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Abstract

A discrete model for the sintering of polydisperse, inhomogeneous arrays of cylinders
is presented with empirical contact force-laws, taking into account plastic deforma-
tions, cohesion, temperature dependence (melting), and long-time effects. Samples
are prepared under constant isotropic load, and are sintered for different sintering
times. Increasing both external load and sintering time leads to a stronger, stiffer
sample after cooling down. The material behavior is interpreted from both micro-
scopic and macroscopic points of view.

Among the interesting results is the observation that the coordination number,
even though it has the tendency to increase, sometimes slightly decreases, whereas
the density continuously increases during sintering — this is interpreted as an in-
dicator of reorganization effects in the packing. Another result of this study is the
finding that strongly attractive contacts occur during cool-down of the sample and
leave a sintered block of material with almost equally strong attractive and repulsive
contact forces.

Key words: Sintering, density and coordination number, compression test, yield
stress, failure, discrete element model

1 Introduction

Before we discuss sintering and a discrete model for sintering, first we make
some more philosophical remarks about continuous and discrete modeling
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in general. In mechanics and physics there exist two ways to describe and
model a particulate, inhomogeneous material like powder, ceramics or con-
crete. The first approach is based on continuum theory and relies on empirical
assumptions about the macroscopic material behavior (Schwedes, 1968; Ver-
meer et al., 2001). For a summary of recent progress on the macroscopic mod-
eling of sintering processes see the studies by Jagota et al. (1990); Jagota and
Scherer (1995); Olevsky (1998); Bellehumeur et al. (1998); Zachariah and Car-
rier (1999); Riedel and Blug (2001); Manetsberger et al. (2001); Anestiev and
Froyen (1999); Kraft et al. (2003) and the references therein. The macroscopic
approach can be complemented by a “microscopic” description of the material
on the particle or grain level, where the particles and their interactions are
modeled one by one (Herrmann et al., 1998; DeLo et al., 1999; Vermeer et al.,
2001). The former involves stress, strain and plastic yield conditions (Redanz
and Fleck, 2001), whereas the latter deals with local force-deformation laws for
each contact (Jagota and Dawson, 1990). The macroscopic approach neglects
the microstructure due to its nature and often isotropy is assumed (Jagota
et al., 1990). In contrast to finite element or network-models, or to models
with a fixed topology, we will follow the path of a microscopic, dynamic mod-
eling, where no assumptions about either geometry, topology, homogeneity, or
isotropy of the powder packing are involved (DeLo et al., 1999; Heyliger and
McMeeking, 2001; Redanz and Fleck, 2001).

However, we have to assume certain contact force-laws and, furthermore, will
restrict ourselves to two dimensions. A clear disadvantage of discrete models
is the limited number of particles that can be modeled with reasonable effort.
Therefore, rather than examining large structures, we focus on small samples
with a few hundred particles only.

In order to test the approach, a model system in a two-dimensional box filled
with cohesive-frictional disks of different sizes, see Sec. 2, is examined by means
of a “microscopic” discrete element method (DEM). The microscopic interac-
tion model for plastic deformations, friction, and cohesion is discussed and
time-, temperature-, and history-dependent behavior is introduced and ratio-
nalized in Sec. 3. The long time sintering of a block of material is simulated
and the results are discussed in Sec. 4.

A final remark about units: Most of the quantities used in this paper imply
SI units, and length is typically measured in meters, time in seconds, force
in Newtons, that is mass times acceleration, and temperature in Kelvin (or
degrees centigrade). Only for the pressure, a non-standard unit of Newton
per meter is used, since we disregard the arbitrary length of the cylindrical
particles.



2 Model System

One possibility to obtain information about the material behavior is to perform
elementary tests in the laboratory. However, because it is difficult to observe
what is going on inside the material, an alternative way is the simulations
with the discrete element model (DEM) (Cundall and Strack, 1979; Bashir and
Goddard, 1991; van Baars, 1996; Thornton and Antony, 2000; Thornton, 2000;
Herrmann et al., 1998; Vermeer et al., 2001; Luding et al., 2000, 2001). The
numerical “experiment” chosen is a bi-axial box set-up, see Fig. 1, where the
left and bottom walls are fixed, and a stress- or strain-controlled deformation
is applied to the other walls. In the future, quantitative agreement between
experiment (Kraft et al., 2003) and simulation has to be achieved. However,
this issue is far from the scope of this paper.

Stress control means that the wall is subject to a predefined external pressure
that, in equilibrium, is cancelled by the stress, which the material exerts on
the wall. In a typical “experiment”, the particles are rapidly compressed with
constant, isotropic pressure and then left alone for some time and at constant
temperature, typically not much below the melting point.

The stress-controlled motion of the walls is described by the differential equa-
tion

my(t) = Fu(t) — pwa(t) — mwi(t) , (1)
where m,, is the mass of the wall. Values of m, large as compared to the
sample mass lead to slow adaptation and vibrations, whereas small values
allow for a rapid adaptation to the actual situation. Three forces are active:
(i) the force Fy(t) due to the bulk material, (ii) the force —py2(t) due to the
external pressure, and (iii) a viscous force which damps the motion of the wall
so that oscillations are reduced. Note that pressure is here measured in units
of force per length, that is force per area times unit length of the cylindrical
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Fig. 1. (Left) Preparation of the sample with pressure on both sides. (Right) After
the system is relaxed the evolution in time of the sample with time is examined.



Inside the system, N disks with radii a; (¢ = 1, ..., N) and height h are
placed. The radii are drawn from a homogeneous distribution with mean ag
and relative width wg so that a;/ay € [1 — wg, 1 + wy]. The particle-particle
interactions and the parameters involved are discussed in the next section.

3 Discrete Particle Model

The elementary units of granular materials are mesoscopic grains which de-
form under stress, possibly yield, change their properties with time, and can
behave differently for different temperatures. Since the realistic modeling of
the deformations of the particles is much too complicated to allow for a subse-
quent many-particle simulation, we relate the interaction force to the overlap
0 of two particles, see Fig. 2. In the absence of long-range forces, an interaction
takes place only if particles are in contact and thus § > 0. In that case, the
forces are split into a normal and a tangential component denoted by indices
n and t, respectively.

