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Abstract. The sound propagation mechanisms inside dense granular matter are

challenging the attempts to describe it because of the discrete nature of the material.

Phenomenona like dissipation, scattering, and dispersion are hard to predict based on

the material state and/or properties and vice-versa. We propose here a simulation

method using dynamic discrete elements in order to get more insight in this problem.

The idea is to examine a small perturbation created on one side of a dense, static

packing of grains, during its propagation and when it arrives at the opposite side.

A pertinent choice for the boundary conditions allows us to apply longitudinal or

shear perturbations in order to select the respective modes of information propagation.

Moreover the rotational degree of freedom permits to observe the role of rotations in

the wave propagation. The propagation of rotational energy in itself is studied as well.

The control on the inter-particle forces like contact potential, cohesion and friction

make it possible to observe the effect of these micro-parameters on the macro-behavior

at the wave scale. Simulations performed on different types of packings - regular and

random poly-disperse - already show the consequences of anisotropy and allow its

characterization. The goal of this study is a better understanding of the numerous

sound propagation mechanisms in granular materials.
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1. Introduction

Sand, like other granular materials consists of many individual grains that interact with

each other via contact forces. A continuum description [2] of such discrete granular

materials is generally needed in field application because of the size of the system

considered and the prohibitively large number of particles involved. Hence starting

from a simulation at the micro level, where only a small subsystem is considered –

a representative elementary volume (REV) – the goal is a “micro-macro” transition

for the applications, which contains micro-informations also in the framework of the

macroscopic picture. This holds in particular for information propagation in granular

materials. The work presented here involves a regular structured packing on which

wave phenomenona are tested. In the following, section 2 describes the discrete

MD (Molecular Dynamics) model used and the granular packing Section 3 details

the difference between modes of agitation and propagation (compressive/shear). The

dispersion relation is extracted from the data and compared to theoretical predictions.

2. The simulation tool

2.1. The DEM Model

The simulation tool used here is a Molecular Dynamic code using a linear normal

contact law including a linear spring and a linear dashpot: fni = kδ + γ0δ̇, with spring

constant k and some damping coefficient γ0. The half-period of a vibration around the

equilibrium position leads to a typical response time tc = π/ω, with ω =
√

(k/mij)− η2
0

the eigenfrequency of the contact, the reduced mass mij = mimj/(mi + mj), and the

rescaled damping coefficient η0 = γ0/(2mij). The energy dissipation during a collision,

as caused by the dashpot, leads to a restitution coefficient r = −v ′n/vn = exp(−η0tc),

where the prime denotes the normal velocity after a collision. In order to take into

account the rotation of particles, forces in the tangential direction are considered. They

can be implemented in the spirit of Ref. [3], where a tangential spring was introduced

to account for static friction. For related literature, see Refs. [4, 5, 6].

2.2. System configuration

The system considered here is a dense, static packing of grains contained in a cuboid.

The structure chosen here has a body centred cuboid lattice structure: square-layers in

the x-y-plane are stacked on top of each other (in z-direction), such that each layer fits

into the holes of the one below, and each second layer is just a z-shifted copy of the

original. The distance between square layers is l0 = d/
√

2 for a particle diameter d.

Based on a particle-centred square in the first layer, a unit-cell (cuboid) therefore has

a volume Vu =
√

2d3 and contains 2 particles with volume 2Vp = (π/3)d3 such that the

volume fraction is ν = 2Vp/Vu = π/(3
√

2) ≈ 0.74.

This structure will not change in the simulations described below, since the case of
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small amplitude perturbations is considered. Even though all contacts have the same

predefined overlap, the packing is self-similar in the x- and y-directions, but not in the

z-direction, hence it is an anisotropic system (see Fig. 1).

Figure 1. Snapshot of a typical body centred cuboid packing.

Before a small amplitude sound wave is agitated, the system must be relaxed first

to a reasonable static equilibrium state, for example with a desired isotropic confining

stress σ0
xx = σ0

yy = σ0
zz = P0, such that the contact overlaps are still much smaller than

the particle diameter, δ/d ≈ 10−3. Periodic boundary conditions are used and so the

stress is perfectly isotropic. 3.4).

