature [34, 35, 52] for �p = 0.01 . All the coef-
ficients are fitted using data with 𝜙 > 0.5 , I < 0.25 and p∗ < 0.03 . 
Note the * symbol indicating the different definition as discussed in 
the main text and Eq. (10)

�p �
0

I� p∗
�

0.00 0.656 1.960 0.271
0.01 0.653 2.246 0.272
0.01 in Ref. [34, 35, 52] 0.65 2.11* 0.33
0.05 0.643 3.171 0.274
0.10 0.634 3.959 0.276
0.20 0.619 4.806 0.280
0.30 0.610 5.166 0.283
0.40 0.603 5.319 0.285
0.50 0.595 5.383 0.287
0.70 0.591 5.422 0.291
0.90 0.585 5.429 0.293
1.00 0.583 5.430 0.293

3  Note the actual value for I� in the references was 0.85. This dif-
ference is due to their definition of Î′ , see Eq. (10) and its footnote, 
which requires to translate their value by a factor of 2∕

√
� ≈ 2.5 to 

ours.
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opposite. The variation of Bond number in the current study 
covers a wide range of cohesion intensities by comparing the 
maximum pressure contributed by cohesion, f max

a
∕d2

p
 , to the 

actual pressure.

3.2.1 � Effects of cohesion for different particle friction

In Fig. 6, we plot the steady state volume fraction against 
the Bond number for samples with different inter-particle 
friction using the SS geometry. As expected, for very low 
inter-particle friction ( �p ⩽ 0.01 ), we observe a continu-
ous increase in the volume fraction with Bo. However, for 
higher inter-particle friction ( �p ⩾ 0.05 ), increasing dila-
tancy is observed with increasing Bo up to values around 
2, an effect which we will discuss later. When the Bond 
number becomes larger, the volume fraction increases with 
increasing Bo. When we fix cohesion (Bo ≈ const.) and vary 
the particle friction, the volume fraction always decreases 
with increasing particle friction; this indicates that particle 
friction leads to shear dilation, not to compression. Thus, 
we assume that the change in volume fraction is due to both 
compression of soft particles in presence of cohesion and the 
dilatancy due to structural changes in presence of friction. 
We also added here the predictions of our proposed rheo-
logical models as in Eq. (16) and Eq. (1B) with solid and 
dashed lines, respectively. The predictions of Eq. (16) are in 
very good agreements with the actual data, but the lines of 

including Eq. (1B) over-predict the volume fractions at the 
steady state and deviate more towards higher Bond numbers. 
The details of how the rheological model is modified/gener-
alized will be discussed in the following.

In cohesive flows, attractive forces enhance the compres-
sive pressure acting on the particles. This can be quantified 
as follows: the net pressure can be split into two compo-
nents, p = prep − pcoh,4 denoting the respective contributions 
of repulsive and cohesive contact forces. The ratio between 
the total cohesive contribution and the total pressure is 
given by the local Bond number, Bo = pcoh∕p , and thus 
prep = (1 + Bo)p , which represents the dimensionless over-
lap. As the geometrical compression (deformation at each 
contact) is related to the repulsive stress, it is the repulsive 
pressure prep that has to be considered in the Softness fac-
tor gp to correct this cohesion induced bulk density change. 
However, this (1 + Bo) correction is not considered inside 
the Inertial number I, because the dominating timescale 
here is the pressure time scale tp that correlates to the total 
pressure p in the system not the repulsive part prep . Thus, 
using Eq. (13), the modified Softness correction for cohesive 
systems is given as:

For non-cohesive systems, Bo = 0 , gp is consistent with the 
non-cohesive rheological function. This modified pressure is 
similar in spirit to the modified Inertial number as presented 
in [4], which takes into account the cohesive contribution 
to stress. A similar modification of pressure in the Inertial 
number would require an additional parameter but would 
only reduce I, and thus is not considered here.

(14)gp = gp(p
∗,Bo) = gp(p

∗
rep
) = 1 + (1 + Bo)p∗∕p�

∗

Fig. 6   The SS volume fraction � as a function of the Bond number 
Bo for different inter-particle friction coefficients �p . The shear rate 
𝛾̇ = 0.005 s −1 and pressure p = 500 Pa are kept constant for all the 
simulations shown here, so that I = 0.02 and p∗ = 0.01 . The lines 
are the predictions plotted only for three cases of �p = 0, 0.1 and 0.5, 
with solid lines indicating Eq. (16) while dashed lines including the 
�p dependency as in Eq. (1B)