Note that the particles have a fixed radius for constant temperature. Thus a
larger force leads to a larger overlap (model) corresponding to a larger defor-
mation (reality). As long as overlap and deformation are much smaller than
the particle radius, the deformation is local and the constant radius assump-
tion makes sense for the rest of the particle.

If all forces f; acting on the particle 4, either from other particles, from bound-
aries or from external forces, are known, the problem is reduced to the inte-
gration of Newton’s equations of motion for the translational and rotational
degrees of freedom

d2 2

d
mi@"’i =f;, and Iz’@‘Pi =1, (2)

with the mass m; of particle ¢, its position r; the total force f, = >, f;, its
moment of inertia [;, its angular velocity w; = d¢,/dt, the total torque ¢; =
Y Ui x f7, and the center-contact vector I;. The integration of the equations
of motion is performed with a standard molecular dynamics Verlet algorithm
together with Verlet-table neighborhood search (Allen and Tildesley, 1987).



3.1 Normal Contact Model

Two particles ¢ and j at positions r; and r;, with radii a; and a;, interact only
if they are in contact so that their overlap

d=(a;i+a;)—(ri—rj)-n (3)

is positive, ¢ > 0, with the unit vector n = n;; = (r; — r;)/|r; — r;| pointing
from j to . The force on particle 7, from particle j can be written as f,;; =

an -+ fitjt, with n perpendicular to ¢. In this subsection, the normal forces
are discussed.

3.1.1 Short time contact model

As first step, we discuss the time- and temperature-independent behavior of
the contact forces between a pair of particles. For this, we modify and ex-
tend the linear hysteretic spring model (Walton and Braun, 1986; Luding,
1998; Tomas, 2000; Luding and Herrmann, 2001; Luding et al., 2003). It is
the simplest version of some more complicated nonlinear-hysteretic force laws
(Walton and Braun, 1986; Zhu et al., 1991; Sadd et al., 1993), which reflects
the fact that at the contact point, plastic (permanent) deformations may take
place. The repulsive (hysteretic) force can be written as

k16 loading,
fij = { ko(d — &) un/reloading, (4)
—kc0 unloading,

with k; < ko, see Fig. 2.

During the initial loading the force increases linearly with the overlap §, until
the maximum overlap 0.y iS reached, which is kept in memory as a history
parameter. The line with slope k; thus defines the maximum force possible for
a given ¢. During unloading the force drops, on the line with slope k9, from
its value at dma down to zero at the force-free overlap

50 = (1 - kl/kQ)émaX .

Reloading at any instant leads to an increase of the force along this line, until
the maximum force is reached; for still increasing 4, the force follows again the
line with slope k1 and dmax has to be adjusted accordingly. Unloading below
0o leads to negative, attractive forces until at the overlap

ko — k1
75111&)( )
ko + k.

6Inin -
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Fig. 2. (Left) Two particle contact with overlap §. (Right) Force law for two springs
with stiffness k1 and ko for initial loading and subsequent un/reloading, respectively.
Attractive forces are possible due to the cohesion strength k..

the minimum force fuin = —KkcOmin, 1.6. the maximum attractive force, is ob-
tained as a function of the model parameters k1, ks, k., and the history param-
eter d,.x. Further unloading leads to attractive forces on the branch f = —k.0.

1

The cone formed by the lines with slope k; and —k, defines the range of pos-
sible force values. If a force would fall outside the cone, it is forced to remain
on the limit lines. Departure from these lines into the cone takes place in the
case of unloading and reloading, respectively. Between these two extremes,
unloading and reloading follow the same line with slope k5. Possible equilib-
rium states are indicated as circles in Fig. 2, where the upper and lower circle
correspond to a pre-stressed and stress-free state, respectively.

3.1.2  Viscous dissipation

In the case of collisions of particles and for large deformations, dissipation
takes place due to the hysteretic nature of the force-law. For small displace-
ments around some equilibrium state, the model does not contain dissipation.
Therefore, in order to allow for stronger dissipation and thus faster relaxation,
a viscous, velocity dependent dissipative force in normal direction,

f4 = (5)

1 The highest possible attractive force, for given k; and ko, is reached for k. — oo,
so that fmin = —(k2 — k1)0max. This would lead to a discontinuity at § = 0 that is
avoided by using finite k..



is assumed with some damping coefficient ,. The half-period of a vibration
around the equilibrium position, see Fig. 2, can be computed for arbitrary
values of k; and k., as long as the overlap fulfills the condition d,;, < 0 < dpax-
In this case, ko determines the stiffness and one obtains a typical response time
on the contact level (Luding, 1998),

tczza with w=4/——15, (6)
w mio
the eigenfrequency of the contact, the rescaled damping coefficient 7y = o/ (2m12),
and the reduced mass mi2 = myma/(mi+ms). The time-step of the simulation
tamp has to be chosen such that

tMD ~ tc/50

for a proper integration of the equations of motion, so that we chose a typical

time-step typ = 7/(50w) after the model parameters ko and 7, are specified
2

3.1.3 Stiffness increase with contact area

In order to account for the fact that a larger contact surface leads to a larger
contact stiffness, the coefficient k5 is made dependent on the maximum overlap
history parameter d,,,x (and thus on the force-free overlap dy), as long as the
overlap is below the threshold 614 that corresponds to the “complete melting”
of the particles. Complete melting is here the limit of an incompressible liquid
that is contained in the model, however, neither discussed in detail nor verified
for reasons of brevity.

The overlap 614 corresponding to the stress-free fluid, is computed such that
the volume fraction in the system equals unity. The volume fraction of a dense
packing of rigid cylinders is

Vsolid = Nhag /Veoia = 7/(2V/3) .
If all the material would be melted, the volume fraction is

Vawia = NThad/Vaua = 1,

2 In this study, we will not discuss more advanced viscous forces (Svoboda et al.,
1994; Riedel et al., 1994) (including time- and temperature dependencies) because
this dissipative force is mainly a means of dissipating surplus energy and not so
much based on realistic assumptions about the behavior of the material (Riedel
et al., 1994). Also in the limit of the fluid, a more realistic viscous force law would
be required, but since we will not reach this limit, we rather prefer to keep the
model as simple as possible. Extensions of the present model are always possible in
the future.



which, in combination of the two previous equations, leads to the ratio of fluid
and solid volumes

Vﬁuid/ Vsolia = aﬁuid/ a% = 7T/ (2\/5) .

