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Abstract. A model for the sintering of polydisperse, inhomogeneous arrays of

cylinders is presented with empirical contact force-laws, taking into account plastic

deformations, adhesion, temperature dependence (melting), and long-time effects.

Samples are prepared under constant isotropic load, and are sintered for different

sintering times. Increasing both external load and sintering time leads to a stronger,

stiffer sample after cooling down. The material behavior is interpreted from both

microscopic and macroscopic points of view. Compression and vibration tests lead to

breakage and attrition, respectively. Among the interesting results is the observation,

that the coordination number, even though it has the tendency to increase, sometimes

slightly decreases, whereas the density continuously increases during sintering – this is

interpreted as an indicator of reorganization effects in the packing. Another result of

this study is the finding, that strongly attractive contacts occur during cool-down of

the sample and leave a sintered block of material with almost equally strong attractive

and repulsive contact forces.
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1. Introduction

In mechanics and physics there are two ways to model a particulate, inhomogeneous

material like powder-ceramics. The first approach is based on continuum theory and

relies on empirical assumptions about the macroscopic material behavior, [1, 2, 3, 4, 5,

6, 7, 8, 9] . The macroscopic approach can be complemented by a more “microscopic”

description of the material on the particle or grain level, where the particles and their

interaction dynamics are modeled explicitly [10, 11, 12, 13]. The former involves

stress, strain and plastic yield conditions [14], whereas the latter deals with local

force-deformation laws for each contact [15]. The macroscopic approach neglects the

microstructure due to its nature and often wrong assumptions, e.g., about isotropy are

made.

In the following, certain contact force-laws are proposed and we will restrict

ourselves to two dimensions. A clear disadvantage of discrete models is the limited

number of particles that can be modeled with reasonable effort. Therefore, rather than

examining large structures, we focus on small samples with a few hundred particles

only. Different sintering times and confining pressures will lead to different agglomerate

strengths.

2. Model System

Because it is rather difficult to observe what is going on inside the material during

an experiment, the alternative simulations with the discrete element model (DEM) is

applied here [10, 16, 17]. The numerical “experiment” chosen is a bi-axial box set-up, as

described in [12], where the left and bottom walls are fixed, and a stress-control is applied

to the other walls. Three forces are active: (i) the force due to the bulk material, (ii)

the force due to the external pressure, and (iii) a viscous force which damps the motion

of the wall so that oscillations are reduced.

Inside the system, N disks with radii ai (i = 1, . . ., N) and height h are placed.

The radii are drawn from a homogeneous distribution with mean a0 and relative width

w0 so that ai/a0 ∈ [1−w0, 1+w0]. The particle-particle interactions and the parameters

involved are discussed in the next section.

3. Discrete Particle Model

Since the realistic modeling of the deformations of the particles is much too complicated

to allow for a subsequent many-particle simulation, the interaction force is related to

the overlap δ of two particles. In the absence of long-range forces (as assumed in this

study), an interaction takes place only if particles are in contact and thus δ > 0. The

forces are split into a normal and a tangential component denoted by indices n and t,

respectively. Note that for varying temperature, the particle radius is changing so that

the inhomogeneous structure implies changes of overlap conditions and thus of forces
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– only due to a temperature change. If all forces f i acting on the particle i, either

from other particles, from boundaries or from external forces, are known, the problem

is reduced to the integration of Newton’s equations of motion for the translational and

rotational degrees of freedom [12].

3.1. Normal Contact Model

Two particles i and j at positions ri and rj, with radii ai and aj, interact only if they

are in contact so that their overlap

δ = (ai + aj)− (ri − rj) · n (1)

is positive, with the unit vector n = nij = (ri − rj)/|ri − rj| pointing from j to i.

The force on particle i, from particle j can be written as f ij = fnijn + f tijt, with n

perpendicular to t. In this subsection, the normal forces are discussed.

3.1.1. Short time contact model First, the time- and temperature-independent

behavior of the contact forces between a pair of particles is discussed. For this, we

modify and extend the linear hysteretic spring model [12, 18, 19, 20, 21], which contains

elastic repulsion, plastic contact deformation and adhesion:

fij =





k1δ loading,

k2(δ − δ0) un/reloading,

−kcδ unloading,

(2)

with k1 ≤ k2, see Fig. 1, and kc determining the magnitude of adhesion, i.e., the maximal

attractive force, fmin. For a detailed description of this model, see Ref. [12].

