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Abstract. We show the differences in the stability properties of the Homogeneous
Cooling State (HCS) of a two-dimensional monodisperse collection of rigid and
near-elastic disks, obtained by using different formulae for the pair-correlation
function.
For an equation of state that takes into account the crystallization and ordering
of the particles (and the respective pressure drop), the critical wavelength of the
heat conduction mode is considerably modified in the transition zone, involving
a bifurcation and an additional mode of instability. The theoretical predictions,
using the improved equation of state, are confirmed by numerical simulations.
Nevertheless, some open questions remain.

1 Introduction

Structure formation in a granular gas has attracted much attention during the last decades (see
for example, Refs. [1–10]). Starting from a macroscopically homogeneous system, structures
evolve and a dilute granular gas coexists with denser, possibly much denser and even solid,
clusters – in non-equilibrium. However, the coexistence of a fluid-like granular gas with a solid-
like packing also occurs in many other systems, like during avalanche flow on inclined planes
or in vibrated containers, see Refs. [11, 12] and references therein.

In the absence of walls and external forces, the crucial phenomena in a freely cooling gran-
ular gas involve the fluctuations in density, velocity and temperature, which cause position-
dependent energy loss [2]. In denser areas, due to strong local dissipation, pressure and energy
decay rapidly and material moves from ‘hot’ to ‘cold’ regions, there leading to even stronger
dissipation and thus causing the density instability with ever growing (dense) clusters.

The freely cooling granular gas will be introduced first, as an example of a case where dilute
and dense granular media co-exist. Even though the need to treat walls is avoided by using
periodic boundary conditions, and the initial state is macroscopically homogeneous, resembling
a classical, elastic hard sphere gas, the system develops interesting dynamics and structure
formation – only due to the dissipative interactions of the particles, see Fig. 1 in section 2.
Hydrodynamic equations and constitutive relations are introduced in section 3 and a stability
analysis of these equations is presented in section 4. This has been done several times in the
literature (see for example Refs. [2, 3, 13, 14]), but always for a given (Enskog) pair correlation
function (at contact distance, g(ν; r = d)). Our contribution is to study the consequences of an
empirical pair correlation function on the instabilities of the HCS. Section 5 provides concluding
comments.
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2 From homogeneous to inhomogeneous cooling

When a homogeneous granular gas cools down due to collisional dissipation, one observes an
initial homogeneous cooling state. Previous studies have shown that granular cooling results in
the formation of structures: both mass and momentum density spontaneously become nonuni-
form. Four different regimes – kinetic, shearing, clustered, and collapsed – have been identified,
(see Ref. [4] and references therein). For the clustered regime (the one we are interested in
here), two stages with different energy dissipation behavior can be identified: a cluster growth
regime that follows the homogeneous state, and a final (inhomogeneous, non-equilibrium) state,
where the cluster size is comparable to the system size and the structures span the whole sys-
tem [2–4,6, 15–18].

Using the hard sphere model and event driven simulations, see e.g. Ref. [19], it is straightfor-
ward to simulate the time-evolution of a homogeneous granular gas with density (area fraction)

ν = 0.25, about N = 2000 particles of diameter d̂, mass m̂, and moderate dissipation with a
coefficient of restitution r = 0.9.

2.1 Collision Model

For two particles, p = 1, 2, at positions r1,2, conservation of momentum leads to a collision rule:

v′

1,2 = v1,2 ∓
1 + r

2

(

k̂ · (v1 − v2)
)

k̂ , (1)

where the prime indicates the velocities v after the collision, and k̂ = (r2 − r1)/|r2 − r1| is the
unit vector pointing along the line of centers, from particle 1 to particle 2.

At collision, the normal component, vn = k̂ · (v1 − v2), of the relative velocity, v1 − v2,
changes its sign and is reduced by a factor 1− r, with the coefficient of restitution r. Therefore,

the kinetic energy related to the normal component is reduced by the factor ǫ2 = 1−r2

2
≃ 1− r

for r ≈ 1. The elastic limit, r = 1, implies no dissipation (ǫ = 0), while r < 1 implies ǫ > 0.

τE = 2.3 τE = 2300 τE = 23000

Fig. 1. (Color online) Two dimensional ED simulation snapshots at different dimensionless times τE,
for a periodic system with N = 2037 particles, volume fraction ν = 0.25, and a coefficient of restitution
r = 0.9. The color indicates if the particle is part of a cluster defined by distance, relative velocity, and
angle of movement, as explained in the main text.