The minimum radius for the incompressible melt is aquq = ag — 0144 =

@01/ Viuida/Vsolia & 0.9523 ag which corresponds to the maximum overlap
61id ~ 0.0477 ay |

in two dimensions. In the following, we use §%44/ay = 0.20 in order to magnify
the range of possible non-fluid overlaps.

The stiffness is maximal in the fluid limit for §; = 64, which corresponds
t0 Opax = OMUd — ko 50id /() — k1), and varies between k; and ko for smaller

overlaps, so that

ko if Oy > Ohuid
k2(5max) = 5 ' i . (7)
ky+ (k2 — ky) 8% i Omax < Omag

For large overlaps (in the fluid regime), the stiffness and the force is thus only
dependent on ks, independent of k;. For smaller overlaps both k; and ko affect
the force together with the history of this contact.

f !

fluid

Fig. 3. Force law with varying stiffness ko(dmax), according to Eq. (7). If § becomes
larger than §1id, the stiffness remains equal to ky and the force remains on the
corresponding liquid branch with slope ko (dotted line). The cohesion strength is
maximal for the maximum contact strength and decreases with k9, see subsection
3.5 for details.



The stiffness in the incompressible fluid should diverge; however, for reasons
of numerical stability, we have to limit the maximum stiffness to ko. Larger
stiffness values would require smaller time-steps which would reduce the sim-
ulation efficiency. Therefore, the model does not really take the incompress-
ibility of the liquid into account, see Fig. 3. In the fluid no plastic deformation
can take place so that dy is fixed and cannot be shifted to larger force free
overlaps — in contrast to the hysteretic model described above.

In summary, the hysteretic stiffness model takes into account an increasing
stiffness with increasing overlap. The first loading is plastic with low stiffness,
and subsequent un- and reloading are stiffer because the material was initially
compressed. As a consequence, also the maximum cohesive force depends on
the maximum compression which was experienced by the contact during its
history. If the material is compressed so strongly that the liquid density is
reached, the force-free overlap is equal to the fluid equivalent overlap and the
material behaves like a fluid.

3.2  Density Temperature Dependence

If a solid or a liquid (we assume a simple material here - not like water -
where the density dependence on the temperature is continuous through the
phase transition) is heated, in general, its volume increases so that its density
decreases. Therefore, we assume a temperature dependent density of the single
particles (disks with radius a and height h):

m
mah

p(T)

p(Tmelt) + 5pT (Tmelt - T) ) (8)

with the density change per unit temperature épr. This corresponds (in linear
approximation) to a change of the particle radius

CL(T) = a’(Tmelt)[l — dar (Tmelt - T)] ) (9)

with the relative change of the radius per unit temperature dar. This approx-
imation can be used if the range of temperatures (in Kelvin) is rather narrow
and the changes per unit temperature are very small.

In the following, we use dar = 10~* K !, so that the particle radius is changed
by 0.01 per-cent if the temperature is changed by one Kelvin. In the interesting
range of temperatures between a low temperature (80°C) and some melting
point (120°C), the radius changes by one per-cent, accordingly. Note however,
that this is an arbitrary choice (reasonable for polyamid); coefficients for steel
and glass are typically one and two orders of magnitude smaller, respectively.



3.8  Contact Temperature Dependence

For the temperature dependence, we focus on an inhomogeneous material with
a melting temperature 7}, and assume that the material behaves statically,
as described above, if the temperature 7" is much smaller than the melting
temperature. The behavior of the stiffness k; is schematically shown in Fig. 4
as a function of the temperature.

Ky

A

Fig. 4. Schematic plot of the stiffness k1 as a function of the temperature.

The material becomes softer when T,,.; — T becomes small and will lose all
stiffness in the limit T},,¢;—7" < 0. The temperature range in which the melting
takes place is quantified by Ti,.. In the transition regime |Tiner — 7’| ~ Tvar,
the particles are significantly softer than in the cold limit Ty — 1" >> Tyar.
In the hot and the liquid regime, 7" — Tiex > Tyar, one has k; — 0 and the
particles lose their nature. However, the ‘incompressibility’ is accounted for
with a stiffness ko, as defined in Eq. (7), and &, = 61 is fixed.

3.3.1 Increasing temperature

When the temperature is increased to a rather large value, close to the melting
point, two particles under stress and in equilibrium due to compressive forces
will lose stiffness and thus will deform more strongly so that their overlap
becomes larger. Therefore, we assume for the stiffness coefficient

Tete — T
ki (T) :% [1 + tanh (%)]

5 [1 4 tanh(7)] , (10)
where 7 denotes the ratio of the temperature difference to the range of con-
siderable temperature dependency T.,;, see Fig. 4. If experimentally available

in the future, the function tanh(z) can be replaced by any other function f(z)
that decays from unity to zero at = ~ 0.

When k; is reduced due to an increase in temperature (+), we assume that
4,5, Temains constant, so that one obtains a larger force-free overlap 6 (T') =

10



[1 — ki (T)/ko(61,,)]0%. .. Thus the material volume shrinks due to sintering

max max*

at the contact level.

Note that ks is not changed directly when k& (7) is decreased, see the left panel
in Fig. 5 or Eq. (7). The cohesion in this model, however, is directly affected
by a change of ki(7), see Eq. (13). In a pre-stressed situation, corresponding
to a finite confining force at the contact, also 0., is shifted in order to balance

the confining force — but only after k0., became smaller than the confining
force.

f iy f
) KD KM

kl

Fig. 5. Force laws for varying stiffness k1, according to Eq. (10). (Left) If the temper-
ature is increased, k; is reduced while 4}, remains constant (dashed line, stress-free
case). (Right) If the temperature is subsequently decreased, k; is increased while
dy remains constant (solid line with slope ks).

If, as an example, the material has a melting point T}, = 120°C with a range
of softening of T.,, = 10°C, for a temperature of T = 118°C, the stiffness
ki is reduced to 0.6 of its cold-limit value, for a temperature of 122°C the
stiffness is 0.4, and for a temperature of 130°C the stiffness is only 0.12. For
a temperature of T = 160°C only a stiffness of 3.107% remains. The fact that
there is a remaining stiffness above the melting temperature can be attributed
to the inhomogeneity of the material, i.e. not all the material melts at the same
temperature.