Waves are agitated by applying a small perturbation at one side of the system, i.e.,

by shifting a layer of particles. The wave vector and the wave propagation direction

are perpendicular to the agitated layer. Compressive (P) and shear (S) modes can

be triggered by directing the perturbation either parallel or perpendicular to the wave

propagation direction. Fig. 1 shows a regular packing in the x, y-planes (lx = ly = 17d

and 16d) and 23 layers in z-direction (lz = 23l0). However the typical packing used is

much longer in the z-direction which allows to study the wave for a longer time and

larger distances. We checked that the results do not depend on the extension in x- and y-

direction by comparing simulations with different size lx, ly. Therefore lx = ly = 5d was

used in order to reduce the number of particles. Such a long but thin system contains

only N = 3200 particles with radius a = d/2 = 0.001m. The mass of a spherical

particle is m = ρ0(4/3)πa3, with the material density ρ0 = 2 103 kgm−3. The total

mass of the system is thus M ≈ 0.027 kg. The stiffness material parameters in normal

and tangential direction are k = 105 N m−1 and kt = 0.2k (tangential spring stiffness,

if activated). Dissipation γt = γ0 = 0 is used if not explicitly specified. This leads

to a typical (two-particle) contact duration tc = 2.033 10−5 s and collision frequency

ωc = 150 kHz. (The oscillation frequency of a particle in a crystal, with more than

one contact, is higher.) For reliable numerical results, the criterion for the integration

time-step is δtMD < tc
50
≈ 4.10−7 s. Since the wave propagation simulations are relatively

fast, δtMD = 10−8 s is used, not so much for an improved accuracy but to allow for a
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very high data-output frequency if desired.

3. RESULTS

In this section, a typical wave propagation simulation is presented. The effect

of dissipation and friction are briefly discussed and the wave propagation speed is

determined. Furthermore, the space- and time-Fourier transforms of the wave are

presented and interpreted.

3.1. Wave propagation simulation

The strain-controlled perturbation of the layer, creates a plane compressive stress pulse

(P wave) which propagates in the system in z direction, see Fig. 2. More specific, a x, y-

layer is shifted by ∆z/d = 10−4. This displacement amplitude, ∆z, that agitates the

wave is still small as compared to the typical overlap ∆z/δ = 10−1. stress, displacement,

kinetic energy, etc. Fig. 2 shows the scaled normal stress versus time at different

positions along the wave propagation direction.

As consequence of the use of periodic boundaries, two opposite ends of the

system are connected, and a tensile wave would travel in the direction opposite to

the compressive pulse. In order to avoid this, and to maximise the distance that can

be traveled by a pulse, two layers of particles at the opposite ends of the system are

fixed – the other two directions remain periodic. This avoids the tensile pulse, but not

boundary reflections that lead to an oscillating “coda” traveling after the primary pulse,

see Fig. 2.

change, The analysis presented in the following considers only the initial,

undisturbed wave propagation, since interference with the reflected wave would disturb

the signal. The shape of the signals and the wave speed will be examined next.

3.2. Analysis of time signals

The pulse in Fig. 2 consists of two parts. The first strong peak corresponds to the

increase of stress when the wave front arrives at the recording position. The second

part, the “coda” of the signal, consist of secondary wave fronts created by the oscillation

of the layer closest to the shifted layer (that stays fixed after the shift). Its intensity

decays with time. During propagation, the first peak-amplitude decreases and its width

increases. Note that there is no active dissipation, so that the described signal behaviour

is caused by the frequency-dependent nature of the wave (dispersion), and the particular

boundary condition. One way to define the wave speed is to measure the time it takes

the peak of the first pulse to travel a certain distance. Plotting the z-position of each

peak against the time t when it reaches that position (not shown here) gives an almost

straight line. The slope of this line then gives the speed Vp during propagation, see Fig. 3.

Just assuming a constant speed (a linear fit to the z, t-data) leads to Vp1 ≈ 216 m/s. This

disregards the interesting acceleration of the pulse early during propagation. In Fig. 3,
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Figure 2. Normal stress (σzz) scaled by the equilibrium stress (σ0
zz) as function of

time at different positions z/l0 = 10, 80, and 150, with the distance from the sender,

z, and the layer distance l0.

the wave speed is compared to the simply fitted Vp1 and to the theoretical prediction

Vpz as obtained from a micro-macro transition [8].
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Figure 3. From the simulation see Fig. 2, the speed of the first peak maximum, Vp,

is plotted as a function of the distance from the source. (A center-weighted average

over five layers is used here. Also a higher output frequency was needed to obtain

reliable data). The dashed line indicates the average speed, Vp1, and the solid line is

the theoretical prediction, Vpz .

