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We present experiments along with molecular dynamics (MD) simulations of a two-dimensional
(2D) granular material in a Couette cell undergoing slow shearing. The grains are disks confined
between an inner, rotating wheel and a fixed outer ring. The simulation results are compared to
experimental studies and quantitative agreement is found. Tracking the positions and orientations
of individual particles allows us to obtain density distributions, velocity and particle rotation rates
for the system. The key issue of this paper is to show the extent to which quantitative agreement
between an experiment and MD simulations is possible. Besides many differences in model-details
and the experiment, the qualitative features are nicely reproduced. We discuss the quantitative
agreement/disagreement, give possible reasons, and outline further research perspectives.

I. INTRODUCTION

The pioneering work of Reynolds in 1885 [1] and the
more elaborate investigations by Bagnold [2] were among
the first experiments to closely address the problem of
granular shearing. Recently the subject of granular
shearing has regained much interest in the physics com-
munity due to the appearance of this process in common
granular flows such as convection [3], pipe and chute flow
[4, 5], avalanches [6, 7], crack formation, and earthquakes
8]

In the traditional picture for shearing of a dense gran-
ular material, grains are assumed to be relatively hard so
that they maintain their volume and shape under applied
forces. If shear is applied to a granular sample, in prin-
ciple, the grains will respond elastically (i.e. reversibly)
up to the point of failure. The response in the elastic
regime is still an open question which is not addressed
here [9-11] because we focus on the regime of extended
deformation. Under shear, the grains will dilate against a
normal load, up to the point of failure. Under continued
shearing the system appears to approach a steady state,
that is typically characterized by localized failure in nar-
row regions known as shear bands. An extremely slow
compaction/rearrangement can also occur under steady
shearing [12]. However, this effect will be disregarded
in the following. Here we are more concerned with the
kinematics of the particles in the “quasi steady state”.

Recent experiments on granular shearing have primar-
ily focused on the force properties of the system [12-17].
Only a few experiments have explored the kinematics of
shear zones, and these involved using either inclined or
vertical chutes [4, 5, 18] or vibrated beds [19] where air
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flow between the particles may also have been impor-
tant. In a single case of which we are aware, Buggisch
and Loffelmann [20] investigated the mixing mechanisms
due to shearing in a 2D annular cell similar to the one
described here. This experiment involved flexible bound-
aries, in contrast to the fixed volume used in our work.

The simulations presented in this study are perhaps
unique in that they 1) match with considerable fidelity
the parameters in a set of experiments, and 2) the sim-
ulations and experiments yield detailed properties which
can be mutually compared. Thus, the goals of this work
include the deepening of insight into an important gran-
ular system, and the opportunity to explore how well a
class of models captures experimental observations. The
relevance of this latter issue is underscored by a recent
study in which diverse groups modeling flow in a hopper,
obtained an equally diverse set of predictions, many of
which did not match experiment [21-23].

In our experiment, a 2D Couette cell filled with photoe-
lastic polymer disks is used to study both the mean and
statistical properties of the flow. Using particle track-
ing techniques, the spin and transport velocity profiles
as well as the associated density variations during steady
state shearing can be measured. Because the particles
are photoelastic, it is also possible to infer information
on the local stress state of the system, a topic which is
considered elsewhere [11].

The following are the key observations from these stud-
ies: A short time after the beginning of shearing, a shear
zone forms near the inner wall. The location of the shear
band close to the inner wall can be attributed to the
fact that the shear stress is highest there (decaying pro-
portional to (r — R)~2), as was observed from previous
simulations [24, 25] and as is consistent with the static
equilibrium conditions of continuum theory in cylindri-
cal coordinates. The characteristic width of the induced
shear band is found to be a few particle diameters, al-
most independent of the average packing fraction. The
mean azimuthal velocity decreases roughly exponentially



with distance from the inner shearing wheel, and within
the statistical fluctuations, there is shear rate invariance.
The mean particle spin oscillates around zero as the dis-
tance, r — R from the wheel increases, but falls rapidly to
zero away from the shearing surface. The distributions
for the tangential velocity and the particle spin show a
complex shape particularly for the grain layer nearest to
the shearing surface, indicating a complicated dynamics,
where velocity distributions near the inner wheel are very
wide and non-Gaussian.