3.3.2 Decreasing temperature

If later in time the temperature is decreased again, k1 (7’) is adjusted according
to Eq. (10), but since the melted (sintered) area around the contact point will
not return to its previous state, we now assume that é, = const., so that the
maximum overlap increases to the value 0., (T) = &y /[1 — k1(T)/k2], see the
right panel in Fig. 5. Therefore, a temperature cycle involving a temperature
close to the melting temperature leads to a contact situation similar to the

one obtained through some larger maximum compressive force. The contact
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deformation/area and thus the force-free overlap become larger due to the
partial melting of the surface and also the stiffness is increased accordingly.

The temperature dependence thus can lead to changes of the stiffness and
increases the overlap (deformation) of the particles. It is effective only if the
temperature is changed — the time dependence will be introduced in the next
subsection.

3.4 Temperature dependence with time

In the material there are several time dependent processes taking place. Since
we are interested in the long time behavior of the material, we assume that heat
conduction and equilibration take place instantaneously, as long as tempera-
ture changes are small and slow. The realistic simulation of heat-conduction
in the sample is far from the scope of this study. Therefore, the particle size
is adjusted directly with the temperature according to Eq. (9).

In addition to the direct effect of a temperature change on the particle size
and the stiffness, the material may change its internal, atomistic structure
such that defects heal and disappear. This effect will occur mainly in the
regime of high temperatures close to the melting point. Therefore, in order to
account for such slow microscopic processes, a time dependence is introduced
that leads to a change of the material stiffness £; with time. The change takes
place extremely slowly with an algebraic time dependence, so that k(T t) lags
behind when varying from its actual value to the desired, final value k;(T), as
defined in the above equation (10).

When the temperature is increased from a small value Ty to 7', then k;(7p)
changes to ki(T) following the law

b (Tyt) = by (T) |1 = —— | (11)

-k (To)/ka(T) — to

which corresponds to the rate of change

Ok (T,t) | [k(T) — ka (T, 1)
ot + ki (T) to ’ (12)

with the time scale t; on which a typical change takes place. Note that ki,
k1(T), and kq(T,t) are different, in general, and correspond to the maximum
ki, the temperature dependent k;(7T') < ki, and the time dependent k(T t)
that tends towards k(7). The sign in Eq. (12) is chosen according to the sign

12



of [k1(T) — k(T ¢)] in Eq. (11) 3.

Assume Ty = 20°C and T' = 118°C, so that k;(Tp) = 1 corresponds to ki (T) =
0.6. The stiffness as a function of time is plotted in Fig. 6 for the time constant
t() = 10s.

stiffness (a.u.)

Fig. 6. Variation of the stiffness k; with time, see Eq. (11). The inset shows the same
function with a logarithmic time axis — only after about 10®s the final stiffness is
reached.

Note that, due to the factor k;(7’) in the denominator of Eq. (12), the change
of stiffness is faster for higher temperatures. In the hot limit, changes take
place very rapidly, whereas in the cold limit changes are extremely slow.

Finally, we note that the adaptation/relaxation of k1 (T, t) to the desired k1 (7T)
value follows the above equations in all cases except when the temperature
is going down and the k(7)) > k{(T,t). In that situation the contacts freeze
rapidly and thus have to become strong as fast as the system cools down.

3.5 Cohesion dependence on stiffness and friction

The cohesive properties of a particle contact depend on the temperature, in so
far that a melted contact should have weak tensile and compressive strength.
Therefore, we couple the cohesive parameter k. to the magnitude of & (7, t),
see Eq. (11), which decreases with temperature increasing. In addition, in
order to take into account a reduced tensile strength of a soft contact with
weak deformation and thus small overlap, the cohesion is directly related to

3 In symbolic form this means: +[y]> = y|y|. For the numerical integration, we
remark, that the value of the actual stiffness should be ki(T',t — At), otherwise we

obtained a numerically instable behavior in some situations

13



the stiffness ko(dmax), see Eq. (7). Thus, we propose

ke(T,t, Omax) = kl(,: 1) kZ(,iz’“)kc : (13)

This is an arbitrary choice for the cohesive force factor k., but as long as no
detailed experimental results are available, we stick to this empirical law, see
Fig. 3 for a schematic picture.

3.6  Tangential Contact Model

The force in the tangential direction is implemented in the spirit of Cundall
and Strack (Cundall and Strack, 1979) who introduced a tangential spring in
order to account for static friction and elastic energy stored in the contact
tangential direction. Various authors have used this idea and numerous vari-
ants were implemented, see (Brendel and Dippel, 1998) for a summary and
discussion.

Since we combine cohesion and friction and introduce time and temperature
dependencies, it is convenient to repeat the model and define the implementa-
tion. First, the tangential force is coupled to the normal force via Coulomb’s
law, i.e. f* < uf™, where for the limit case one has sliding friction and for the
case of small forces f*, one has static Coulomb friction. The latter situation
requires an elastic spring in order to allow for a restoring force and a non-zero
remaining tangential force in static equilibrium due to activated Coulomb fric-
tion. The tangential spring is extended during sticking and is dragged along
the contact during sliding.

As a consequence of the cohesion force in the normal direction, attractive
forces are possible so that Coulomb’s law has to be modified

FE< (™ = fuoin) (14)
with the minimum (maximum attractive) force

. kQ((Smax) - kl (T’ t)
]- + k2 (5max)/kc(T: ta 5max

fmin = )5max . (15)

The equality '="in Eq. (14) corresponds to (fully) activated, sliding friction,
while the inequality '<’ corresponds to static friction. Thus the tangential
force is related to the normal force relative to the point of cohesion-failure.
For normal forces larger than f,;,, friction is always active and the amplitude
is proportional to f™ — funin and p. This can lead to a stable equilibrium of
the solid also at f™ =~ 0 and activated tangential static friction. Note that

14



fmin tends towards zero for vanishing overlap, so that the difference from the
original model also vanishes for vanishing overlap.

If f* — fain > 0, the tangential force is active, and we project the tangen-
tial spring-length £ into the actual tangential plane by subtracting a possible
(small) normal component. This is necessary, since the frame of reference of
the contact may have rotated since the last time-step.