2.2 Free Cooling Granular Gas

Three snapshots at different (dimensionless) times, τE = t̂/t̂E(0), with (dimensional) time t̂
and initial collision rate t̂−1

E (0), as defined in Eq. (7), are displayed in Fig. 1. Different colors
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(turquoise/light-gray for single particles) correspond to particles forming different “clusters”.
Clusters are defined as particles that are closer than 0.1d and their relative angle of movement,
given by arccos (v1 · v2/(|v1||v2|)), is smaller than 30◦. This definition is similar to the one used
in Ref. [20], but differs from previous work [6,17], however, the analysis of these differences goes
beyond the scope of this paper.

3 Hydrodynamics

Consider a monodisperse system of particles of fixed mass whose collisions conserve momentum.
The conservation of total mass and momentum is the (standard) basis for the macroscopic
balance equations presented below. While mass and momentum are conserved, energy can be
dissipated.

The constitutive relations needed to close the balance equations can be obtained on the
basis of certain models and assumptions [3,21,22], part of which are presented below. In this
section, dimensional quantities are indicated by a hat.

3.1 Mass balance

Assume that N particles with total mass, M̂ =
∑

p∈V m̂, reside in a certain representative

volume element (RVE), with volume V̂ . The continuity equation for the density (ρ̂ = M̂/V̂ )
reads:

Dρ̂

Dt̂
+ ρ̂

∂ûi

∂x̂i
= 0 , (2)

with the average streaming velocity components, ûi = (1/M̂)
∑

p∈V m̂v̂p
i , the particle mass, m̂,

and the particle velocity components, v̂p
i . The substantial derivative (or material derivative) is

defined as: D
Dt̂

= ∂
∂t̂

+ ûi
∂

∂x̂i
, and the sum over equal indices is implied.

3.2 Momentum balance

Momentum-conservation allows the momentum density ρ̂ûi to change with time, not only
due to a (momentum carrying) flux, ρ̂ûiûk, in or out of the RVE, but also due to inhomo-
geneous/directed forces (like during collisions) exerted from the outside on its interior, leading
to:

ρ̂
Dûi

Dt̂
= −∂σ̂ij

∂x̂j
, (3)

with the stress tensor components σ̂ij on the right hand side. The stress can be split into an
isotropic and a deviatoric part, σ̂ij = p̂I 1ij +σ̂D

ij , with (isotropic) pressure, p̂I ,where 1ij denotes
the unit tensor.

For a Newtonian fluid, the deviatoric stress is proportional to the rate of shear strain (sym-
metric, trace-free velocity gradient):

σ̂D
ij = −2µ̂

(

1

2

[

∂ûi

∂x̂j
+

∂ûj

∂x̂i

]

− 1

D
∂ûk

∂x̂k
1ij

)

, (4)

with the shear viscosity µ̂. Note that the isotropic pressure, p̂I = p̂ + p̂ζ, also contains viscous
terms, proportional to volume changes (divergence of the velocity field ∂ûk/∂x̂k), which are
explicitly subtracted in Eq. (4), for D = 2, 3 dimensions. The isotropic, strain rate dependent

stress, p̂ζ = −ζ̂ ∂ûk

∂x̂k
, contains the bulk viscosity, ζ̂. The pressure will be assumed to be dominated

by its rate independent part, unless otherwise mentioned.
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3.3 Energy balance

Energy-balance involves the kinetic energy density, ρ̂û2/2, due to the streaming velocity, ûi,
and û2 = ûiûi. In addition, there is also a fluctuating energy density, related to the fluctuating
velocity v̂T and to the “granular temperature”,

T̂g =
2Êkin

DN
=

1

DN

∑

p∈V

m̂p (v̂p
i − ûi)

2
=

m̂v̂2
T

D ,

i.e., twice the fluctuating kinetic energy per particle per degree of freedom, where the sum runs
over all N particles in the averaging volume V . Note that in the following, we use T̂ = T̂g/m̂ =
v̂2

T /2 . The energy-density balance then reads:

ρ̂
D

Dt̂
T̂ = −σ̂ik

∂ûi

∂x̂k
− ∂q̂k

∂x̂k
− γ̂T̂ , (5)

with the energy density dissipation rate, −γ̂T̂ . The right hand side of Eq. (5) contains also the
rate of shear-heating, and the divergence of the heat-flux. The latter contains the classical term
proportional to the temperature gradient with the thermal conductivity, κ̂, and a second, non-
classical term, proportional to the density gradient with the corresponding transport coefficient

λ̂ [7, 21], so that:

q̂k = −κ̂
∂T̂

∂x̂k
− λ̂

∂ρ̂

∂x̂k
.