Fig. 7   The scaled volume fraction, i.e. the cohesion term, 
gc = �∕(�

0
gIgp) as a function of the Bond number Bo for different 

inter-particle friction coefficients as shown in the legend. The lines 
are the predictions of the fitted Eq. (15) and the data are the same as 
in Fig. 6

4  For sign convention, we define repulsive force as positive and 
attractive forces as negative, see Fig. 3.



Steady state rheology of homogeneous and inhomogeneous cohesive granular materials﻿	

1 3

Page 11 of 20  14

In Fig. 7, we plot the same data as in Fig. 6 to obtain the 
functional form of the cohesive correction gc : the normal-
ized volume fraction, gc = �∕[�0gI(I)gp(p

∗,Bo)] as function 
of the Bond number, Bo, in order to isolate the effect of 
cohesion on the dilatancy of soft particles. The normalized 
local volume fraction helps isolate the effect of cohesion 
only. From low to moderate Bo, the correction gc decreases 
with increase of Bo. An increase of the repulsive force 
between two contacting particles also leads to an increase 
of the sliding limit tangential forces, resulting in an enhance-
ment of the role of friction. For Bo ⩾ 3 , gc increases from 
its minimum at Bo ≈ 3 , since the attractive force is so high 
that sample dilation is compensated by compression. Note 
that compression is prevailing for soft particles but is neg-
ligible when p∗ ≈ 0 , in the limits of low confining stress or 
infinite stiffness, when the local volume fraction is expected 
to monotonically decrease with Bo. Some previous studies 
have confirmed the negligible effect of confining stress p∗ 
when using stiff particles [4, 21].

Here we assume that the frictional contributions are the 
same for both cohesive and non-cohesive materials. There-
fore, we use the coefficients of the non-cohesive material: 
�0, I� and p∗

�
 from Table 3. The local volume fraction � is 

scaled by gI as in Eq. (13) and gp as modified in Eq. (14). In 
such a way, we hope to remove the effects of particle inertia 
as well as particle Softness.

Thus, cohesion contributes to the initial decrease and the 
subsequent increase in the volume fraction correction of gc 
for sheared material. In order to quantify this dependence, 
the correction function gc of the Bond number, Bo, is given 
by a fourth degree polynomial function:

where, p1, p2, p3 and p4 depend on �p . The actual fitted val-
ues for gc with different inter-particle friction, �p , are sum-
marized in Table 5. With increasing �p , the polynomial con-
stants p1, p3 decrease, but p2, p4 increase. The lines in Fig. 7 
represent Eq. (15), where a promising collapse between this 
prediction and the simulation data is observed. For low par-
ticle friction, e.g. �p = 0.01 , the volume fraction decreases 
gradually with Bo, while for higher particle friction, e.g. 
�p = 0.5 , the volume fraction decreases more sharply with 
Bo. We note that also frictionless particles ( �p = 0 ) under 
shear, the correction gc decreases with increasing Bo, which 
suggests that cohesion causes the structural changes that 
relate to shear dilation. In other words, on top of the effect in 
gp , cohesion could make frictionless particles stick together 
and form clusters, which results in an increase of the bulk 
shear resistance (data not shown here). The sample has to 
dilate to reduce its shear resistance to compensate this effect. 
Thus the role of contact friction in enhancing dilation is not 
a solitary effect, also cohesion is affecting the system behav-
iour: one should not neglect the role of either. Frictional par-
ticles need at least four mechanical contacts to form a stable 
structure while frictionless particles need six contacts. The 
higher the friction, the higher the probability that a stable 
packing can be formed at lower volume fractions with less 
average contacts/coordination number.

Comparing to the previous works [52, 65], a more com-
plete rheology including the cohesion/Bond number influ-
ence on the volume fraction is introduced as:

In case of rigid particles, p∗ → 0 , Eq. (16) reduces to 
�stiff = �(I, 0,Bo) = �0gIgc . The details of each contribution 
are summarized in Table 4.

3.2.2 � Generalized rheology

Now we go further and include data from SB with a differ-
ent contact model to compare with the data from SS. As 
discussed earlier in Sect. 2.2, we use two different contact 
models for the attractive forces in the two systems, SS and 
SB. Thus, the question arises whether the two models are 
influencing both systems in the same way. Since we dis-
cuss the granular rheology for soft particles, our second 
focus would be the effects of cohesion (Bond number) 
on the volume fraction, which are the increase due to the 

(15)gc(Bo) = 1 + p1Bo + p2Bo
2 + p3Bo

3 + p4Bo
4

(16)�(I, p∗,Bo) = �0gI(I)gp((1 + Bo)p∗)gc(Bo)