§=¢-nn-¢). (16)

This action is relevant for an already existing spring. If the spring is new,
the spring-length and the tangential force are zero anyway; the change of the
spring-length is defined below. Next, the relative tangential velocity of the
surface of the two particles is computed

v, = vj; —n(n-vy;) , (17)
with the total relative velocity
'vij:'ui—'uj—i-ainxwi-i—ajnij . (18)

In the next step we calculate the tangential test-force as the sum of the tangen-
tial spring- and viscous-force (similar to the normal spring- and viscous-force)

f? =~k & — vy, (19)

with the tangential spring stiffness k; = aks(dmax), with a typical stiffness
ratio @ = 0.2, see (Luding, 1998), and the tangential dissipation parameter ;.
If |7 < fo, with fo = u(f™ — fmin), one has static friction and, on the other
hand, if |f{| > fc, sliding friction is active. In the former case, the tangential
test force is incremented

£I = S + ’UtAtMD s (20)
to be used in the next iteration in Eq. (16), and the force f* = f? from Eq.
(19) is used. In the latter case, the tangential spring is adjusted to a length
which is consistent with Coulomb’s condition

¢ = —kl (fet+mvy) (21)
¢

with the tangential unit vector, t = f7/|f;|, defined by the tangential spring,
and the Coulomb force is used. Inserting &' into Eq. (19) leads to f' ~ fct in
the next iteration %. In short notation this reads

f'= +min (fc, £t . (22)

* Note that 9 and v; are not necessarily parallel in three dimensions. However, the
mapping in Eq. (21) works always, rotating the new spring such that the direction
of the frictional force is unchanged

15



Note that the tangential force described above is identical to the classical
Cundall-Strack spring only in the limit 7, = 0 and k. = 0. Besides the combi-
nation of the cohesive and the frictional force, also the tangential dissipation
is non-standard. Furthermore, we remark that the cohesion could also be cou-
pled to friction in the sense that a broken contact loses its tensile strength
when it is assumed brittle, so that k. = 0, (if sliding), i.e. if one has a sliding
contact with f* = p(f™ — fmm) °.

3.7 Temperature dependence in tangential direction

In parallel to the change of normal stiffness, the tangential stiffness is always
kept in a constant ratio to ks so that

kt = CVkZ(dmax) y (23)

since the stiffness in the tangential direction is based on the same arguments
as the material stiffness in the normal direction.

The friction is coupled to the temperature dependent value of the stiffness
k1(T,t), because friction should not be present in a liquid at large enough

temperatures, so that

w(T,t) = kl(,z:’ 4

Thus friction is modified together with the changes in normal direction. No
new ideas are introduced for the tangential forces.

(24)

4 Results

In this section, the sintering model is applied to the sintering process of a
particulate material sample. The material is initially a loose powder and first
has to be prepared at low temperature from time ¢y, to time tye,, see Fig.
7. The preparation takes place with a system as described in section 2 with
isotropic external pressure p := py = p; = p, = 10 or 100. The particles
are randomly placed in a box with random initial velocity. Then the walls
compress the system and motion is dissipated until a quasi-static situation

5 On the other hand, if the particles are very small, attractive forces could still be
present so that k. would not be affected by the type of the contact being either
sliding or sticking. In this study we assume, as an arbitrary, possibly inconsistent
choice, f™ > 0, (if sliding), thus disregarding cohesion in the sliding situation. The
effect of this choice has to be examined in more detailed elsewhere.
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is reached. Here, we used frictionless particles for the initial compression and
thus obtain an over-consolidated initial packing.

Pressure is measured in units of Nm~! due to the two-dimensional nature of
the model, i.e. p has the same units as the spring stiffness ko. The correct units
of the pressure can be obtained by division through the length of the cylinders
(particles). Since the length is rather arbitrary, we drop the unit of pressure
in the following for the sake of simplicity. Due to the linearity of the model,
some stress o can be rescaled/non-dimensionalized with the spring stiffness
ks and has thus to be read as the dimensionless quantity p = poo/ka, with
po = 2.10°. When, for example, a wall pressure p = 100 occurs below in the
paper, this can be translated to a stress o = kop/po. However, a detailed study
of the scaling behavior of the stresses is far from the scope of this study.

Note that the pressure is therefore related to the typical overlap of two parti-
cles: A pressure of p = 100 corresponds to 100 = 2.10°p/ky = 2.10° "/ (2aks) =
2.10°(6 — &) /(2a) or (6 — &) /a ~ 1073, while p = 10 corresponds to approxi-
mately (6 — dg)/a ~ 10~%. This can also be interpreted as mean normal force
f™ =~ 2ap. However, these are rough estimates only, since the contact forces
and the overlaps are strongly varying in magnitude for one situation, as will
be discussed in more detail below.

to theat T sinter teool trelax tf

Fig. 7. Schematic plot of the temperature variation during simulation.

The other system parameters are summarized in table 1, where multiple num-
bers mean that a series with the corresponding values was performed.

4.1 Sample preparation

The preparation of the sample consists of an initial relaxation period at con-
stant temperature 7" = 80°C until time tpea, When the system is heated up
to T = 140°C between time tpes; and tgner- During the sintering time ¢, the
system is allowed to sinter with a much shorter relaxation time ¢, = 0.1. This
‘trick’ allows for a long time sintering simulation while keeping the simulation
time small. During sintering, the time axis should be stretched by a factor of
10* in order to obtain the real-time behavior. At the end of the sintering pro-
cess, at time t.,01, the sample is slowly cooled down and, at time %,q,, allowed
to relax at constant temperature until time t;. With this finished sample, tests
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particle numbers N 100, 300
mean particle radius ag 1mm
relative width of size distribution wg +0.5
particle height h 6 mm
particle density p, 2000 kg m 3
particle stiffness ko 2.10°Nm™!
particle stiffness ki /ko 0.5
particle stiffness k./ks 0.5
particle stiffness k;/ko 0.2
particle normal damping 7y, 0.2kgs !

P | particle tangential damping y; 0.05kgs™ !
particle-particle friction 0.5
particle-wall friction i, 0
melting temperature Ty, 120°C
temperature variation T, 10K
density variation with temperature dap | 1074 K !
fluid overlap 4fiuid 0.2
relaxation time ¢y (default) 10%s
relaxation time during sintering 107!s
wall mass m., 0.01
wall damping vy 0.2

Table 1

Summary of the system properties and material parameters as used in the simula-
tions

will be performed later, but first we discuss the preparation process.