A. Simulations

There are a variety of numerical studies involving
shearing. Some of these focus on on stress-strain rela-
tions [24-33], and others deal with shear banding in spe-
cific geometries [24, 25, 32-38]. In the present study,
we present MD simulations [39] and investigate the kine-
matic properties of a model system which was structured
so that its realization is as close as possible to the phys-
ical system discussed here, a goal partially achieved al-
ready in [14, 40]. We used the simplest linear spring-
dashpot model for the normal force [40, 41], and the typ-
ical Cundall and Strack [42] tangential spring model in
our slightly different implementation [43] and with ad-
ditional damping in tangential direction. Note that the
details of the models did not affect the qualitative results.
And the effect on the quantitative agreement between ex-
periment and simulation was very weak for the situations
and variations of the force model examined. A detailed
discussion of this issue is far from the scope of this pa-
per. Even a normal force model based on a fit to the
experimental data did not lead to an increase in quality
of agreement between experiment and simulation in the
test we performed, so that we prefer to stick to the sim-
plest standard interaction model for the particle contacts
here.

The value of the normal stiffness was adjusted to the
stiffness of a weakly compressed pair of disks of the ex-
perimental material, see table I. The normal viscosity
was chosen such that the collision is dissipative, but not
overdamped. The tangential values were adjusted such
that particle collisions lead to results that are consistent
with experimental measurements reported in the litera-
ture [44].

B. Overview of the paper

The rest of this paper is constructed as follows. The
experimental set-up is reviewed in section II. The simi-
larities and differences between the simulations and the
physical system are discussed in section III. The ini-
tial conditions and the steady state are examined in sec-
tion IV, and the results concerning velocity- and spin-
distributions are presented in section V for different den-
sities.

FIG. 1: (i) schematic top view of the experimental setup. (ii)
schematic drawing of the disks close to the shearing wheel. (a)
experimental realization of the walls. (b) realization of the
walls in the simulation.

II. EXPERIMENTAL SETUP AND
PROCEDURE

In this section we give enough details so that the reader
can appreciate key aspects of the experiments and how
the experiments relate to the simulations. The experi-
mental setup and results are discussed in more detail in
Refs. [14-16]. The apparatus, as sketched in Fig. 1, con-
sists of (A) an inner shearing wheel (with radius R =
10.32cm), and (B) an outer, stationary ring with radius
R, = 25.24cm confined by (C) planetary gears. In the
experiments, a bimodal distribution of disks (D) is used,
with about 400 larger disks of diameter 0.899 cm, and
about 2500 smaller disks of diameter 0.742 cm. An inho-
mogeneous distribution is useful, since it limits the for-
mation of hexagonally ordered regions over large scales,
even though there might still be some short range order
[45]. We use the diameter, d = dgpa, of the smaller disks
as a characteristic length scale throughout this study.

The experimental walls are fixed, corresponding to a
constant volume boundary condition. All particles are in-
serted into the system and the shear is applied via the
inner wall for several rotations, before averages in the
nominally steady state are taken. If not explicitly men-
tioned, averages in the simulations are performed after
about three rotations starting at ¢ = 180s, and extend-
ing over three rotations, until ¢t = 360s.

