
An Event-Driven Algorithm for Fractal Cluster

Formation

S. González, A. R. Thornton, S. Luding

Multi Scale Mechanichs, TS, CTW, UTwente

P.O.Box 217, 7500 AE Enschede, Netherlands

Abstract

A new cluster based event-driven algorithm is developed to simulate the

formation of clusters in a two dimensional gas: particles move freely until

they collide and “stick” together irreversibly. These clusters aggregate into

bigger structures in an isotropic way, forming fractal structures whose fractal

dimension depends on the initial density of the system.

Keywords: fractals, event-driven, granular matter, simulation

1. Introduction

Cluster formation is an important subject in various areas of physics. In

astronomy, ice clusters are believed to aggregate into planetesimals [1], the

base of what we know as planets today. In granular materials, our area of

research, tiny nano-Newton forces are responsible for macroscopic clusters in

free falling jets [2] – similar to the ones that appear in nano jets from plasma

physics [3]. Clusters are also found in granular avalanches [4], or air-driven

granular beds [5].

Motivated by nanoaerosols [6], a cluster based event-driven algorithm is

developed to simulate the formation of clusters in a 2D gas with periodic

Preprint submitted to Computer Physics Communications June 20, 2010

boundary conditions: particles move freely until they collide and “stick” to-

gether irreversibly, moving as one cluster. The dynamics of the clusters is

utterly simplified in our model, conserving linear momentum and disregard-

ing angular momentum in the system. These clusters evolve and aggregate

into bigger structures. The fractal dimension obtained with this algorithm is

found in the range 1.5 < df < 2. In contrast to the case of diffusion-limited

aggregation (DLA), where df = 1.71 is found [7], we keep track of the dy-

namics of the clusters instead of adding particles one by one. This procedure

is similar to the one occupied in Ref. [8], where the coalescence of particles

is studied.

Implementing clusters in an event-driven algorithm has two advantages:

On the one hand, defining clusters of particles avoids the need to predict

the events between particles of the same cluster. Since particles in a cluster

move together as a rigid solid, they cannot collide. This alone decreases

the computational effort required in simulating the clusters, where most of

the collisions of the system occur [9]. On the other hand, the concept of

clusters appears in a wide range of particulate physics: granular structures

develop long correlations in space and time, see e.g. Ref. [5] where is found

that particles move in one-dimensional paths (“strings”) that aggregate into

clusters.

In the next section we explain the algorithm that we use and how it is

related to the classical event-driven model. After that, the experiments that

we realized are presented. Concluding remarks and plans for future work end

the paper.

2

2. Algorithm

By event-driven we mean that the state of the system is evolved in time

from one event to another, predicting the time for the next (future) event

after a present event has taken place. For the details of the algorithm we

refer the reader to standard books, see e.g. Ref. [10]. For the moment, it is

enough to say that the algorithm consists of:

1. Given the instantaneous positions and velocities for all the particles in

the system.

2. Predict the time of the next collision.

3. Update the velocities of the particles that collide with a given collision

rule.

4. Advance the time of the system to that instant, update the positions

and velocities, and repeat from 1.

The event-driven algorithm presented here comes in the line of previous

work. When the static phase in dense granular systems is simulated with

a different dynamics, the performance of the simulation is improved [11].

This is a necessary step towards a multiple-scale event-driven simulation for

granular matter, where each cluster can have its own dynamics and collision

rules.

The kind of clusters we are interested in at the moment, are suspensions of

nanoparticles in a gas, which stick together at contact due to Van der Waals

forces (as e.g. Ref. [12]). In reality, clusters of particles conserve angular

momentum when they collide, which results in rotating clusters. For the sake

of the simplicity, and since –at the moment– we are mainly interested in the

3

algorithm rather than in recovering the right physics, we will disregard the

rotational motion of the clusters and will consider only translational motion.

In normal event-driven algorithms one has to predict the next event –

a collision – between all two-particle pairs. In this version, we introduce a

new object called cluster (which may consist of just one particle), and only

collisions between these objects have to be computed. Since a cluster consists

of a finite number of particles, the position of a particle within a cluster is

given by

~rcluster(t) = ~r0 + ~vclustert,

where ~vcluster is the linear velocity of the cluster. The time is measured since

its last collision, so r0 is the center of mass of the cluster at that instant.

Now that we have defined the evolution of particles within a cluster,

collisions between particles in different clusters can be detected. This is a

massive time saving as collision between particles within the same cluster do

not have to be checked for, and as the size of the clusters increases the number

of checks decreases. Once the collision of two clusters has been detected the

colliding particles “stick” together and the two cluster are combined into

a single larger one. The velocity of the newly formed cluster is calculated

by considering the conservation of linear momentum only. This process is

repeated until the system only consists of a single cluster.