For the preparation of the sample, we use the times tg = 0, tpeat = 0.2,
tsinter — theat = 0.1, different sintering times t5 := t¢o01 — Lsinters trelax — teool = 0.1,
and t — traax = 0.1. Note that the time unit is arbitrary, since a slower
preparation procedure did not lead to notably different results, i.e. the process
takes place in the quasi-static limit. Only the long-time sintering is affected
by a change of the relaxation time t,.
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4.1.1 Temperature and stiffness

The variation of k;(7,t) with time is plotted in Fig. 8, where the algebraic,
slow decay of the stiffness with time becomes evident. The number of particles
was N = 300, the sidestress p = 100, and the other parameters are given in

table 1.
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Fig. 8. (Top) Temperature during the preparation procedure and (bottom) material
stiffness k1 (7, t) as function of time for ‘experiments’ with different sintering times

ts.

4.1.2  Density

The longer the sintering time ¢, the lower the value of k; gets. For short
sintering time, the lowest values are never reached, because the system is
cooled down before the sintering is finished. At the end of the sintering time,
k1 is increasing during the cooling process of the sample and reaches its inital
value. However, the melting and sintering of the contacts is not reversed, as
becomes evident when plotting the volume fraction v in Fig. 9.
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Fig. 9. Material density v as function of time for simulations with N = 300 particles
and side stress p = 100 (top) and p = 10 (bottom). Note the different vertical axis
scaling.

The initial preparation step leads to a rather low density of v ~ 0.8. At time
theat, the relaxed sample is heated up and, at the same time, the wall friction
is switched off. The latter has an immediate effect, a slight increase in density
is possible due to reorganizations. The increased temperature only becomes
effective at time fguer, Wwhen the relaxation time t; is decreased in order to
accelerate the evolution of the system. Note that the increase in density due
to the sintering seemingly appears quite rapid — due to the quenched time axis
during sintering. Up to the beginning of the sintering process all densities are
equal due to an identical preparation of the sample. For increasing duration of
sintering, t,, the density successivly increases with t,. This effect is strongest
at the beginning, but continues also for longer times. Below, we will discuss
different reasons for this increase in density in more detail. At the end of the
sintering process, the system is cooled down, corresponding to the final, small
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increase in density, and then relaxes to the final configuration.

4.1.3 Special cases

As a control simulation, also three particles were simulated and sintered in the
same way as the larger samples with NV = 100 and N = 300 above. A sample
with only three particles has almost no possibility for a rearrangement after
the initial load is applied (actually, the three particles were either arranged
on a triangle or on a line and did not change their configuration for the cases
observed). This artificial test-case shows that the strong increase in density
observed for larger samples is caused by re-arrangements of the packing and
is not only due to the force model. More quantitatively, the sintering pro-
cess leads to a densification of about 5% and 16% for p = 10 and p = 100,
respectively, whereas the densification due to the contact law, without rear-
rangements of the packing, can be estimated to the respective magnitudes of
about 0.2% and 8% (data not shown here). Thus, for low confining pressure,
reorganizations are much more important than in the case of large external
pressure — at least for the parameters used here. In this spirit, network-models
or DEM simulations with fixed, e.g. periodic arrangements can not account
for large scale reorganization of a packing, which are of eminent importance
during the sintering process. Examples for DEM simulations can be found, for
example, in (DeLo et al., 1999; Heyliger and McMeeking, 2001; Redanz and
Fleck, 2001).

Another control simulation without thermal expansion of the particles, dar =
0, gave no new insights and did not change the outcome of the simulations after
cool-down, even though the values of the density were slightly different from
the values obtained with a thermal expansion. Therefore, we conclude that
the qualitative results are not dependent on detailed parameter values and
the sintering behavior, macroscopic as well as microscopic, is generic within
the framework of this model.

4.1.4  Summary

In summary, we obtain that longer sintering and larger confining pressures
lead to higher densities of the sintered sample. As an example, after the end
of the longest sintering process (dashed lines in Fig. 9) at ¢ = 1.3, a density
of almost 0.92 is reached for p = 100. Only after cool-down, the maximum
density of almost 0.94 is reached due to negative thermal expansion.

Through test simulations with different parameters, we verified that the in-
crease in density is only partially due to the contact model, but also is caused
by reorganizations in the sample. The thermal expansion of the particles, on
the other hand, does not affect the results in a drastic way.
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4.2  Microscopic picture

In order to understand the behavior of the material during sintering, we take
a look at some microscopic quantities of the system, like the coordination
number, in Fig. 10.
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Fig. 10. Coordination number as function of time during the preparation and sin-
tering (ts = 1s) of the sample. Compared are samples of different size, N = 100 (a)
and N = 300 (b), and with different confining stress p.

We note two major issues: First, the larger confining stress, p = 100, leads
to a larger number of contacts per particle, whereas the samples with small
confining stress, p = 10, approach a coordination number of Cjy & 4, as can be
expected for a frictionless, isostatic arrangement of disks. Second, the coordi-
nation number sometimes decays, whereas the density continuously increases.
We attribute this to the fact that, inside the sample, reorganizations can take
place, which save space and thus increase the density, but at the same time
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can lead to a smaller C.

In order to deepen this insight, the coordination number, the density and the
measured wall-stress o,,/p are plotted in Fig. 11. The continuous increase in
density is sometimes accompanied by a decrease of the coordination number
and large stress fluctuations. Large scale re-organizations of the packing thus
may be responsible for a detectable fluctuation of the stress at the boundaries
of the sample, possibly connected to sound emission.

We attribute the difference in C' for different particle numbers to the fact
that the smaller sample has proportionally more wall contacts, and a particle
with a wall contact has typically, on average, less contacts that a particle in
the bulk. Therefore, the smaller sample has a somewhat smaller number of
contacts (4.5) than the large sample (4.8).
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Fig. 11. Density (squares), coordination number (circles), and normalized stress
on the top-wall (line), as function of time during the sintering (¢, = 1s) of the
sample. The coordination number C' is divided by a factor, C'/5, in order to allow
a comparison with the other quantities.