The mean packing fraction 7 (fractional area occupied
by disks) is varied over the range 0.797 < 7 < 0.837 in
the simulations. (The numbers of disks are taken from
the reported experiments[51]). As we vary 7 we main-
tain the ratio of small to large grains fixed, modulo small
variations due to the fact that particle numbers can only
be adjusted by integer jumps. Note that the effect of the
wall particles for the calculation of the global packing
fraction is very small. For computing the packing frac-
tion in the simulations, only half the volume of the small
particles glued to the side walls is counted, so that these
boundary particles always contribute Dy, = 0.0047 to
p. Taking or leaving a small or large particle leads to a
density change of 0.00026 or 0.00038, respectively. The
densities (area fractions) given have three digit accuracy
in order to allow a distinction between runs differing by



only a few particles. However, the error in the experi-
mental density values is much larger (at least £0.02) due
to the following facts:

(i) the disks are not perfect in shape and diameter since
they are cut out of a 6mm sheet of the material,

(ii) the disks can tilt out of the horizontal thus enhancing
the effective density,

(iii) the disks are soft and thus compressible so that shape
change may play some role, and

(iv) the boundaries of the system are not perfect. Thus
all density data have, for practical and experimental pur-
poses, an absolute uncertainty of at least 0.02.

An important question is how the system response de-
pends on the shearing rate, which is set by , the ro-
tation rate of the inner wheel. A variation of 2 over
0.0029s7! < Q < 0.0957! in the experiments shows
rate independence in the kinematic quantities, except for
some small, apparently non-systematic variations with
Q. A few simulations with 0.01s7! < Q < 1.0s7!
showed clear rate independence for the slower shearing
rates ) < 0.1s71, although the situation is less clear at
the higher end of these rates.

III. SIMULATION METHOD AND SIMILARITY
TO THE EXPERIMENT

Details of the simulations have been presented else-
where [32], and we will not repeat these. However, we
note that the model is a soft-particle MD model. As
noted, the parameters used in the model were chosen to
match the experiments as reasonably as possible. Specif-
ically, the radii, static friction coefficient and density of
the particles, and the size of the container match the ex-
perimental values. The boundary conditions are chosen
to mimic those in the experiment, see Sec. II. However,
the “teeth” used on the inner and outer ring of the ex-
periment are replaced by small disks with diameter dya1,
see Fig. 1. The properties of the particles and the param-
eters for the (linear) force laws [32, 46] are summarized
in Table I.

| | Values

7.42 mm, 0.275 g
8.99 mm, 0.490 g

| Property

Diameter dsmai, Mass Mgmal
Diameter diarge, Mass miarge

Wall-particle diameter dyan, |2.50 mm
System/disk-height A 6 mm
Normal spring constant k, 352.1 N/m
Normal viscous coefficient 7, |/0.19 kg/s

Tangential viscous damping 7:|/0.15 kg/s
Coulomb friction coefficient p ||0.44
2x107°
1060 kgm™*

Bottom friction coefficient us

Material density po

TABLE I: Microscopic material parameters of the model.

Global Volume |Number of Particles|Flow Behavior

Fraction 7 small large
0.797 2462 404
0.799 2469 405 sub-critical
0.802 2476 406 _
0.804 2483 407
0.806 2490 408
0.808 2498 409
0.808 2511 400
0.810 2520 399
0.812 2511 410 shear flow
0.813 2524 404
0.815 2518 412
0.815 2545 394
0.817 2525 414 -
0.818 2538 407 _
0.819 2555 399
0.826 2553 417
0.828 2560 418 blocked
0.837 2588 422

TABLE II: Details of the simulation runs provided in this
study. The global volume fraction o is derived based on the
radii given in Table I. The horizontal lines in the last column
mark the transition between the sub-critical (the blocked)
range of density with the shear flow regime.

As in the experiment, several packing fractions of the
shear-cell are investigated in the simulations (see Ta-
ble II). For too low density, in the sub-critical regime,
the particles are pushed away from the inner wall and
lose contact, so that shearing stops. For too high densi-
ties, dilation and thus shear are hindered and the system
becomes blocked, i.e. the inner particles slip on the in-
ner wall and no shearband develops. The intermediate
regime 0.802 < 7 < 0.817 is of major interest in this
study [52]. Note that the range of densities that allow
for the steady state shear flow is extremely narrow. How-
ever, we remark that the transition points between the
three regimes quantitatively agree between experiments
and simulations.