δ
δ0 δmax

minδ

f

max

min

f

k δ1
k2 δ

−kcδ

Figure 1. Force law for two springs with stiffness k1 and k2 for initial loading

and subsequent un/reloading, respectively. Attractive forces are possible due to the

adhesion strength kc.

The cone formed by the lines with slope k1 and −kc defines the range of possible

force values. If a force would fall outside the cone, it is forced to remain on the limit

lines. Departure from these lines into the cone takes place in the case of unloading and
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reloading, respectively. Between these two extremes, unloading and reloading follow the

same line with slope k2. Different maximal overlaps imply different stiffness k2, however.

3.1.2. Viscous dissipation For small displacements around some equilibrium state, the

model does not contain dissipation. In order to allow for stronger dissipation and thus

faster relaxation, a viscous, velocity dependent dissipative force in normal direction,

fn,dij = γ0δ̇ , (3)

is assumed with some damping coefficient γ0. This leads to, see [19], a contact duration

(or inverse eigen-frequency) tc = π/ω, with ω =
√
k2/m12 − η2

0, with the rescaled

damping coefficient η0 = γ0/(2m12), and the reduced mass m12 = m1m2/(m1+m2). The

time-step of the simulations has to be chosen as tMD ≈ tc/50 for a proper integration of

the equations of motion.

3.1.3. Stiffness increase with contact area In order to account for the fact that a larger

contact surface leads to a larger contact stiffness, the coefficient k2 is made dependent

on the maximum overlap history parameter δmax (and thus on the force-free overlap δ0),

as long as the overlap is below the threshold δfluid that corresponds to the “complete

melting” of the particles. Complete melting is here the limit of an incompressible liquid

that is contained in the model, however, neither discussed in detail nor verified for

reasons of brevity.

The stiffness is maximal in the fluid limit for δ0 = δfluid, which corresponds to

δmax = δfluid
max = k2δ

fluid/(k2 − k1), and varies between k0
1 and k2 for smaller overlaps, so

that

k2(δmax) =




k2 if δmax ≥ δfluid

max

k0
1 + (k2 − k1) δmax

δfluid
max

if δmax < δfluid
max

. (4)

For large overlaps (in the fluid regime), the stiffness and the force is thus only dependent

on k2, independent of k1. For smaller overlaps k1, k0
1, and k2 affect the force together

with the history of this contact.

The hysteretic stiffness model thus takes into account an increasing stiffness with

increasing deformation. The first loading is plastic with low stiffness, and subsequent

un- and reloading are stiffer because the material was initially compressed. As a

consequence, also the maximum adhesive force depends on the maximum compression

which was experienced by the contact during its history.

3.2. Density Temperature Dependence

The temperature dependent density of the single particles, with the density change per

unit temperature δρT , leads to a particle radius

a(T ) = a(Tmelt)[1− δaT (Tmelt − T )] , (5)

with the relative change of the radius per unit temperature δaT . In the following,

we use δaT = 10−4 K−1, so that the particle radius is changed by 0.01 per-cent if the
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temperature is changed by one Kelvin. Note however, that this is an arbitrary choice

(reasonable for polyamid); coefficients for steel and glass are typically one and two orders

of magnitude smaller, respectively.

3.3. Contact Temperature Dependence

For the temperature dependence, we focus on an inhomogeneous material with a typical

melting temperature Tmelt. The material behaves as described above, if the temperature

T is much smaller than the melting temperature. For higher temperatures k1 decreases

and also the other material parameters are changed [12, 13].

When the temperature is increased to a rather large value, close to the melting

point, two particles under stress and in equilibrium due to compressive forces will lose

stiffness and thus will deform more strongly so that their overlap becomes larger:

k1(T ) =
k1

2

[
1 + tanh

(
Tmelt − T
Tvar

)]
=
k1

2
[1 + tanh(τ)] , (6)

where τ denotes the ratio of the temperature difference to the range of considerable

temperature dependency Tvar. When k1 is reduced due to an increase in temperature

(+), we assume that δ+
max remains constant, so that one obtains a larger force-free overlap

δ+
0 (T ) = [1−k1(T )/k2(δ+

max)]δ+
max. Thus the material volume shrinks due to sintering at

the contact level.

Note that k2 is not changed directly when k1(T ) is decreased, see the left panel

in Fig. 2 or Eq. (4). The adhesion in this model, however, is directly affected by a

change of k1(T ), see Eq. (7) below. In a pre-stressed situation, corresponding to a finite

confining force at the contact, also δ+
max is shifted in order to balance the confining force

– but only after k1δ
+
max became smaller than the confining force.