Table 4   List of rheological correction functions on � as in Eq. (16) 
for application in a continuum model

Dimensionless numbers Corrections

Inertial number (I) gI = 1 − I∕I�

Softness ( p∗) gp = 1 + (1 + Bo)p∗∕p∗
�

Bond number (Bo) gc = 1 + p1Bo + p2Bo
2 + p3Bo

3 + p4Bo
4

Table 5   The fitting coefficients of 4th degree polynomial in Eq. (15)

�p p1 p2 p3 p4

0.00 – 0.0175 – 0.0060 0.0029 – 0.0003
0.01 – 0.0237 – 0.0056 0.0034 – 0.0004
0.05 – 0.0394 0.0030 0.0015 0.0002
0.10 – 0.0564 0.0134 – 0.0011 0.00003
0.20 – 0.0845 0.0310 – 0.0058 0.0005
0.30 – 0.1091 0.0480 – 0.0107 0.0010
0.40 – 0.1195 0.0542 – 0.0125 0.0011
0.50 – 0.1359 0.0668 – 0.0162 0.0015
0.70 – 0.1516 0.0779 – 0.0195 0.0018
0.90 – 0.1494 0.0733 – 0.0176 0.0016
1.00 – 0.1511 0.0746 – 0.0181 0.0017
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compression and decrease due to the structural change 
enhanced by friction. First, we illustrate our data in a slightly 
different way in Fig. 8a, plotting the scaled volume fraction 
�∕[�0gI(I)gc(Bo)] as a function of the repulsive pressure 
(1 + Bo)p∗ . Unlike the previous section, here we use the 
function gc from Eq. (15) for the scaling. In such a way, dila-
tion due to an increasing Bond number and inertial effects 

due to increasing shear rate are removed. For the case of 
SS, the scaled volume fraction increases with Softness, and 
the same trend is observed for the case of SB, regardless of 
non-cohesive or cohesive data.

The scaled local volume fractions �∕[�0gI(I)gc(Bo)] 
increase with the repulsive pressure (1 + Bo)p∗ , and all the 
data are found to collapse on a single increasing trend that 
is gp . Therefore we plot the predictions of our rheological 
functions as red and black solid lines in Fig. 8a. We see the 
two lines differ slightly from each other and we associate this 
to the small difference in the particle size distributions used 
in the two geometries, the simple shear box has a sample 
with polydispersity w = 3 , while the split bottom shear cell 
has w = 2 . Nevertheless, this difference is minimal and the 
global trend is well captured using the proposed rheologi-
cal model. Note here, for the cohesive SB data, the Inertial 
number I ranges from 0.0004 to 0.0013 and the Softness p∗ 
ranges from 0.002 to 0.012, which differs from the cohesive 
SS data with constant I and p∗ . If one expects the correction 
function gc to be strongly affected by different I and p∗ , then 
these influences would show up in the data of SB where a 
wider range of Inertial numbers and Softness is covered. 
However, the influence/difference is not observed, therefore, 
the correction function gc if at all, is weakly affected by the 
dimensionless numbers I and p∗ , apart from the dominant 
dependence on the Bond number Bo.

When we look closer at the cohesive SS data as shown in 
Fig. 8b, we observe that the data for 𝜇p > 0.01 deviate from 
the prediction for �p = 0.01 (black line), which is captured 
using the proper p∗

�
(�p) from Table 3 ( �p = 1 is shown as 

dashed line). As we control all the samples having the same 
p∗ for the data shown here, the cause of the increase in vol-
ume fraction can only be from the increase of cohesion (Bo), 
which is the increase of the attractive forces among the soft 
particles leading to compression. The repulsive component 
of pressure is solely contributed by p∗ for non-cohesive 
materials. For cohesive material, the net repulsive contribu-
tion is due to the cohesive (tensile) as well as the pressure 
(compressive) forces, and this effect is found to be independ-
ent of inter-particle friction. For Bond number up to 2, all 
the data are collapsing on a single trend with less than 2% 
deviations relative to their absolute values, while the high 
Bond number data are deviating more from this trend, but 
still within 5% deviations up to Bond number 5. Here, the 
model predictions from this work are given as lines for two 
values of friction: black solid line for �p = 0.01 and black 
dashed line for �p = 1 . Both lines predict the corresponding 
dataset very well. The red line is slightly off due to a differ-
ent polydispersity in [35].