Below we neglect the “non-classical” term since it is proportional to 1 − r2 and we specialize
to near-elastic systems. The validity of this assumption has to be studied in future works.

3.4 The (“classical”) transport coefficients

The equation of state (for the pressure), expressions for the shear and bulk viscosities and the
heat conductivity, as well as the expression for the dissipation rate of the energy density, are
collectively referred to as “expressions for the transport coefficients”, for the sake of brevity.
They are, a priori, not constant but dependent on the hydrodynamic fields and, possibly, also
on their gradients or other terms, which are not considered and discussed here.

3.4.1 Transport coefficients in 2D

In 2D, for a single species, in the elastic limit, r → 1, in lowest order in powers of 1 − r2 and
the gradients, the transport coefficients can be expressed in various forms, see Ref. [22] for a
detailed review.

All transport coefficients are proportional to ρ̂ = ρ̂pν, to powers of v̂T , and to powers of the
product s = s∗/ν = (νg(ν))−1, i.e., proportional to the non-dimensional mean free path, which
depends on the pair-correlation function g(ν) . If one divides the transport coefficients by the

combination ρ̂t̂−1
E that is common to all (see Luding’s notation [22]), only powers of d̂, v̂T and

s remain as variables:

p̂ = ρ̂ t̂−1
E v̂T

d̂

2
√

2γ̃
(s + 2) ,

µ̂ = ρ̂ t̂−1
E

d̂2

4γ̃2

(

s2 + 2s +

(

1 +
8

π

))

,

ζ̂ = ρ̂ t̂−1
E

d̂2

4
,
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κ̂ = ρ̂ t̂−1
E

d̂2

γ̃2

(

s2 + 3s +

(

9

4
+

4

π

))

,

γ̂T̂ = ρ̂ t̂−1
E ǫ2

v̂2
T

2
, (6)

with γ̃ = 4/
√

π, and hiding the proportionality

ρ̂t̂−1
E =

√
2γ̃

ρ̂v̂T

d̂s
∝ νv̂T

s
(7)

with the collision rate t̂−1
E = 2γ̃

√

T̂ /(d̂s). These equations have been obtained from a Chapman-
Enskog expansion applied to the Enskog-Boltzmann equation in Ref. [23] and are frequently
cited, e.g. in Refs. [10, 24–26].

In order to compare our results with the ones shown in Ref. [3], we normalize and non-

dimensionalize the hydrodynamic equations. Lengths are scaled with particle diameter d̂, masses

by particles mass m̂, and velocities with the initial thermal velocity
√

T̂0 = v̂T (0)/
√

2. The hat
that denotes the dimensional nature of the variable will be dropped after non-dimensionalization,
as for example:

ûi = T̂
1/2
0 ui , T̂ = T̂0T , x̂ = d̂x , t̂ = d̂T̂

−1/2
0 t .

Consequently, the transport coefficients, in McNamara’s notation [3], are defined as:

p̂ = p̃(ν)

[

ρ̂pd̂
T̂

ŝ

]

,

µ̂ = µ̃(ν)ν−1

[

ρ̂pd̂2 T̂ 1/2

ŝ

]

,

ζ̂ = ζ̃ν

[

ρ̂pd̂2 T̂ 1/2

ŝ

]

,

κ̂ = κ̃(ν)ν−1

[

ρ̂pd̂2 T̂ 1/2

ŝ

]

,

γ̂T̂ = 2ǫ2γ̃ν

[

ρ̂p T̂ 3/2

ŝ

]

,

with ŝ ≡ sd̂. The positive non-dimensional functions p̃(ν), µ̃(ν), ζ̃, κ̃(ν), and γ̃ are of order
O(1) for any value of ν. Their explicit form, as used in the next section, is given by:

p̃(ν) = s∗ + 2ν ,

µ̃(ν) =

√
π

8
(s∗ + ν)2 +

ν2

√
π

,

ζ̃ =
2√
π

,

κ̃(ν) =

√
π

2

(

s∗ +
3ν

2

)2

+
2ν2

√
π

,

γ̃ =
4√
π

.