In order to find the time of collision between two particles i, j we need to

find the first positive root of

|~ri(t) − ~rj(t)|
2 = d2,

with d the diameter of a particle. Classical event-driven model just need to

deal with a quadratic equation, both in the case with or without gravity. If we

4

consider static particles in coexistence with normal particles under gravity,

the equations to be solved are quartic or cubic [11].

The inclusion of rotating clusters in the simulation makes the equation

to find the collision time highly nonlinear. In general, this means to find the

intersection of two finite volume helices in 3D. This is why we will consider

a toy model where just linear momentum is conserved, making the equation

to solve easier.

Summarizing, the simulation procedure can be described as follows:

1. Start with an initial configuration of particles.

2. Find the time for the next collision in the system.

3. Advance the system to that instant and merge the two particles (clus-

ters) into a single cluster. The post-collisional velocity of the new

cluster is such that linear momentum is conserved.

4. Predict the new events for this cluster (only).

5. Repeat until all the energy is dissipated and a single cluster is present

in the simulation.

Three snapshots of a simulation are shown in Fig. 1. At the beginning of

the simulation (a), particles are arranged in a square lattice with random

velocities. The color code represents different clusters in the simulation. In

this case, every particle correspond to a cluster of size one. At a later time,

clusters of different size coexist in the simulation (b) and aggregate as soon

as they are in contact. Finally, the system contains only two clusters (c)

that will collide in the next event of the simulation, ending the aggregation

process.

5

A note on the speed of the algorithm must be added. The classical

event-driven simulation is fast compared to soft-particle molecular dynamics.

Among other reasons, because the collision time between two particles can

be found analytically. Solving non-linear equations will make the algorithm

more time consuming. This drawback can be compensated with a multi-

core implementation of the algorithm. In this case, the calculation of the

collision time between one given particle and its neighbors can be done in

parallel. This approach is not viable in classical event-driven simulations due

to the big data transfer overhead associated and the relatively small amount

of computation that is needed. In the classical case, the collision time is

given by solving a quadratic equation. For the rotational case, a non-linear

equation must be solved, making a more expensive computation. Parallel im-

plementations of classical event-driven simulations have been done, but with

suboptimal speedup, see [13, 14]. We are currently working on this issue.

0 100
0

100

a

0 100
0

100

b

0 100
0

100

c

Figure 1: Three snapshots for the evolution of a system of N = 400 particles in a box of

size L = 100d, a packing fraction of ν ≃ 0.125. Each color represents a different cluster.

Time increases from left to right.

6

3. Experiments

The simulation consists of a system of N particles in a 2D square box of

size L with periodic boundary conditions. Particles are monodisperse with

radius d/2 and mass m. The packing fraction of the system is given by

ν = Nπd2/(4L2). In order to start with a random configuration, we let the

system equilibrate: starting from a square lattice, each particle collides at

least 10 times elastically until a homogeneous regime is reached. The initial

average speed is 0.36v. This velocity will set the time scale of the system.

Once thermalized, the clustering algorithm is switched on, and the sim-

ulation runs until one big cluster is formed and all the energy of the system

is dissipated (the simulations are run in the center of mass reference frame).

3.1. Temporal Evolution

The temporal evolution of the mean cluster size is shown in Fig. 2.

The system reaches the final stage after approximately log(N) collisions,

which happens around a time t ∼ 107[d/v]. With this example we can

appreciate the advantage of making an event-driven simulation: since the

system advances through events, the computational cost does not scale with

the physical time of the system, but just with the number of collisions. Since

the energy is dissipated in the system, the collision rate decreases, increasing

the physical time between events [15]. If done with molecular dynamics, the

computational cost would be enormous due to the usually fixed integration

time step.

The scaling behavior of the energy was also studied. We found that for

the most dilute system, the mean kinetic energy per particle follows a power

7

law 〈EK〉 ∝ t−δ with δ = 1.26. This results is similar to the one from Ref.

[8], where a scaling of δ = 1.12 was found.

1000 10 4 10 5 10 6 10 7

10

100

1000

10 4

10 5

10 6

t @d�vD

<
S

C
>

Figure 2: Mean cluster size 〈SC〉 as a function of time for a system with N = 106 and

ν = 0.0078. The dotted line shows a slope of 1 and best fits in the middle part of the

simulation.

3.2. Fractal dimension

With the final configuration from the simulation, we count the number of

particles present in a circle of radius r around ten randomly chosen particles

of the cluster. We do this to obtain the number distribution, which exponent

is the dimension of the system. We confirmed that the fractal dimension was

independent of the points selected by choosing the points in the inner third

or in the outer third of the fractal: booth measurements lead to the same

results.