(a)

(b)

Fig. 8   a The scaled volume fraction, i.e. the repulsive stress term, 
gp = �∕(�

0
gIgc) as a function of the cohesive softness p∗(1 + Bo) 

and b zoom in to the simple shear data with different inter-particle 
friction coefficients and Bond numbers. Different symbols represent 
different particle friction, where small black diamonds represent local 
data from the split bottom shear cell (SB) for different Bond num-
bers using a wet cohesive capillary bridge force model (Fig. 3b) and 
�p = 0.01 , while all other are from the homogeneous stress con-
trolled simple shear box (SS). The red circles are the simple shear 
data using the normal visco-elastic contact model with no cohesive 
forces involved but varying shear rate and confining stress. The rest of 
the SS data are performed with different inter-particle friction coef-
ficients and Bond numbers using the aforementioned linear reversible 
adhesive contact model (Fig.  3a). The black solid and dashed lines 
are the predictions of our rheological model Eq. (14) fitted using SS 
data with �p = 0.01 and 1, respectively, while the red line is based on 
SB data with the same inter-particle friction as reported in [35]
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3.3 � The combined effect of inter‑particle friction 
and cohesion

As mentioned earlier, cohesion among particles can lead to 
either compression or dilation of steady granular flow rela-
tive to its non-cohesive limit. Which mechanism dominates 
depends on the interplay between inter-particle friction and 
cohesion. In order to investigate how cohesion works with 
friction, we choose the SS set-up and systematically vary 
both inter-particle friction and cohesion to check their com-
bined influences. For each inter-particle friction, we use the 
steady state volume fraction �(�p, I, p

∗,Bo = 0) as reference 
and subtract it from the steady state volume fraction of finite 

Bond numbers, defining the cohesive effect on the steady 
state volume fraction:

where �� positive indicates compression and negative indi-
cates dilation of the sample relative to the cohesionless case.

In Fig. 9a, we plot the dependence of �� on both inter-
particle friction and Bond number. Using all points with 
colors indicating relative compression and dilation, we fur-
ther interpolate �� , and obtain the phase diagram as shown 
in Fig. 9b. For weak friction and low to moderate cohe-
sion, Bo < 0.1 , volume fraction changes are inconspicuous 
( �� ≈ 0 ). For very high cohesion, compression is observed 
( 𝛥𝜙 > 0 ), while relative dilation is observed ( 𝛥𝜙 < 0 ) at 
intermediate Bond numbers and strong enough inter-particle 
friction. However, when the role of friction is almost negligi-
ble ( 𝜇p < 0.05 ), we observe a purely compressive effect with 

(17)�� = �(�p, I, p
∗,Bo) − �(�p, I, p

∗, 0)

(a)

(b)

Fig. 9   a The change of steady state volume fraction �� as shown in 
the color bar, plotted against Bond number Bo and inter-particle fric-
tion �p ; b continuous phase diagram created from data in a with red 
and blue indicating relative compression and dilation, respectively. 
The Inertial number I = 0.02 and Softness p∗ = 0.01 are kept con-
stant for all the simulations shown here

(a)

(b)

Fig. 10   The differences of the steady state volume fractions �� plot-
ted against a Bond number, Bo, for datasets with fixed inter-particle 
friction, �p , and b inter-particle friction, �p , for datasets with fixed 
Bond number, Bo, as shown in the legend. Lines are the predictions 
of our proposed model in Eq. (16)
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increasing Bo. This further confirms that sufficient inter-
particle friction leads to relative dilation of cohesive flow, 
where cohesion plays an important role in enhancing the 
dilation effect, but turning to compaction if large enough.

Although the phase diagram offers us a nice overview of 
the relative compression and dilation behaviour, we further 
study the data more quantitatively by fixing one parameter 
and looking at the influence of the second parameter. There-
fore, in Fig. 10a and b, we plot the volume fraction for con-
stant inter-particle friction and Bond number, respectively. 
When we fix the inter-particle friction and increase Bo, we 
observe negligible volume fraction change ( �� ≈ 0 ) up to 
Bo = 0.1 . If we increase the Bond number further, for low 
inter-particle friction ( �p = 0.01 ), we see a monotonically 
increasing trend, while for moderate to high inter-particle 
friction ( 𝜇p > 0.05 ), we get first a decrease then an increase, 
where the point of inflection depends on the inter-particle 
friction: higher inter-particle friction moves this point 
towards higher Bond number. This could be explained by the 
influence of friction: high inter-particle friction with moder-
ate cohesion leads to strong relative dilation, but one needs 
even stronger cohesion to compensate the dilation effect and 
turn the bulk back into compaction. The predictions of the 
rheological model are plotted as lines. Instead of using the 
coefficients from �p dependency fitting in "Appendix 2", 
here the model parameters (Tables 3 and 5) from the actual 
data fitting are used. For all the inter-particle frictions pre-
sented here, the predictions of the model are quite good up 
to Bond numbers around 1, then the model over-predicts the 
differences of the volume fractions, and the over-prediction 
increases with the inter-particle friction. Nevertheless, our 
model still predicts the volume fraction at steady state quite 
well, the highest deviation between the model prediction 
and the actual data point is around 4% of the actual volume 
fraction value measured from the simulation. Because we 
focus on a much smaller scale of the relative here (-0.06 to 
0.08), the differences between the line and the actual data 
points only appear large.