Note that the last term in the heat conductivity is different by a factor 2ν2 from McNamara [3],
what we think is due to a typo in his paper, however, this term has a small effect only.
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3.4.2 Pair-correlation functions

Note that the pair correlation function g(ν) has not been specified as yet. In this paper we will
consider, as a working example, the differences between four of them: the classical (Enskog)
function proposed by Henderson [27]:

g2(ν) =
1 − 7ν/16

(1 − ν)2
,

the one proposed by Grossman et al. in Ref. [28],

gpm(ν) = 1/(νm − ν) ,

where νm = π/(2
√

3) is the closest packing fraction in 2D, and the high density limit of the
previous one

gfv(ν) = gpm + (2ν)−1 ,

which is evidently wrong at low densities [22, 29], and finally gQ(ν), an empirical mix between
g2 and gfv, which takes into account the disorder-order phase transition at ν = 0.7, for which
the explicit definition can be found in Ref. [22].

These functions are plotted in Fig. 2 to illustrate the differences. When compared with the
non dimensional pressure obtained from ED simulations [29], the classical formula does not have
the correct behavior for high densities. In the range ν > 0.75, the high density limit formula
gfv behaves well, while gpm behaves qualitatively well for all densities. The empirical gQ(ν)
performs quantitatively correct at all densities, including the disorder-order phase transition
at νc ≃ 0.699. In the inset of Fig. 2 we plot P = 2νg(ν), i.e., the non-dimensional collisional
pressure. As can be seen from the data, when zooming in closer [29], the slope for 2νgQ(ν) is
always positive, whereas g(ν) has a negative slope in the transition zone.

0.0 0.2 0.4 0.6 0.8
0

2

4
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Ν

gH
Ν
L

0.0 0.2 0.4 0.6 0.8
0
2
4
6
8

10
12

P

Fig. 2. (Color online) Pair-correlation function at contact. The solid blue line corresponds to g2, the
magenta dot-dashed line to gfv, the green dotted line to gpm and the red dashed line to gQ. The slope of
the gQ curve around νc is strongly determined by the numerical coefficients, the width of the transition
between low and high densities is mc = 0.0111, and the critical density is νc = 0.699, as in Ref. [22].
In the inset, the non-dimensional collisional pressure, P = 2νg(ν) is plotted against ν.

In the rest of the paper, we will assume that Eqs. 2), (3), and (5) are complete and sufficient
to describe arbitrary flow conditions and rheology. This ansatz implies, that the flow behavior
of very dense, realistic granular matter can be already rather well described, in most cases,
by using the constitutive relations in Eqs. (6) with an improved version of the pair-correlation
function g(ν). In the following we will study how this works in the case of the stability analysis
of the homogeneous cooling state.
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4 Stability Analysis

The homogeneous reference solution for a freely cooling gas is found taking all the spatial deriva-
tives in the hydrodynamic equations equal to zero, leaving just equation (5), non-dimensionalized
as described above (and dropping density that occurs on both sides):

dT

dt
= −2γ̃ǫ2

s0

T 3/2 . (8)

The solution is known as Haff’s law [1], and can be written (following the notation of Ref. [3]):

T (t) =
1

(ǫ2γ̃t/s0 + 1)2
, (9)

with the other fields remaining homogeneous and constant:

ν = ν0 , u := ux = 0 , v := uy = 0 .

The homogeneous-state variables and coefficients are designated by a subscript “0” (ν0, p0 ≡
p(ν0), s0 ≡ s(ν0), etc.), and the derivatives with respect to density (evaluated at ν0) are denoted
as, e.g., pν0

≡ dp/dν|ν0
.

4.1 Collision rate

Starting from the initial configuration with homogeneous ν0 and T0, the system dissipates
energy at a rate that also depends on the energy of the system. As the energy of the system is
dissipated, the relative velocities of the particles become smaller. The dynamics becomes slower,
and with this, less energy is dissipated in each collision. The natural time unit of the system is
thus the number of collisions per particle, given by the integral of the non-dimensional collision

frequency f(t) := T (t)1/2 = t−1
E (t) d̂s/(2γ̃T̂

1/2
0 ) :

τ ≡ 1

s0

∫ t

0

f(t′)dt′ =
1

ǫ2γ̃
log

(

1 +
ǫ2γ̃t

s0

)

= − log(f(t))

ǫ2γ̃
. (10)

4.2 Linear equations

In the following, we study the linear stability of the system in its new time variable, τ , since
then the equations can be written in the form dZ′/dτ = F (Z′), with the vector of perturbed
fields Z′. If we would keep the physical time as our variable, the equation for the temperature
would be explicitly time-dependent.