Still, there remain some nominally modest differences
between the experiment and the simulation, which may
lead to differences between results for the two realiza-
tions. The main differences are:

e The numerical code used here only accounts for
a very weak friction with the bottom plate, pre-
sumably smaller than reality and thus allowing less
damping of the particles. In addition, the reduced
friction in the experiment is achieved by powder on
the bottom plate and this may lead to somewhat
inhomogeneous friction between the substrate and
particles.



e Related to the bottom friction is a possible small
tilt of the real particles out of plane of observa-
tion, connected to increased tangential and fric-
tional forces due to increased, artificial, normal
forces.

e The particle-wall (and also the particle-particle)
contacts are modeled by simple linear force laws
and thus, possibly, do not reproduce reality to the
extent desired. More complicated non-linear or
hysteretic or plastic models [28-31, 47-49] are far
from the scope of this study.

e In the original experiment there existed a small
bump on the inner wheel (a deviation from the ring-
shape, which in the end leads to a slightly larger
effective radius of the inner wall. A larger radius
has the strongest effect in the case of low volume
fractions, where the particles are easily moved away
from the inner wheel.

e There is also a difference between the way the ini-
tial state is prepared for the experiments and the
simulations. The starting state in the experiments
is a nearly uniform density at the mean packing
fraction, 7. The initial state of the simulation is an
initially dilated state, which is then compressed.
This preparation method is described below.

These factors apply for all the comparisons between the
simulation and experimental data to follow. While there
are differences in various details, many qualitative and
quantitative results are in agreement for the experiment
and simulation.

IV. INITIAL CONDITIONS AND STEADY
STATE

In this section, we explore the initial evolution of the
system to a nominally stationary state, characterized by
a dilated region near the shearing wheel, with large fluc-
tuations in local density and velocity. Before collecting
the data in the experiment, the inner wheel ran typically
for 60 min at the highest shearing rate, corresponding to
at least 20 rotations of the inner wheel. In the simula-
tions, however, the preparation had to be limited in order
to reduce the comparatively long computation time. The
simulations are prepared for about three rotation periods,
because a few runs with preparation times of up to ten
periods of rotation did not show further relaxation effects.
However, the much longer times of tens to hundreds of
periods as used in the experiment was not reached, so
that long time relaxation effects cannot be ruled out for
the simulations presented here.
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FIG. 2: Evolution of the packing fraction v for different times
versus radial distance (r — R)/d from the wheel in units of
disk diameters. The upper panel shows experimental data,
the lower one simulation results.

A. Preparation Procedure

As noted, the preparation procedure of the simulations
is a dilute state. Specifically, the system starts with an
extended outer ring Rprepare > Ro = 25.24cm. While
the outer ring is expanded, the inner ring starts to rotate
(counterclockwise) with constant angular velocity Q =
0.1s71. The radius of the outer ring is then reduced
within about two seconds to reach its desired value R,.
Afterwards, the outer ring is kept fixed and the inner
ring continues to rotate until at ¢ = ¢y, the simulation
ends. Due to the constant volume in the experiment, the
disks are inserted one by one until the desired number
and density are reached. This difference, which can be
seen in Fig. 2, affects the initial density, but should not
influence results for the steady state.

B. Time-evolution of density profiles

The procedures for establishing a steady state were
necessary because an initial, homogeneous density be-
comes radially non-uniform as a consequence of shear-
induced dilatancy, for both experiment and simulation.
Starting from a fairly uniform random packing (dashed



lines in Fig. 2, for # = 0.812), a dilated region forms close
to the sheared inner wheel. There are minimal changes
in the density after about 5 rotations of the inner wheel.
Given a CPU-time of 1-2 days per rotation, we did not
extend simulations over more than ten rotations, so that
the true long-time behavior may not be captured here.
Particle rearrangements have been observed over much
longer relaxation times experimentally [16].