When we fix the Bond number and increase the inter-
particle friction as shown in Fig. 10b, we observe the turn-
ing point more clearly. If the cohesion between particles 
is very small ( Bo = 0.1 ), the volume fraction is not chang-
ing much with inter-particle friction (relative to the Bo = 0 
case). However, for stronger cohesion between particles 
( Bo = 0.1, 0.5 and 1), we see some relative compression 
(positive values) for low inter-particle friction, which turns 
into strong relative dilation (negative values) with increas-
ing inter-particle friction. Similarly, the predictions of the 
rheological model are also plotted here. As we pointed out 
earlier, for large Bond number, the prediction quality gets 
lower. Our model tends to over-predict the steady state vol-
ume fraction at higher Bond numbers, which results in larger 

�� . Note that here we focus on an even smaller variation of 
volume fraction ( −0.04 < 𝛥𝜙 < 0.01 ) and thus the devia-
tions are acceptable.

Although we have shown our data in the above men-
tioned two possible ways, it is still interesting to look fur-
ther into this inconspicuous volume fraction change (green) 
region in Fig. 9b and find out where the transition between 
relative compression and dilation happens. In Fig. 11, 
we narrow down this transition by applying a two-color 
map. Using the data shown in Fig. 11a, a sharp transition 
line between relative compression and dilation is recon-
structed and highlighted in Fig. 11b. In the parameter range 
( 0 ⩽ �p ⩽ 1 and 0 ⩽ Bo ⩽ 5 ), three regimes can be identi-
fied: i) pure relative compression for 𝜇p ≲ 0.027 ; ii) relative 
compression followed by relative dilation for increasing Bo 

(a)

(b)

Fig. 11   a The same data as in Fig. 9a plotted with a different color-
bar and b the phase diagram with a sharp red/blue-relative compres-
sion/dilation transition. The vertical lines are the boundaries between 
zones 1–2 and 2–3, at �p = 0.027 and 0.4, respectively



Steady state rheology of homogeneous and inhomogeneous cohesive granular materials﻿	

1 3

Page 15 of 20  14

and then relative compression again for 0.027 ≲ 𝜇p ≲ 0.40 ; 
iii) pure relative dilation for 𝜇p ≳ 0.40 (this value depends 
on the maximal Bo ≈ 5 chosen). In regime i), the friction 
effect is almost negligible such that cohesion dominates 
the flow behaviour leading only to relative compression. 
In regime ii), both friction and cohesion affect the flow 
behaviour: When cohesion is low, it has an almost negli-
gible relative compression effect. Increasing cohesion, the 
relative dilation due to friction is enhanced by cohesion. But 
when cohesion is strong ( Bo > 1 ), the relative compression 
effect dominates again. In regime iii), the flow shows almost 
only relative dilation, mostly contributed by friction, up to 
Bo ⩽ 5 . If cohesion is extremely strong, ( Bo > 5 ), we expect 
that relative compression contributed by cohesion domi-
nates the system again. However, this is beyond the scope 
of this study since our simulations are not homogeneous 
with such high cohesion.

4 � Conclusion and outlook

We have extended an existing rheological model that pre-
dicts the relation between volume fraction, Inertial number 
and Softness [52], including friction and cohesion depend-
encies. We have calibrated this extended model without/
with cohesion using two different simulation geometries: 
a homogeneous stress controlled simple shear box and an 
inhomogeneous split bottom shear cell. Furthermore, two 
geometries are featured with two different cohesive contact 
models (dry, reversible vs. wet, irreversible). We systemati-
cally varied the inter-particle friction and cohesion in the 
stress controlled simple shear box with shear rate and normal 
stress fixed. We report an interesting interplay between the 
inter-particle friction and cohesion, as represented in phase 
diagrams. This allows the prediction of compression-dila-
tion behaviour relative to non-cohesive reference systems 
in steady states.