In order to linearize the hydrodynamic equations about the homogeneous but time-dependent
solution (9), the fields are split into their homogeneous and their perturbation parts:

ν = ν0(1 + ν′) ,

u = fu′ ,

v = fv′ ,

T = f2(1 + T ′) ,

where ν is the volume fraction, u(v) the bulk velocity in x(y) direction, and the primes indicate
the perturbations. The primed quantities define Z′, and the factor f is introduced for later
convenience.

The final goal of this section is to examine the linear stability of small perturbations of
the form exp (ik · x). Using Squire’s theorem, that is, projecting the 2D problem into one
dimension, we will consider perturbations only along the x direction so that the derivatives in
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the y direction vanish. Taking the perturbations up to first order gives four coupled equations,
by inserting the fields into Eqs. (2), (3) and (5):

ν′

t = −fu′

x , (11)

ν0(fu′)t = −p′x + (µ0 + ζ0)fu′

xx , (12)

ν0(fv′)t = µ0v
′

xx , (13)

ν0(f
2T ′)t = −p0fu′

x + κ0f
2T ′

xx − γ0f
2T ′ − γ′f2 − 2ν0fftν

′ , (14)

where the explicit expressions for the non-dimensional transport coefficients in the homogeneous
state, p0, µ0, ζ0, γ0, and their perturbed values p′ and γ′ can be found in Ref. [3]

Changing to the new time variable τ , using the identities f = exp (−ǫ2γ̃τ), dτ/dt = f/s0,
and scaling lengths by density as X = ν0x and thus wave numbers as K = ν−1

0 k, gives [3]:

ν′

τ = −s∗0u
′

X , (15)

u′

τ = −p̃0(T
′

X − s′X) − p̃ν0
ν0ν

′

X + (µ̃0 + ν2
0 ζ̃)u′

XX + ǫ2γ̃u′ , (16)

v′τ = µ̃0v
′

XX + ǫ2γ̃v′ , (17)

T ′

τ = −p̃0u
′

X + κ̃0T
′

XX + 2ǫ2γ̃s′ − ǫ2γ̃T ′ . (18)

Because the coefficients do not explicitly depend on time, we can perform the stability
analysis for any choice of the pair correlation function g(ν), as long as it does not explicitly
depends on temperature.

4.3 Shear instability

The equation for the transverse velocity perturbation, v′, that is the shear mode, is decoupled
from the others. Assuming v′ = v̌ exp(στ+iKX), with σ the grow rate and the checked quantity,
v̌, a constant, Eq. (17) reads:

σ = −µ̃0K
2 + ǫ2γ̃ ,

indicating growing shear instabilities for perturbations with wave numbers K < Kshear
c ≡

ǫ(γ̃/µ̃0)
1/2.

In Fig. 3 we present the critical shear mode wave numbers (solid blue lines) as functions
of the density for the four pair-correlation functions. Just the gfv solution behaves differently
(and incorrectly) for low densities, while the other three functions yield similar results since
the dependence of µ̃0 on the pair-correlation function goes as g(ν)−2. In order to quantify the
difference between the classical value and the one obtained with the modified pair correlation
function, we plot the shear mode onset criterion normalized by the classical prediction (in Fig.
4 left). As expected, the only differences between g2 and gQ occur for ν > 0.65, nevertheless,
they are very small (∼ 2%). In the case of gpm, for low densities it predicts an up to 10% bigger
critical wavelength than g2 (since gpm(ν ∼ 0) > g2(ν ∼ 0)), while for intermediate densities
it predicts an up to 5% smaller one. For high densities the prediction of gpm, gfv and gQ are
practically identical.

4.4 Heat and sound instabilities

Now, we must resolve three remaining coupled equations with five variables, which will give us

the dispersion relation σ = σ(K). Since s = s(ν) one has s′ =
ν2

0

s∗

0

(

ds
dν

)

|ν0
ν′, with this, and

using the same plane wave ansatz as before, the equations read:

σν̌ = −s∗0iKǔ ,

σǔ = −p̃0(iKŤ − iKš) − iKp̃ν0
ν0ν̌ − K2(µ̃0 + ν2

0 ζ̃)ǔ + ǫ2γ̃ǔ ,

σŤ = −iKp̃0ǔ − K2κ̃0Ť + 2ǫ2γ̃š − ǫ2γ̃Ť .
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Fig. 3. (Color online) The critical wave numbers Kshear
c (solid-blue) and Kheat

c (dotted-green), together
with the other stability criteria (see [3]): b > 0 (dashed-red) and ab − c > 0 (dash-dotted-magenta).
In the upper left figure we used g2, in the upper right gfv, in the bottom left we used gpm, and in the
bottom right gQ.