When making comparisions between the model and
the experiment, it is important to keep in mind the
following differences in obtaining local density data:

e Fill-up procedure (Section IV A). The dashed line
from the simulations in Fig. 2 is obtained after a few
seconds of compression and shear, so that a transient
state between the initial and the steady state of the shear
band is visible. The experimental data are obtained
from the static initial state, starting from before the
onset of the shear band.

o Averaging Procedures. The simulation data are
averaged over full rings around the symmetry center
of the shear-cell, whereas in the experimental system
only radial slices that correspond to one quarter of
the entire apparatus were observed. Even though
averages were computed over an extended time interval,
a systematic error due to this procedure cannot be ruled
out. Because of possible circumferential fluctuations
associated with this averaging process, the area under
the experimental curves is not necessarily constant, nor
necessarily identical to the global density.

e Experimental density determination. In the experi-
ment the local density is measured via optical intensity
methods, where there is some uncertainty due to light
scattering and non-linear transmission.

Due to these possible systematic differences between
the local densities obtained from experiment and from
simulation, we take the freedom to adjust the local den-
sity data, as described below, when making comparisions
between simulations and experiments.

C. Density difference between experiment and
simulation

As noted above, the method used to measure the lo-
cal packing fraction in the experiment involves a cali-
bration with some uncertainty, in addition to the fact
that the real particles are not perfect disks as assumed
in the simulation. Specifically, data are obtained by using
the fact that UV light is strongly attenuated on passing
through the photoelastic disks. This technique is cali-
brated against packings with well known area fractions,
such as square and hexagonal lattices. There are still
some small systematic uncertainties in this procedure,
and if one computes the packing fraction using the data

given in the upper part of Figure 2, a packing fraction
higher than the global one is found. For that reason,
in Fig. 3, we shift the experimental local density data
downward by a constant value of vghiry = 0.074. When
applying this shift to the local density data of indepen-
dent experimental runs the desired global packing frac-
tion is achieved with an error of Av = 0.002. The typical
dispersion of the measures of v we estimate to be +0.02.

V. CHANGING THE PACKING FRACTION

In this section, the dependence of the local density, the
forces, and the kinematics of the system are examined as
a function of 7, the mean packing fraction. Using this
global density 7 as a parameter has led to the discovery
of a novel transition as the system approaches a critical
packing fraction, 7, [15]. In the experiment, we found
7. ~ 0.800 versus 7, ~ 0.802 in the simulations.

The reason for this 7-dependence is easy to understand
by imagining what would happen if 7 were very low. In
this case, grains would easily be pushed away from the
wheel, and after some rearrangements they would remain
at rest without further contact with the moving wall. In-
creasing 7 by adding more and more grains would lead
to the critical mean density, 7., such that there would al-
ways be at least some grains subject to compressive and
shear forces from the boundaries. By adding more grains,
the system would strengthen, more force chains would
occur, and grains would be dragged more frequently by
the shearing wheel. If even more particles were added,
the system would become very stiff and eventually would
become blocked, i.e. so dense that hardly any shearing
can take place. In the extreme limit, due to large com-
pressive forces and deformations, permanent plastic de-
formations might occur and brittle materials even might
fracture. However, due to the large deformations possi-
ble with polymeric material used in the experiment and
due to the relatively weak forces applied, none of these
effects is evidenced.

A. Density

We first consider the local density profiles. In Fig. 3, we
show v vs. (r — R)/d for several 7 values for both exper-
iment and simulation. The data show good quantitative
agreement within the fluctuations between experiment
and simulation (after the systematic shift-correction ex-
plained above in subsection IV C). There is a clear differ-
ence in density between the dynamic, dilute shear zone
and the static outer area. From the density data, we infer
a width of the shear zone of about 5-6 particle diameters
— from both experiment and simulation.
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FIG. 3: Volume fraction v, plotted against the dimensionless
distance from the origin (r — R)/d, for different initial global
densities 7 (not shifted). The open symbols give simulation
data with 7 as given in the inset. The solid symbols show
experimental data v — vgnifs, With venis = 0.074.