Besides extending the rheological model towards cohe-
sive-frictional granular media, we had two main goals: (1) 
to understand the relation between microscopic properties 
such as inter-particle friction or/and cohesion and macro-
scopic, bulk properties such as volume fraction; (2) to check 
the validity of our rheological model in both systems i.e., 
to confirm if the homogeneous representative elementary 
volumes (REVs) represent the center of a shear band in an 
inhomogeneous system (and maybe even the data away from 
the center). For completeness, the rheological model for the 
macroscopic friction is given in "Appendix 1".

Furthermore, we introduce a reversible van der Waals 
type cohesive force in the simple shear box and an irre-
versible liquid bridge type cohesive force in the split 

bottom shear cell. Independent of the type of cohesive 
model, if the two systems are in same steady state, e.g., 
same Inertial number, Softness, friction and Bond num-
ber, the steady state volume fractions from the two geom-
etries agree well in the range of parameters studied. Our 
extended rheological model is thus applicable in different 
systems. The fact that different contact models can be uni-
fied by the Bond number indicates that the macroscopic 
rheological behaviour of the steady state volume fraction 
depends on cohesion intensity but not on the microscopic 
origin of cohesion between particles, whereas macroscopic 
friction dose, see Appendix 1.

Interestingly, when investigating the effects of cohesive 
models, we discovered that cohesion can either contribute 
to a decrease or an increase of the steady state volume 
fraction of sheared materials, relative to the non-cohesive 
reference case, enhancing or counter-acting the dilation 
effect of the inter-particle friction. Using the extended 
rheological model, we can successfully distinguish the two 
micro-mechanical mechanisms of cohesion: compression 
from the increase in the normal contact forces and relative 
dilation from enhancing both frictional forces as well as 
structural stability.

A phase diagram reveals how the combinations of these 
two particle parameters lead to sample compression or 
dilation in steady state shear, relative to a non-cohesive 
case. In addition, a sharp interface between compression 
and dilation on our phase diagram allows to categorize 
the explored parameter space into three regimes: i) pure 
relative compression for 𝜇p ≲ 0.027 ; ii) non-monotonic 
behaviour with Bo: relative compression followed by rela-
tive dilation for higher Bo and then relative compression 
again, for 0.027 ≲ 𝜇p ≲ 0.40 ; and iii) pure relative dilation 
for 𝜇p ≳ 0.40.

The present paper is an extension of former works [52, 
65] on rheological modeling, but with a deeper insight on 
the influence of friction and cohesion. It could be enriched 
by exploring more closely how the micro-structure [64] 
is influenced by the combination of inter-particle friction 
and cohesion or vice-versa. Furthermore, extending the 
rheological model towards the intermediate to low volume 
fraction regime, where most dense rheological models fail 
but kinetic theory works well, is still a great challenge 
[72]. This will involve the granular temperature results 
in at least one more relevant dimensionless number in the 
rheology. Moreover, comparing the stress controlled sys-
tem used here to a volume controlled system as in [72] is 
still ongoing research and will be addressed in the future.

Acknowledgements  Helpful discussions with A. Singh, D. Vescovi 
and M.P. van Schrojenstein-Lantman are gratefully acknowledged. This 
work was financially supported by the STW Project 12272 ’Hydro-
dynamic theory of wet particle systems: Modeling, simulation and 
validation based on microscopic and macroscopic description’ and the 



	 H. Shi et al.

1 3

14  Page 16 of 20

T-MAPPP project of the European-Union-funded Marie Curie Initial 
Training Network FP7 (ITN607453); see http://www.t-mappp​.eu/ for 
more information.

Compliance with ethical standards 

Conflict of Interest  The authors declare that they have no conflict of 
interest.

Open Access  This article is distributed under the terms of the Crea-
tive Commons Attribution 4.0 International License (http://creat​iveco​
mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided you give appropriate 
credit to the original author(s) and the source, provide a link to the 
Creative Commons license, and indicate if changes were made.

Appendix 1: Macroscopic friction coefficient

For a full constitutive law of steady state rheology, one also 
needs to take into account the shear resistance as quantified 
by the macroscopic friction coefficient, � = �∕�yy . This has 
been already developed in a previous work, in which the 
classical � − I rheology on hard spheres was generalized 
for soft, cohesive granular flows [52], involving both dry 
[64] and wet [52, 65] granular materials. The trends caused 
by different mechanisms are combined and shown to col-
lectively contribute to the rheology [52] as multiplicative 
functions given by:

where �(I) = �0fI(I) (see Table 6 or [52]) and all functions 
depend on one dimensionless number, while their coeffi-
cients depend on the particle friction coefficient, see Table 7.