From Eq. (15) we have ν̌ = − iKs∗

0

σ ǔ. Substituting the values of ν̌ and š, and defining

a∗ ≡ −ν2
0

(

ds
dν

)

|ν0
, we can write š = iKa∗ǔ/σ, the dispersion relation is found to be:

σ

(

σ + K2p̃0σa∗ + p̃ν0
ν0K

2 s∗0
σ

+ K2(µ̃0 + ν2
0 ζ̃) − ǫ2γ̃

)

(

σ + κ̃0K
2 + ǫ2γ̃

)

+

K2p̃2
0σ − 2ǫ2γ̃a∗K2p0 = 0 . (19)

This equation can be written in the form σ3 + aσ2 + bσ + c = 0. It can be shown [3] that
if any of a, b, c or ab − c are negative, then there exists a σ with a positive real part, i.e.,
there exists an unstable mode. In Eq. (19), a is always positive, but b, c and ab− c can become
negative, indicating a growing instability.

The above criteria, together with the critical wavelength Kshear
c are shown in Fig. 3 for

different pair-correlation functions and a fixed coefficient of restitution r = 0.9. Qualitatively
g2, gpm and gQ have the same shape. Since gfv is incorrect for low densities (and will not be
further analyzed), the predictions are not valid and it even adds a new mechanism of instability
for densities below ν ∼ 0.4. Since gpm(ν ∼ 0) 6= g2(ν ∼ 0), their critical wavelengths differ
somewhat (10%) for low densities.

Like for the shear mode, the predictions for the heat mode associated to g2 and gQ are
almost equal for low and moderate densities, differing around the critical density νc ≈ 0.7 and
above. In the transition region, the theory based on gQ predicts a critical wavelength that is
about 40% smaller than the classical value, and a new unstable mode appears.

In Fig. 5, we show the dispersion relation of the unstable modes, i.e. the positive roots of
Eq. (19), for g2 and gQ as a function of the scaled wave number K = ν−1

0 k. The density is
increasing from the top- to the bottom-line, and the coefficient of restitution is again r = 0.9.
The dispersion relation for gpm (away from ν = 0.7) is qualitatively similar to the one predicted
by gQ and therefore is not shown.
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Fig. 4. (Color online) The critical wave numbers Kshear
c (left) and Kheat

c (right) for the four different
pair-correlation functions normalized by the prediction given by the classical pair-correlation function
g2, and a fixed coefficient of restitution r = 0.9. The solid blue line indicates identity and corresponds
to g2, the magenta dot-dashed line corresponds to gfv, the green dotted line corresponds to gpm and
the red dashed line corresponds to gQ. For the shear mode the variations are of the order of 10% while
for the heat mode the variations can be as big as 40% in the case of gQ (note the different scale in the
vertical axis for both plots).
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Fig. 5. (Color online) The dispersion relation for different ν increasing from ν = ∆ν = 0.075 up
to ν = 0.9 in steps of ∆ν. In the upper left figure we used g2, in the right gQ, with a coefficient of
restitution r = 0.9.

For ν ≥ 0.75 the critical wave number Kc (where the lines cross the horizontal axis) changes
behavior when gQ is used, i.e., the critical wave number is smaller (relative to the one predicted
by g2) at densities 0.675 ≤ ν ≤ 0.85. Also, the shape of the dispersion relation is different. For
the highest density, ν = 0.9, the critical Kc is increased due to excluded volume effects, relative
to the classical case with g2.