δ

f k1

maxδ+

k  T1
(  )

0δ+
δ

f

k  T1
(  )

δ0
−

k1

Figure 2. Force laws for varying stiffness k1, according to Eq. (6). (Left) If the

temperature is increased, k1 is reduced while δ+
max remains constant (dashed line,

stress-free case). (Right) If the temperature is subsequently decreased, k1 is increased

while δ−0 remains constant (solid line with slope k2).
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If the temperature is decreased, k1(T ) is adjusted according to Eq. (6), but since the

melted (sintered) area around the contact point will not return to its previous overlap

state, we assume δ−0 = const., so that the maximum overlap increases to the value

δ−max(T ) = δ−0 /[1− k1(T )/k2], see the right panel in Fig. 2. During heating/cooling, the

contact deformation/area and thus the force-free overlap can become larger due to the

partial melting of the surface and also the stiffness is increased accordingly.

3.4. Temperature dependence with time

In the material there are several time dependent processes, like diffusion, taking place

[23, 24]. We are interested in the slow, long time behavior of the material, we assume that

heat conduction and equilibration take place instantaneously, as long as temperature

changes are small and slow. The short time dynamics is translated into a delayed change

of the material parameters above, see [12] for details. The changes of stiffness are faster

for higher temperatures. In the hot limit, changes take place very rapidly, whereas in

the cold limit changes are extremely slow. Note that the adaptation/relaxation of, e.g.,

k1(T, t) to the desired k1(T ) value is not delayed when the temperature is decreasing

and k1(T ) > k1(T, t). In that situation the contacts freeze rapidly and thus have to

become strong as fast as the system cools down.

3.5. Adhesion dependence on stiffness

The adhesive properties of a particle contact depend on the temperature, in so far that

a melted contact should have weak tensile and compressive strength. Therefore, we

couple the adhesive parameter kc to the magnitude of k1(T, t). In order to take into

account a reduced tensile strength of a soft contact with weak deformation and thus

small overlap, the adhesion is directly related to the stiffness:

kc(T, t, δmax) =
k1(T, t)

k1

k2(δmax)

k2
kc . (7)

This is an arbitrary choice for the adhesion factor kc, but as long as no detailed

experimental results are available, we stick to this simple empirical assumption.

3.6. Tangential Contact Model

The force in the tangential direction is implemented in the spirit of Cundall and Strack

[16] who introduced a tangential spring in order to account for static friction and

elastic energy stored in the contact tangential direction. The detailed friction law is

discussed in Ref. [12], so that we here only summarize the non-standard issues. The

relevant normal force computed with respect to the minimal force fmin so that the

tangential force becomes f t ≤ µ(fn − fmin). Besides the combination of the adhesive

and the frictional force, also the tangential dissipation is non-standard, as described in

[12, 21, 22]. Furthermore, we remark that the adhesion could also be coupled to friction

in the sense that a broken contact loses its tensile strength when it is assumed brittle, so
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that kc = 0, (if sliding), i.e. if one has a sliding contact with f t = µ(fn− fmin). On the

other hand, if the particles are very small, attractive forces could still be present so that

kc would not be affected by the type of the contact being either sliding or sticking. In

this study we assume, as an arbitrary, possibly inconsistent choice, f n ≥ 0, (if sliding),

thus disregarding adhesion in the sliding situation. The effect of this choice has to be

examined in more detailed elsewhere. All this is still open to discussion and experimental

validation.

3.7. Temperature dependence in tangential direction

In parallel to the change of normal stiffness, the tangential stiffness is always kept in a

constant ratio to k2 so that

kt = αk2(δmax) , (8)

since the stiffness in the tangential direction is based on the same arguments as the

material stiffness in the normal direction.

The friction is coupled to the temperature dependent value of the stiffness k1(T, t),

because friction should not be present in a liquid at large enough temperatures, so that

µ(T, t) =
k1(T, t)

k1
µ . (9)

Thus friction is modified together with the changes in normal direction. No further new

ideas are introduced for the tangential forces.

3.8. Contact torques and couples

The tangential sliding force leads to a torque and thus to rotations of the particles. In

addition to the sliding friction force, as related to the relative displacement in tangential

direction, also rolling resistance and contact normal torsion have to be implemented in

a realistic three dimensional model.

4. Results

The sintering model is applied to the sintering process of a particulate material sample.