The rheological function Eq. (1A) is slightly simpler than 
the general form in previous work [52], since we have taken 
out the contributions of fg and fq due to absence of free 
boundaries and too small Inertial numbers in the simple 
shear box. Remarkably, all the functions were (to leading 
order) linear in ratios of time scales and in particular, the 
macroscopic friction increases linearly to first order with 
the Bond number [52]. However, based on the dry, cohesive 
data (from SS) shown in the main text for � , we propose 
here a new modification for the Bond number contribution 
as fBo = 1 + �1Bo

�1 , where we claim that the increase of 

(1A)� ∶= �(�p, I, p
∗,Bo) = �(I)fp(p

∗)fBo(Bo)

macroscopic friction is ruled by a power law. The details 
of each contribution are given in Tables 6 and 7 and then 
explained next. Note that here we limit our fitting range as 
following: 𝜙 > 0.5 , 0.005 < I < 0.5 and p∗ < 0.1 . The only 
different range used here compared with � fitting is the lim-
its of the inertial number I, due to the granular temperature 
and its consequent creep effect, as described in detail in [52].

Non‑cohesive slightly frictional material

First we compare the data for non-cohesive slightly fric-
tional material using the above mentioned two shear cell 
setups and show the results in Fig. 12. We see an inverse 
trend of macroscopic friction compared to the trend of vol-
ume fraction in Fig. 4. The macroscopic friction increases 

Table 6   List of rheological correction functions on � for application 
in a continuum model, see Eq. (1A)

Dimensionless numbers Corrections

Inertial number (I) fI = 1 +
�∞∕�0−1

1+I�∕I

Softness ( p∗) fp = 1 − [(1 + Bo)p∗∕p�
∗]0.5

Bond number (Bo) fBo = 1 + �1Bo
�1

Bond number (Bo) in [52] fc = 1 + aBo

(a)

(b)

Fig. 12   The macroscopic friction coefficient, � , plotted against a 
inertial number, I, b softness, p∗ , using the stress controlled simple 
shear box and the split bottom shear cell from the same simulations 
as shown in Fig.  4. The lines are the predictions of Eq. (1A) fitted 
using SS data, with �

0
= 0.1645 , �

inf
= 0.3499 , I� = 0.0818 and 

p∗
�
= 0.4950

http://www.t-mappp.eu/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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with Inertial number but decreases with Softness. The 
lines are the prediction of Eq. (1A) with Bond number 
equal to zero. The prediction is accurate when the Iner-
tial number I is less than 0.5, but deviating for larger I. 
This can be explained by the considerable dilation of our 
constant stress shear box setup. When the system goes to 
very high Inertial numbers, the stress contribution from 
the kinetic part increases substantially and the granular 
bulk dilates in order to keep the stress constant; a much 
reduced bulk density is the consequence. Furthermore, we 
also compare the results between the two different setups: 
SS and SB, the center of shear band data of SB agrees very 
well with SS data, which confirms that the shear stress 
(macroscopic friction) responses are also the same when 
using the same material (same contact model) independent 
of the boundary conditions.

Cohesive materials

In Fig. 13, we plot the macroscopic friction, � , against Bond 
number, Bo, with the predictions of our proposed rheological 
model. For the sake of clearness, we only plot data of three 
inter-particle friction coefficients instead of all the data we 
have. With increase of cohesion, the macroscopic friction 
stays almost constant for Bo < 1 , but increases when the 
cohesion gets stronger. High attractive forces between par-
ticles lead to a more stable packing, thus higher resistance 
to shear. We have also included the predictions from both 
our modified rheological model and the model from previous 
work [52], shown as solid and dashed lines, respectively. The 
latter can only capture the behaviour at low Bond number 
( Bo < 1 ), while our modified model agrees very well with 
the SS data up to Bo < 5 . A possible reason that the previ-
ous linear model agrees well with the split bottom shear 
cell data is that they were fitting a data cloud, see Fig. 13c, 
which could introduce higher deviations. The data from 
simple shear box are cleaner and allow us to look at the 
influence of cohesion more closely, Fig. 13c nevertheless 
shows a significant qualitative difference between wet and 
dry cohesive models. All the model parameters are summa-
rized in Table 7, the difference in the coefficients (related to 
cohesion) from the two setups are due to different contact 
models.

If we look at all the friction data (not shown), we observe 
that the macroscopic friction increases first with inter-
particle friction coefficient, but then decreases slightly for 
𝜇p > 0.3 . This non-monotonic trend might be caused by 
the friction induced, cohesion enhanced micro-structural 
anisotropy. The shear stress also shows similar trends as 
the macroscopic friction, whereas the pressure is changing 
continuously.