The results for a system with N = 106 and ν = 0.0078 are shown in Fig.

3 where points are the experimental data, and the line is the power law fit.

Due to the finite size effects, to fit the data we disregard the last two points.

The slope of the best fit is given by df = 1.56 ± 0.01.

8

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ æ

1 10 100 1000 10 4
1

10

100

1000

10 4

10 5

10 6

r @dD
N

Figure 3: Number of particles in a circular given region as a function of the radius for a

system with N = 106 particles and ν = 0.0078. The line indicates a slope of 1.56.

3.3. Role of density

The fractal dimension we obtain is dependent on the density of the sys-

tem. For example, if we start with a very dense system, there is no arrange-

ment possible and the final state will practically coincide with the initial

state. Due to this, an integer dimension of df = 2 is expected for dense

systems. On the other hand, we expect an asymptotic fractal dimension for

vanishing density.

To measure the effect of the density, we vary the size of the system for a

given number of particles N = 106. The system sizes chosen are in the range

1000d ≤ L ≤ 10000d, corresponding to densities between 0.0078 ≤ ν ≤ 0.78.

Figure 4 shows the fractal dimension obtained as a function of the den-

sity of the system. As expected, for high densities the fractal dimension

approaches 2, namely for df(0.78) = 1.97 ± 0.01, that is, the cluster resem-

bles a two dimensional solid. On the other hand, for vanishing densities it

is found that df(ν) → 1.5 for ν → 0. This fractal dimension is smaller than

the one found, for example, for the diffusion-limited aggregation process [7],

9

where the fractal dimension is dDLA = 1.71.

æ
æ

æ

æ

æ

0.01 0.02 0.05 0.10 0.20 0.50 1.00
1.5

1.6

1.7

1.8

1.9

Ν

d
f

Figure 4: Fractal dimension as a function of packing fraction for systems with N = 106

particles, together with the DLA fractal dimension (thick solid line). The dots are the

simulation results while the solid line is just a guide to the eye. The error bars here are

smaller than the symbols.

4. Conclusions

In this paper we have presented event-driven simulations of irreversible

aggregating clusters in a 2D system. These clusters have non-physical dy-

namics but represent a toy model that permits us to understand how to make

cluster simulations in an event-driven algorithm. The formation of fractals

was studied, and the exponent found depends on the initial density of the

system. Depending on the density, the resulting fractal structure has a di-

mension in the range 1.5 < df < 2. The denser the system, the closer to a

two dimensional structure the fractal is. The inclusion of more realistic dy-

namics and collision rules for the clusters is currently investigated. This will

allow us to use a multicore implementation of the event-driven algorithm, as

the subject of a future paper.

10

References

[1] C. Dominik, A. Kilns, ApJ, 480, 647 (1997).

[2] J. R. Royer, D. J. Evans, L. Oyarte, Q. Guo, E. Kapit, M. E. Möbius,

S. R. Waitukaitis, H. M. Jaeger, Nature 459, 1110-1113 (2009).

[3] M. Moseler, U. Landman, Science 289 (5482), 1165 (2000).

[4] D. Bonamy, F. Daviaud, L. Laurent, M. Bonetti, J. P. Bouchaud, Phys.

Rev. Lett. 89, 034301 (2002).

[5] Keys, A. S., Abate, A. R., Glotzer, S. C. & Durian, D. J. Nature Phys.

3, 260264 (2007).

[6] A. Schmidt-Ott, Appl. Phys. Lett. 52, 954 (1988).

[7] T. A. Witten, L. M. Sander, Phys. Rev. B 27, 56865697 (1983).

[8] E. Trizac, J. P.Hansen, Phys. Rev. Lett. 74, 4114 (1995).

[9] S. Miller and S. Luding, Phys. Rev. E 69(3), 031305 (2004).

[10] T. Pöschel and T. Schwager, Computational Granular Dynamics: Mod-

els and Algorithms, Springer (Berlin 2005).

[11] S. González, D. Risso, R. Soto, Eur. Phys. J. Special Topics 179 33-41

(2009).

[12] J.H. Werth, H. Knudsen, H. Hinrichsen, D.E. Wolf, Phys. Rev. E 73,

021402 (2006).

[13] S. Miller, S. Luding, J. Comp. Phys. 193(1), 306-316 (2004).

11

[14] M. Maŕın, Comp. Phys. Comm., 102, Issues 1-3, 81-96 (1997).

[15] S. Luding, H. J. Herrmann, Chaos 9(3), 673-681 (1999).

12