The material is initially a loose powder and first has to be prepared at low temperature

from time t0 to time theat. The preparation takes place with isotropic external pressures

p := pw = px = pz = 10 or 100. The particles are randomly placed in a box with

random initial velocity. Then the walls compress the system and motion is dissipated

until a quasi-static situation is reached. Here, we used frictionless particles for the

initial compression and thus obtain an over-consolidated initial packing. The system

parameters are described in detail in Ref. [12].

The initial relaxation takes place at constant temperature T = 800C until time

theat, when the system is heated up to T = 1400C between time theat and tsinter. During

the sintering time, ts, the system is allowed to sinter. At the end of the sintering process,
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Figure 3. Vertical stress as function of the vertical strain for samples prepared with

different sintering times ts and different pressure pw = 10 (Left) and pw = 100 (Right).

The slope of the dashed line (material stiffness) is about double for the higher pressure.

at time tcool, the sample is slowly cooled down and, at time trelax allowed to relax at

constant temperature until time tf . With this finished sample, tests will be performed.

For the preparation of the sample, we use the times t0 = 0, theat = 0.2,

tsinter − theat = 0.1, different sintering times ts := tcool − tsinter, trelax − tcool = 0.1,

and tf − trelax = 0.1.

In general, longer sintering and larger confining pressures lead to higher densities

of the sintered sample. Through test simulations with different parameters, we verified

that the increase in density is only partially due to the contact model, but also is caused

by reorganizations in the sample. The thermal expansion of the particles, on the other

hand, seems to be less important.

4.1. Compression test

For the compression test of the samples with 300 particles, the top wall is displaced

slowly downwards with pre-defined vertical strain. The vertical stress is plotted against

the strain in Fig. 3. With increasing strain, the vertical stress in the sample increases

and it fails typically at some slightly larger strain and stress as compared with the small

sample. The failure stress increases with increasing sintering time, increasing external

stress, and also with increasing sample size. The material stiffness (dashed line in Fig.

3) is increasing by a factor of two when the confining stress is increased by a factor

of ten. The critical strain where the material fails increases with increasing confining

pressure, sintering time and system size.

4.2. Vibration test

Removing all side and top walls, the samples – due to gravity – collapse on the ground.

A poorly sintered powder will form a heap, whereas a sintered block of material will keep
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its identity. These sintered samples can be vibrated in order to probe their stability,

breakage and attrition, see Figs. 4 and 5.

Figure 4. Snapshots after a vibration test with frequency f = 100 Hz and amplitude

a = 0.2 mm. The material samples were sintered for ts = 10−4, 0.01, 0.02, 0.05, 0.2,

and 1.0 with p = 10. The open circles are particles with their colors coding the average

stress, blue, green and red correspond to low, medium and large stresses. The lines are

the contacts with their colors coding attractive (blue) or repulsive (red) normal forces.

The small solid circles denote the tangential forces, with their size proportional to the

magnitude of the tangential force.

The sample with the longest sintering time ts = 1.0 is almost perfectly stable even

under strong shaking – however, some corner- or boundary particles sometimes still

break off, i.e., one has attrition. For shorter sintering time the sample is less stable and

breaks into pieces.
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Figure 5. Snapshots after a vibration test. The material samples were sintered for

ts = 10−4, 0.01, 0.02, 0.05, 0.2, and 1.0, with p = 100. The color coding and meaning

of lines/circles is the same as in Fig. 4.

In Fig. 5, the external compression was stronger so that, for the same sintering

duration, more stable agglomerates are formed. Breakage and attrition is weaker for

larger confining stress.

5. Summary and Conclusion

A discrete model for the sintering of particulate materials was introduced and simple

material samples were sintered for different times and confining pressures. Then they

were tested with respect to their anisotropic load strength: Longer sintering and stronger
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confining pressure systematically increases the density and the strength of the material.

With a vibration test, the breakage and attrition behavior was tested. Depending on the

sintering duration, either isolated particles, fragments, or a single solid block of material

could be produced. Short sintering time and smaller pressure lead to stronger attrition.

The research to be done in the future is an accurate testing of the model via a

comparison with experimental data. Since these are only available in three-dimensional

systems, the 2D model presented here has to be extended to three dimensions, where

“only” more particles are needed. Note that the model presented (without optimization

or tuning) increases the amount of computation necessary for each contact by a large

factor. The last, still missing ingredients for a realistic model are rolling- and torsion-

resistance.
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