4.3 Contact statistics

4.3.1  Compression/deformation/overlap probabilities

A very specific microscopic property of the sintered sample is the statistics of
the contacts, i.e. the probability distribution function (pdf) to find a certain
overlap §. After the initial preparation of the powder sample at low tempera-
ture, the probability for larger overlaps decays rapidly — no large deformations
have taken place.

The overlap probabilities at the final stage of the sintering process are plotted
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Fig. 12. Overlap probability for overlaps, rescaled with the sum of the radii a; and
as of the contacting particles, after different sintering durations. The data are taken
from the simulations with N = 300 at different confining pressure p.

in Fig. 12 for N = 300, and both side pressures p = 10 and p = 100. The
probability distributions show many contacts with small overlaps and a rapidly
decaying probability for large overlaps at short sintering times. The mean
overlap increases, as expected, with the side stress and the sintering time.
The larger side stress leads to an underpopulation of small overlaps, because
all particles are compressed quite strongly.

The probability distributions after the cool-down and the subsequent relax-
ation are plotted in Fig. 13 for the same simulations. The remarkable difference
is not the width of the distribution — that is only slightly wider. The most strik-
ing difference is the shape, showing that after cool-down contacts with small
overlap are rarefied, while contacts with a typical overlap are overpopulated
as compared to the situation before cool-down. The probability for the largest
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Fig. 13. Overlap probability for overlaps, rescaled with the sum of the radii a; and
as of the contacting particles, after different sintering durations. The data are taken
from the simulations with N = 300 at different confining pressure p.

overlaps is still decreasing rapidly.

4.3.2  Normal contact force probabilities

Due to the advanced contact force law, as introduced and used in this study, it
is not possible to directly obtain the contact force from the overlap. Therefore,
the pdf for the normal contact forces is plotted in Figs. 14 and 15 for small and
large side-stresses p = 10 and p = 100, respectively, and for different sintering
times, t; as given in the inset.

Comparing the pdf for the two situations, after sintering and after cool-down,
the astonishing outcome of the simulation is the fact that the contact forces are
mostly repulsive and rather small in the hot situation, just before cool-down.
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Fig. 14. Contact force probability distribution after the sintering (top) and after the
cool-down and relaxation (bottom), for N = 300 and p = 10.

This situation changes during cooling down: The cooling goes ahead with a
broadening of the distribution towards both positive and negative forces. This
qualitative result is independent of the side pressure; however, the width of
the distribution increases with increasing side stress and increasing sintering
time.

Another interesing and unexpected result is the observation that the force
distribution becomes narrower with sintering. In other words, the extremely
large forces are “destroyed” due to long time sintering and the distribution
becomes more homogeneous in the sense that its width becomes smaller, see
top panel in Fig. 15.

4.3.3 Tangential forces
From the tangential force distribution (data not shown), there are less clear
observations to be made. The force distribution shows that during sintering

the tangential forces become weaker — as can be expected from the force
model, see Eq. (24), since ki(7,t) decays with increasing temperature and
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Fig. 15. Contact force probability distribution after the sintering (top) and after the
cool-down and relaxation (bottom), for N = 300 and p = 100.

time. Thus longer sintering leads to weaker tangential forces. However, after
cool-down, the tangential force distribution is almost independent of the side
stress and the sintering time, if both are sufficiently large. With other words,
only for very small side stresses and sintering times, the tangential forces are
weakly activated, for larger p or ¢, the tangential forces reach a saturation
distribution that is decaying almost exponentially for large f;.

The second possibility to look at the tangential forces is to measure the amount
of friction that is activated, namely p; := f;/(fn — fmin). This quantity should
not become larger than u(7),t), as is consistently observed from the data.
Contacts where p; ~ u(T,t) are referred to as contacts with fully activated
friction. These become less probable for longer sintering times since, as men-
tioned before, the attractive forces become stronger after long sintering and
the cooling down. Larger attractive forces correspond to a larger magnitude
of fuin, so that u; becomes smaller.
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4.4 Material properties

The samples prepared via the procedure described above are now tested via
two test experiments, a compression test, where the vertical confining pressure
is slowly increased, and a vibration test, where the confining stress is removed,
and the sample is vibrated vertically on a flat bottom. The compression test is
performed for two sample sizes, namely with N = 100 and N = 300, in order
to judge the effect of a rather small particle number on the outcome of the
simulations. In order to decide about size-independent results or size-effects,
more systematic simulations with larger particle numbers are desirable, but
are far from the scope of this study.

4.4.1  Compression test (100 particles)

The compression test is a variant of the bi-axial compression frequently used
in soil- or powder mechanics. A given compressive stress in one direction (p =
0zz) is kept constant by moving the right, vertical wall, if neccessary. The
other confining stress o,, is increased by moving the vertical wall down in a
defined way — see also section 2. This vertical motion is thus strain controlled,
where the vertical strain is defined as €,,(t) = 1 — 2(t)/zy, with the vertical
position of the top wall z(¢) and zy = z(0). Note that a compressive vertical
strain is defined positive for convenience here.

For the compression test, the previously prepared samples are used and the top
wall is displaced slowly with the vertical strain €,,(¢). The density of a sample
with N = 100 particles is plotted against the strain for various sintering times
and for the two pressures p = 10 and p = 100 in Fig. 16. The results show
again that samples which sintered longer have a higher density. Furthermore,
the compressive pressure also affects the sample density in magnitude and also
in the variation, i.e. the higher compressive pressure leads to higher densities
and also to a broader variation in densities between.

During compression, the density slightly increases first and then decreases
strongly. The former is due to compression, the latter is due to dilatancy
that is neccessary for the material to shear. The longer the sample was sin-
tered, the stronger is the change in density. We relate this to the existence of
the attractive contact forces. For longer sintering, stronger attraction is acti-
vated, holding together parts of the sample, so that the compression test leads
to fragements with increasing size for increasing sintering duration. For the
shortest sintering, the density change due to compression is negligible and the
sample fragments into single grains.