B. Velocity and spin profiles

In this subsection, we focus on the change in the veloc-
ity and spin profiles with changing 7. In Fig. 4, we show
data for the velocity profiles for different 7 from both
the experiment and the simulation. The profiles for the
normalized velocity, vg/(2R), show a roughly ezponen-
tial decay, although there is some clear curvature in the
experimental data at the outer edge of the shear zone,
where the saturation level is reached. This saturation
level of fluctuations in the velocity is at a higher level in
the simulations, possibly due to the systematically larger
shear rate in simulations used to save CPU-time, or due
to the model for bottom friction. However, the logarith-
mic scaling over-amplifies this very small difference.

In the experiment, the amplitude of the exponential
term (the velocity of the particles close to the inner wall,
vg) decays steadily to zero as ¥ decreases towards 7.
The simulation data show a weaker decay of the veloc-
ity at the inner wall with decreasing density. The fact
that vo/(2R) < 1 indicates that as v — v,, either slip
or intermittent shear takes place at the inner wall. Only
values of vg/(2R) = 1 would correspond to perfect shear
in the sense that the particles are moving with the wall
without slip. For high densities, the agreement between
experiments and simulations is reasonable, but for low
densities, the magnitude of the velocities differs strongly.
This may be due to either the differences in bottom-
or wall-friction, or due to more irregular and differently
shaped walls in the experiments, causing more intermit-
tency and thus reduced mean velocities.

The experimental and the simulated profiles for the
scaled particle spin, Sd/(2D), evolve in a similar man-
ner with 7. Oscillations from negative to positive and
back to negative spins are obtained, indicating at least
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FIG. 4: Velocity and spin profiles for selected packing frac-
tions 7. The solid and open symbols denote experimental and
simulational data, respectively.

partial rolling of the layers adjacent to the inner wall [50].
The mean spins are a little higher for all the simulations
than in the experiment, possibly due to differences in
the bottom friction or due to differences in the shearing
surfaces.

The agreement in the velocity profiles is at least
promising, given that the bottom friction may be wrong
by a substantial amount. Especially for higher densities,
there is good quantitative agreement. Indeed, it is for
this case that the bottom friction and wall effects are ex-
pected to be least important, since in this regime, the
particle-particle interaction forces are at their strongest,
and intermittent behavior is relatively unlikely.

C. Velocity Distributions

From the previous section, we infer that changing the
packing fraction affects not only the profiles, but also
the distributions of the velocity. In Fig. 5, we show the
velocity distributions in a one-particle wide radial bin
next to the inner wheel for various 7-values from the
experiment and the simulation.

The data clearly show that the peaks near the origin,
corresponding to non-rotating particles at rest, become
weaker with increasing density. Furthermore, the regions
with negative spin and nonzero vy grow with increasing .
The fact that increasing 7 leads to a decreasing number
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of stationary particles is not surprising. But the forma-
tion of the second peak in the velocity distribution at
vg/(QR) ~ 0.5 is not as intuitive as the small peak at
unity.