3.3. Fourier space

In order to study the frequency dependence of the P wave in our system, we performed a

Fourier analysis in time and space. ¿From a t, x data set in a system of length lz = 200 l0,

with spacing ∆z = l0 = d/
√

2, every layer position is taken into account, i.e., 200 points
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in x-space are available. The time-window 0 ≤ t ≤ tmax, with time step ∆t = 10−6 s and

tmax = 1199∆t is chosen, i.e., 1200 data points, such that the wave has not yet arrived

at the end of the system: reflections are not included in the signal.
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Figure 4. Dispersion relations (grey-scale corresponds to the amplitude of the

Fourier coefficients) for P wave (Left) and S wave (Right) in an anisotropic packing,

propagating in z direction.
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Figure 5. Wave number versus time (left) and Frequency versus position (right),

for the P-wave from Fig. 4 (grey-scale corresponds to the amplitude of the Fourier

coefficients).

The dispersion relations are obtained for P and S waves propagating in z direction,

see Fig. 4 (Left) and (Right), respectively. The MATLAB function fft2 can be used,

which returns the Fourier coefficients in an indexed ω, k-field F (ω, k) of the same size

as the input t, x data. Transformation to frequency and wave-number is performed by

multiplying the index with ∆ω = 2π/tmax and ∆k = 2π/lz. Special attention has to be

taken that the ω = 0 and k = 0 indices are properly shifted to zero.

In order to obtain the sine fit to the Fourier data, the locations of the maximal

Fourier coefficients on the frequency axis were determined by a power-law weighted
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average in Ref. [8]. The maximal frequencies are ωpz0 = 309132 s−1 and ωsz0 = 218437 s−1,

and the minimal wavelength is 2l0. The quality of the fit is impressive with respect to

both shape and magnitude of ω0. The sine function is consistent with the theoretical

work by Suiker et al. [1], where the dispersion relation for 2D lattices is discussed.

The acceleration of the wave observed can be related to an increasing wave-length

during propagation. With other words, using the dispersion relation, a typical wave-

number can be related to a local wave propagation speed. The waves are agitated with

a minimal wave-length and rapidly adapts to a speed of V ω
pz(k) ≈ 208 m/s at z/l0 ≈ 15,

and accelerates further on, see Fig. 3. This picture becomes more clear when the wave-

number is plotted against time in Fig. 5 (Left). There are strong oscillations visible at

the beginning, but after about 2 ms, the wave has adapted to its preferred spectrum of

wave-numbers (wave-lengths), with a maximum around 900 m−1. More quantitatively,

using the fitted dispersion relation leads to a corresponding wave number

k
(
z

l0
= 15

)
≈ 2

l0
arccos

V ω
pz(k)

V ω
pz(0)

≈ 885 m−1 ,

corresponding to a wavelength of λ15 ≈ 10l0, consistent with the rough average obtained

from the oscillation duration of the signal at z/l0 = 15. The wave adapts to a shape

with a preferred wave-number and a width in wave-numbers of around 100 - 150 m−1.

The typical wavelength is increasing while the wave (slightly) accelerates. The

fine-structure in the wave-number against time plot was not visible in the dispersion

relation, which shows that the frequency dependency of sound waves in a (regular-

lattice) particulate material is such that low-frequency/long wavelength components are

faster than the high-frequency wave components with smaller wavelength. With other

words, narrow pulses will not travel fast, and high frequency perturbations (ω > ω0)

will practically not propagate at all. This last statement is also evident when plotting

frequency against position in Fig.5 (Right). The high frequency components could not

travel that far as the low frequency ones. Again, a rich fine-structure is visible in the

plot – mostly at the wave-front.

This detailed quantitative study of the classical dispersion relation in the special

situation of a crystal is only the basis for future research on sound propagation in

polydisperse, disordered, frictional and anisotropic granular media.

4. CONCLUSION

Wave propagation was examined in three dimensional regular (crystal) monodisperse

packings of spheres, for compressive (P) and also shear (S) propagation modes. For

both P- and S-wave speeds, quantitative agreement was obtained between simulations

and theoretical predictions based on a micro-macro computation of the stiffness material

tensor for the anisotropic lattice. Also the dispersion relation agrees perfectly well

with theory and the observed acceleration of the travelling wave can be related to the

dispersion and widening of the pulse: the initial spectrum with short wave-lengths
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adapts to a wider pulse that travels somewhat faster. The fine-structure in the k-

spectrum for short times and in the ω-spectrum at the wave front still has to be

understood, as well as the adaptability of the present method to more realistic systems.
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