For densities around ν = 0.7 a new mode appears for gQ. As seen in Fig. 6, for ν = 0.7
and r = 0.9, the dispersion relation has two positive roots that merge around K = 0.115.
To illustrate the differences between the two new modes and the classical one, we plot the
eigenmodes for K = 0.1 in Fig. 7. The classical mode (Fig. 7 left) has σ = 0.158 and is a
temperature mode with small amplitude for velocity and density, which are shifted by ±π/2
respectively, from the temperature. The first new mode (Fig. 7 center) has σ1 = 0.135, and is
mainly a temperature mode, with small amplitude for velocity and a yet smaller amplitude for
density, which are in phase and shifted by −π/2 from the temperature. This mode is analogous
to the classical mode (Fig. 7 left) but the velocity is shifted by −π/2. The second new mode
(Fig. 7 right) has σ2 = 0.020 and the three fields have comparable amplitudes. The temperature
is again the biggest mode, followed by the density and then the velocity. The phase shift is the
same as in the previous mode, that is, velocity and density are shifted by −π/2 from the
temperature.
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Fig. 6. (Color online) (Left) Dispersion relation for ν = 0.7 and r = 0.9 for different pair-correlation
functions. The magenta solid line is the one obtained by using gQ, while the classical one is the dotted
blue line. The onset of the instability is shifted to smaller K when using gQ. The bifurcation starts
at Kb ≃ 0.115 and the new mode appears. (Right) The non-dimensional temperature as a function of
the non-dimensional time, for L = 20 magenta dashed line, L = 30 red dotted line, and L = 100 green
dot-dashed line.
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Fig. 7. (Color online) The unstable modes for ν = 0.7, r = 0.9, K = 0.1 using g2 and gQ. In the left
panel, the modes for the classical pair-correlation function, in the middle panel the σ1 mode (the fast
one), and in the right panel the σ2 mode (the slow one) for gQ are shown. The solid blue line is the
density, ν, the dotted green line is the temperature, T , and the dot-dashed magenta line is the velocity
in the x direction, u.

4.5 Numerical Simulations

To test the predictions of the theory, numerical simulations were carried out for three systems

with density ν = 0.7 and r = 0.9, for different sizes L = L̂/d̂ = 20, 30 and 100. The minimal

wave numbers are Km = 2πνd̂/λ̂c ≃ 0.20, 0.14 and 0.04, respectively (see Fig. 6), where λ̂c is
the dimensional wavelength of the marginally stable wave, i.e., the smallest size of the system
above which the instability is expected.

The system is thermalized in a way similar to [2]: starting from a square lattice with uniform
random velocities, the system evolves during at least 100 collisions per particle with r = 1, so
that a Maxwellian velocity distribution is reached. A small (δu ∼ 0.1vT ) sinusoidal perturbation
of the velocity (in x direction) is added to the initial state of the system and its evolution with
r = 0.9 is studied. The temperature evolution for the three systems is presented in Fig. 6
(right). After initial agreement, the systems deviate from Haff’s law (solid line), the largest
system first, the smallest last, as expected from the dispersion relation (see Fig. 6 left).

The dependence of Haff’s law on the pair-correlation function is through s0. In Fig. 6 we
have used gQ, which fits the data better than g2. The ratio between the two pair-correlation
functions for this density, qg = g2(0.7)/gQ(0.7) is equal to the inverse of the ratio of the s0,
that is sg2

0 /s
gQ

0 = 0.84 = 1/qg.
To quantify the role of the clustering instability, we measure the power spectra for the density

fluctuations and the horizontal velocity, on the x axis, averaged over the y direction in bins of
size d. In Fig. 8 we present the power spectra at three different times τ ≃ 0.001, 5 and 1000 for
the L = 100 system, for two different initial conditions, one perturbed as described above and
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the original thermal configuration. The power spectra are normalized so that the relative power
of each mode is displayed. This way we can perform comparisons between different times, for
which the amplitude of the velocity fluctuations is decreasing. The only system that displays
a clear peak for low wave numbers, for both density and velocity fluctuations, is the one with
L = 100. The system with L = 30 presents a qualitatively similar behavior but slower, and the
peaks are not as marked as for L = 100. The L = 20 system does not present a peak, showing
that the clustering mode is not present and the deviation from Haff’s law in this system is due
to the shear mode instability.

In order to visualize the emergence of the clustering mode, a space-time diagram of the
density fluctuations of the three systems is presented in Fig 9. The system with L = 20 does
not develop a sinusoidal profile, at least for the time scales studied here. In contrast, for L = 30,
it is possible to identify a sinusoidal perturbation at τ ∼ 104, while the system with L = 100
presents a clear sinusoidal behavior already for τ ∼ 102, and later develops fluctuations with a
larger wave number at τ ∼ 104.