The behavior of the material, as for instance its stiffness, is better described
in terms of the vertical stress that the material can sustain under load, as
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Fig. 16. Material density as function of the vertical strain for samples prepared

with different sintering times ¢ and different pressure p,, = 10 (Top) and py = 100
(Bottom).

plotted in Fig. 17. The vertical stress in the sample increases and the material
fails typically at some failure-strain and at some magnitude of vertical stress:
Both the failure-strain and the failure-stress increase with increasing sintering
time and increasing external stress. The material stiffness (the slope in this
representation) is increased by a factor of about two when the confining stress
is increased by a factor of ten. Moreover, the critical strain where the material
fails increases with increasing confining pressure. Finally, a rather large jump
in material strength is observed for sintering times between ¢, = 0.02 and 0.05
for the small pressure, not paralleled by a similar outcome for the large stress.
Thus the combination of sintering time, compressive pressure and test mode
appears quite non-linear and not straightforward.
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Fig. 17. Vertical stress as function of the vertical strain for samples prepared with
different sintering times t; and different pressure p, = 10 (Top) and py, = 100
(Bottom). The slope of the dashed line (material stiffness) is about double for the
higher pressure.

4.4.2  Compression test (300 particles)

For the compression test of the larger samples, also the prepared samples
are used and the top wall is displaced slowly with the vertical strain. The
density of a sample with N = 300 particles is plotted against the strain for
various sintering times and for the two pressures p in Fig. 18. The results are
qualitatively similar to those obtained for N = 100, only the larger sample
shows somewhat larger densities that can be attributed to the larger fraction
of wall particles in the small sample.

The vertical stress is plotted against the strain in Fig. 19. With increasing
strain, the vertical stress in the sample increases and it fails typically at some
slightly larger strain and stress as compared with the small sample. The failure
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Fig. 18. Material density as function of the vertical strain for samples prepared
with different sintering times ¢ and different pressure p,, = 10 (Top) and py = 100
(Bottom).

stress increases with increasing sintering time, increasing external stress, and
increasing sample size. However, the latter observation is not clearly a size-
effect, since the sample size is so small that a non-negligible fraction of the
particles is in contact with the walls and thus leads to a different outcome. The
material stiffness (dashed line in Fig. 19) is again increased by about a factor
of two when the confining stress is increased by a factor of ten. Moreover,
the critical strain where the material fails increases with increasing confining
pressure, sintering time and system size.

4.4.83 Compression test snapshots

One compression test for a long sintering time, N = 300 and p = 10 is
presented in Fig. 20. During compression (from top to bottom), the lines of
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Fig. 19. Vertical stress as function of the vertical strain for samples prepared with
different sintering times t; and different pressure p, = 10 (Top) and py, = 100
(Bottom). The slope of the dashed line (material stiffness) is about double for the
higher pressure.

strong attraction (so to say the backbone of the sample) are destroyed and,
at the same time, more and more frictional contacts occur due to local shear.
Moreover, gaps between the parts of the sample open and it fragments into
pieces.

This is only a representative example for the compression test; a more detailed
study of the fracture behavior, sample-size- and sintering-time-dependence is
far from the scope of this study.
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Fig. 20. Snapshots of the compression test with N = 300 and p = 10. at times
t = 0.005, 0.02, 0.03, 0.035, and 0.04 (from top to bottom); the material sample was
sintered for t; = 1.0. The blue bars are the walls, the circles are the particles with
their colors coding the average stress, blue, green and red correspond to low, medium
and large stresses. The lines are the contacts with their colors coding attractive
(blue) or repulsive (red) normal forces. The small solid circles denote the tangential
forces, with their size proportional to the magnitude of the tangential force.
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4.5  Vibration test

The sintered samples can also be vibrated (in the gravitational field) in order
to probe their stability. The results of the previous tests are paralleled by a
vibration test, see Figs. 21 and 22.

Short sintering times lead to unstable material samples, whereas the sample
becomes more and more stable with increasing sintering time and confining
pressure. The sample with the longest sintering time ¢, = 1.0 is almost per-
fectly stable even under strong shaking — some corner- or boundary particles
sometimes break off. For shorter sintering time the sample is less stable and
fragments into pieces. For very short sintering time, the sample consists of
single particles only.

5 Conclusion

In summary, a discrete model for the sintering of particulate materials was
introduced and simple material samples were sintered for different times and
confining pressures. Then they were tested with respect to their anisotropic
load strength: Longer sintering and stronger confining pressure systematically
increases the density and the strength of the material. Depending on the sin-
tering duration, either isolated particles, fragments or a single solid block of
material could be produced.

Besides this macroscopic point of view, also the microscopic picture was ex-
amined. The series of astonishing observations includes: (i) The coordina-
tion number may slightly decrease due to reorganizations while the density
monotonously increases. (ii) Sintering leads to a broadening overlap distribu-
tion, but to a narrowing force distributon, and thus to a homogenization of the
sample. (iii) The normal forces become strongly attractive during the cooling
down of the sample below the melting temperature. Besides these facts, a lot
of open questions concerning the sintering process remain, especially concern-
ing the connection between the microscopic contact-model parameters and the
macroscopic material parameters.

The research to be done is an accurate testing of the model via a comparison
with experimental data. Since these are only available in three-dimensional
systems, the 2D model presented here may be not helpful. (This is why we
restricted our efforts to rather small particle numbers, so that we could not
judge size-independence or size-effects.) The model can easily be extended
to three dimensions, where “only” more particles are needed. Note that the
model presented here increases the amount of computation necessary for each
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Fig. 21. Snapshots after a vibration test of ¢ = 0.1, with frequency f = 100 Hz and
amplitude ¢ = 0.2mm. The material sample was sintered (from top to bottom)
for t, = 1074, 0.02, and 1.0 with p = 10. The open circles are particles with their
colors coding the average stress, blue, green and red correspond to low, medium and
large stresses. The lines are the contacts with their colors coding attractive (blue)
or repulsive (red) normal forces. The small solid circles denote the tangential forces,
with their size proportional to the magnitude of the tangential force.
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Fig. 22. Snapshots after a vibration test of £ = 0.1, with frequency f = 100 Hz and
amplitude ¢ = 0.2 mm. The material sample was sintered (from top to bottom) for

t, = 107*, 0.01, and 1.0 with p = 100. The color coding and figure meaning is the
same as in Fig. 21.

contact by a large factor, so that the number of particles possible to simulate
becomes rather small for a standard computer. Thus an extension to three
dimensions requires a proper tuning of the implementation of the force-model
and possibly the view of particles as blocks of material that cannot fragment,
rather than isolated particles. The last missing ingredient in the model is a
rolling resistance which accounts for a torque resistance of the contacts.
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