A key to understanding this phenomenon is contained
in the two-variable distribution P(ve/(2R),Sd/(2D)),
as shown in Fig. 6 for high (right) and low (left) den-
sity 7. The upper data are from simulations and the
lower data are from experiments. The probability is

coded in grayscale with dark denoting higher probabil-
ities. This figure indicates two distinct features, corre-
sponding to two qualitatively different processes. The
first feature is the concentration of probability around
(0,0), which corresponds to a state where the disks are
essentially at rest, without spin or translation. The other
feature is a concentration of probability around the line
vg/(QR) = 1 + Sd/(Q2D), which corresponds to non-
slip motion of grains relative to the wheel. No-slip here
means, that the particles execute a combination of back-
wards rolling and translation, such that the wheel surface
and the disk surface remain in continuous contact. Thus,
the peak at vg/(2R) = 0, which is strong for low 7, cor-
responds to particles that are so weakly compressed that
they can easily slip with respect to the shearing wheel.
With higher density, and hence greater force at the con-
tacts between the particles and the shearing wheel, slip-
ping becomes less likely and the combination of transla-
tion and backwards rolling is the preferred state.

In summary, Fig. 5 allows for a quantitative compari-
son of selected density simulation and experimental data
(like the figures before). Fig. 6 allows one to see at
a glance that the zero-motion state and the translat-
ing/rolling without slipping (the line in Fig. 6) are pre-
ferred states in both experiment and simulation.

VI. SUMMARY

We have reported parallel experimental studies and
Molecular Dynamics simulations of shearing in a two-
dimensional Couette geometry. Here, an important goal
was to benchmark such simulations in a setting where it
was possible to have good overlap between the parame-
ters relevant to the simulations and the experiments. In
most respects, the numerical results are in good qualita-
tive, and for some quantities good quantitative agreement
with the experimental results [53].

Both simulations and experiments show rate-
independence within the statistical errors, and the
range of rates that were studied.- We have particularly
focused on the dependence of the shearing states on
the global packing fraction. Good agreement between
simulation and experiment was found for the density
profiles (modulo an overall density shift) associated with
the formation of a shear band next to the inner shearing
wheel with a characteristic width of about 5 to 6 particle
diameters.

Both simulation and experiment also showed a roughly
exponential velocity profile. However, the simulations
did not capture the density dependence of the experimen-
tal velocity profiles, nor some details of the shape, espe-
cially at the outer edge of the shear band. In this regard,
further exploration of the role played by roughness of
the shearing surface and the effect of the particle-bottom
friction are necessary. The former can lead to more in-
termittent behavior, whereas the latter might explain the
velocity-drop at the outer edge of the experimental shear



band.

The alternating spin profiles in experiment and simu-
lation agreed nicely, indicating a rolling of the innermost
particle layers (parallel to the walls) over each other.
Outside of the shear band, rotations are not activated,
however. From the velocity- and spin-probability densi-
ties, a combination of rolling and sliding with the inner
wall is evidenced. Asthe density decreases towards v, in-
creasingly more particles remain at rest — stopped by the
bottom friction. With increasing density, more and more
particles are dragged with the moving wall, but at the
same time roll over each other — in layers, with strongly
decreasing amplitude as distance from the moving wall
increases.

VII. CONCLUSION AND OUTLOOK

The present study is of particular interest because of
the intensive attempt to match as many of the detailed
properties of the experiment as feasible by the corre-
sponding properties in the simulation. Specifically, most
of the parameters used in the simulation are fixed by

experimental measurement. Nevertheless, certain prop-
erties of the system were sufficiently complex or difficult
to determine exactly, that there were some differences
between the experimental and simulational realizations.
In this category of complex properties are friction with
the bottom surface, and the fact that the particles were
not perfectly uniform. In spite of these differences, all
the features seen in the experiment were also realized
in the simulation. In many cases, the correspondence
between simulation and experiment were quantitatively
correct to within a few percent. In other cases, the re-
sults of the simulation could be interpreted appropri-
ately so that agreement with the experiment was pos-
sible. Given the uncertainty in experimental parameters
and/or small irregularities, this level of agreement is quite
reasonable. The clear conclusion is that with sufficient
care, MD modeling of a granular system can produce
and predict experimental behavior, with the understand-
ing that absolute quantitative agreement may be limited.
Inevitably, in any experiment, small variabilities between
particles or boundaries come into play at a sufficient level
of detail.
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