The evolution of the smallest K, the one where the perturbation in the velocity is added, is
presented in Fig. 10. The sinusoidal density mode that can be appreciated in Fig. 9, is reflected
here in the growth of the relative power. For the system with L = 30, a growth is observed
at τ ∼ 102 − 104, while for L = 100 the growth occurs earlier at τ ∼ 0.1 − 102. The smallest
system does not present a clear growth of the field perturbation in the time scale studied.

To illustrate the change in density in real space, four snapshots of the perturbed system
with L = 100 are shown in Fig. 11. The first two snapshots from the left correspond to the
same τ used in the right two plots of Fig. 8; the snapshot corresponding to τ = 0.001 is not
shown due to its similarity with the one at τ = 5. The color code represents the kinetic energy
of each particle normalized by the average temperature at that instant. The system develops
density fluctuations (clustering) that grow with time, to finally arrive to a sheared regime with
two shear bands, visible in the right panel of Fig. 11.
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Fig. 8. (Color online) (Upper panel) Normalized power spectra of the density for three different times.
The dotted magenta line corresponds to the perturbed system, and the dashed green line to the non-
perturbed system. (Bottom panel) Normalized power spectra of the velocity in the x direction, u, for
the same three times as above. The red dotted line corresponds to the perturbed system, and the dashed
blue line to the non-perturbed system. The contribution of the initial perturbation can be clearly seen
in the first graph with the peak at K ≃ 0.04.
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Fig. 9. (Color online) Space-time diagrams of the density fluctuations for the three perturbed systems,
from left to right L = 20, 30 and 100. The color code shows in red the fluctuations above the average
density, while in blue the fluctuations under the average density.
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Fig. 10. (Color online) Time evolution for the first component of the normalized power spectra,
Φ = log (P (Km)), in the three perturbed systems: from left to right L = 20, 30 and 100. The magenta
dotted line corresponds to the velocity, the dashed blue line to the temperature, and the solid green
line to the density.
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Fig. 11. (Color online) Four snapshots for the perturbed system with L = 100 for times τ ≃

5, 1000, 10000 and 300000. The particles are color coded depending on their relative kinetic energy
normalized by the average. Red particles have more kinetic energy than the average, and blue particles
have less.

5 Conclusions

In this paper different constitutive models for the pair correlation function at contact have been
used to predict the onset of instability in a freely cooling 2D granular gas. First, the classical
g2 proposed by Henderson [27], second the gpm by Grossman et al. [28], third the high density
limit of the latter, gfv [29], and finally, the gQ proposed by Luding in Refs. [22, 29].

Only the latter takes into account the disorder-order phase transition and the corresponding
drop in the pressure around and above the critical density. This is also the one that results in
the best fit with the data from ED simulations for mono-disperse disks.

While for low density the results do not depend on the choice of either g2 or gQ, the expected
difference for the critical wave numbers at ν > 0.75 is rather small. The main result of this study
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is that around the crystallization density (ν ≃ 0.7), the instability of the sound mode – that
may precede the clustering instability – is delayed, and a new mechanism of instability appears.
The growth rate of the new mechanism is one order of magnitude slower than the classical heat
mode. Even though we present theory and simulations for moderate dissipation, the theoretical
predictions of this study are strictly valid for smaller dissipation only. Whether it is justified to
neglect the density gradient contribution to heat flux has to be studied elsewhere.

For a given dissipation and density ν = 0.7, using gQ, theory predicts that in order to become
instable under clustering, the system size must be approximately 40% bigger than previously
predicted by using g2. We have found that for ν = 0.7 the best fit for Haff’s cooling law is given
by gQ, and that a system with L = 20 is stable to clustering, in contrast to the theory using g2.
These are clear differences and should be checked by more systematically examining the onset
of the clustering instability at these densities, by using hard sphere simulations. The present
results support the use of a modified pair-correlation function even though open questions
remain.

Furthermore, we observe that the inclusion of modified constitutive models does not change
the mechanism of the instability for small dissipation: the shear and the heat conduction
modes are the principally unstable modes. Nevertheless, in the critical region, for different
pair-correlation functions, the heat conduction mode is affected, while the shear mode is al-
most unchanged (< 10%). The use of the empirical pair-correlation function gQ predicts the
appearance of a new mode in a small region around ν = 0.7. With the simulations realized here
we were not able to excite this mode. Currently, we are studying different ways to accomplish
this and find out to what extent the predictions of gQ are valid.
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