The granular temperature time scale, tT is comparable 
to the shear time scale t𝛾̇ but slightly smaller, while they 

(a)

(b)

(c)

Fig. 13   a The macroscopic friction coefficient � as a function of 
Bond number Bo for inter-particle friction coefficients �p = 0, 0.01 
and 0.5 from SS data. The Inertial number I = 0.02 and Softness 
p∗ = 0.01 are kept constant for all the simulations shown here. Solid 
lines are the predictions of Eq. (1A) with fBo , while dashed lines are 
predictions using the linear form fc from [52]. b The same data as 
in a but relative to �

0
 and in logarithmic scale. c The comparison 

between SS and SB data for �p = 0.01 only
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are both much larger than the pressure time scale tp , which 
indicates that neither granular temperature nor shear are the 
dominating mechanisms for the friction trend, for the range 
of parameters studied here.

Appendix 2: The influence of inter‑particle 
friction on the coefficients in the rheological 
model of volume fraction

For completeness, one has to also look at the dependency 
of the inter-particle friction �p on the fitting coefficients 
obtained in our proposed rheological model as presented in 
Tables 3 and 5. The function used to describe this depend-
ency is:

where Q represents the coefficients obtained from the rheo-
logical model, Q0 and Q∞ represent the values of the coef-
ficient at zero and infinite �p , respectively. While �0

p
 refers 

to the typical inter-particle friction at which the change of 
coefficient starts saturating with the increase of �p.

For all the model coefficients, our proposed dependency 
laws fit well most of the data points with very small values 
of Root-Mean-Square (RMS) residuals, see the summarized 
details in Table 8. For the sake of brevity, we only plot here 
two coefficients out of seven due to the similar behaviour 
among all the coefficients. The results are shown in Fig. 14 
with the effects of �p on �0 and p1 in (a) and (b), respectively. 
In the case of �0 , it decreases with characteristic �0

p
 around 

0.28, then the decrease becomes weaker and saturates 
towards large �p . The characteristic �0

p
 for the changes of I� 

is smaller but larger for p∗
�
 . For the cohesive coefficient p1 , 

the decrease becomes weaker at �p around 0.29, and this 
saturation turning points are very similar for all the other 

(1B)Q = Q∞ + (Q0 − Q∞)e
(−�p∕�

0
p
)

Table 7   The fitting coefficients 
of the rheological model Eq. 
(1A) for macroscopic friction. 
The numbers from [52] have 
additional correction terms 
for small I, but ignored for our 
fitting here. �inf and I� are not 
independent from each other 
and thus can vary strongly 
dependent on the available 
range of data

All the coefficients are fitted using SS data with 𝜙 > 0.5 , 0.005 < I < 0.5 and p∗ < 0.1

�p �
0

�
inf

I� p∗
�

�
1

�
1

a (here) a (in [52])

0.00 (SS) 0.1432 0.3281 0.0645 0.4222 0.3136 1.6475 0.2820 [-]
0.01 (SS) 0.1645 0.3499 0.0818 0.4950 0.4490 1.5218 0.4280 [-]
0.01 (SB) 0.15 0.42 0.14 0.9 [-] [-] [-] 1.47
0.50 (SS) 0.3530 0.7148 0.7184 0.3905 0.2551 1.5125 0.2496 [-]

(a)

(b)

Fig. 14   The effect of inter-particle friction, �p , on a the fitting coef-
ficient of the dry cohesive model, �

0
 , in Eq. (13); b the fitting coef-

ficient from the cohesive model, p
1
 , in Eq. (15). The lines are the pre-

dictions of Eq. (1B) and details are explained in the main text and 
summarized in Table 8

Table 8   The summary of fitting coefficients in Eq. (1B)

Coefficients Q∞ Q
0 �0

p
RMS Residuals

�0 0.5854 0.6551 0.2756 0.00058
I� 5.4310 1.9604 0.1166 0.00002
p∗
�

0.2969 0.2714 0.5054 0.00002
p1 −0.1588 −0.0174 0.2952 0.00321
p2 0.0816 −0.0088 0.3159 0.00355
p3 −0.0204 0.0042 0.3355 0.00130
p4 0.0019 −0.0004 0.3489 0.00014
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cohesive coefficients p2, p3 and p4 (see Table 8). The values 
of Q∞ and Q0 show a very wide variation for I� , and rather 
small variation for �0 and p∗

�
 . The cohesive coefficients might 

be approximated all by Q0 = 0 and Q∞(pi) ≃ 0.16(−1)i∕i! , 
but our data quality is not good enough to support such a 
guessed series.
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