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Abstract. The goal of this study is a better understanding of the numerous

sound propagation mechanisms in granular materials. In a static, regular (crystal),

3D packing, a small perturbation is created on one side and examined during

its propagation through frictionless and frictional packings. The perturbation can

be applied in longitudinal and shear direction in order to excite different modes

of information propagation, including rotational modes as well. Wave speed and

dispersion relation derived from simulation data are compared to those given by a

theoretical approach based on a micro-macro transition. The detailed analysis of the

wave velocity reveals an interesting acceleration close to the source. Finally a step

towards real packings is made by introducing either friction or a tiny (but decisive)

polydispersity in the particle size.
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1. Introduction

The mechanisms of wave propagation through a given, possibly random, disordered

material are strongly related to the properties of this material. These include the

stiffness and the structure, where anisotropy comes into play, but also phenomena like

dissipation or friction at the “micro-” or contact-level, see Refs. [1, 2, 3]. Due to friction,

particles rotate and hence the rotational degrees of freedom can also play an important

role. Such “micro” phenomena can be modeled with a discrete approach [4, 6], but

applications such as oil field exploration and the treatment of seismic data in general,

involve larger (“macro”) scales and hence do not allow us to view the material in such

detail. A continuum description [7] is therefore needed and this leads to the issue of a

“micro-macro” transition for information propagation in granular materials.

In the following, section 2 describes the discrete MD (Molecular Dynamics) model

used, in particular, the implementation of contacts and friction, and the granular packing

structure as well. Section 3 details the influence of dissipation and friction and the

difference between modes of agitation and propagation (compressive/shear). The wave

speed is analysed and compared to the continuum theory approach. Also the dispersion

relation is extracted from the data and compared to theoretical predictions. In the last

paragraph the influence of small perturbations in the ordered structure of the packing

(applying a tiny size distribution to the particles) on the wave propagation is examined.

2. DESCRIPTION OF THE MODEL

2.1. Discrete Particle Model

The elementary units of granular materials are mesoscopic grains, which deform

under the stress developing at their contacts. Since realistic modeling of the internal

deformation of the particles is much too complicated, we relate the normal interaction

force to the overlap δ of two spherical particles. If the sum of all forces, f i, acting

on particle i, either from other particles, from boundaries or from external forces, is

known, the problem is reduced to the integration of Newton’s equations of motion for

the translational and rotational degrees of freedom:

mi

d2

dt2
ri = f i , and Ii

d2

dt2
ϕi = ti , (1)

with the mass mi of particle i, its position ri, its moment of inertia Ii, its angular ve-

locity ωi = dϕi/dt and the total torque ti. Note that the above equation is only valid

for isotropic bodies, like spheres as used in this study. The force acting on particle i

from particle j can be decomposed into a normal and a tangential part.

Linear normal contact law:

If elasticity and dissipation are desired, the simplest force law in normal direction,

n = (ri−rj)/|ri−rj|, is a linear spring and a linear dashpot fn
i = kδ+γ0δ̇, with spring

constant k and some damping coefficient γ0. The half-period of a vibration around the
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equilibrium position leads to a typical response time tc = π/ω, with the eigenfrequency

of the contact, ω =
√

(k/mij) − η2
0, the reduced mass, mij = mimj/(mi + mj), and the

rescaled damping coefficient, η0 = γ0/(2mij). The energy dissipation during a collision,

as caused by the dashpot, leads to a restitution coefficient r = −v ′

n/vn = exp(−η0tc),

where the prime denotes the normal velocity after a collision.

Tangential Contact Model:

The force in the tangential direction, f t is implemented in the spirit of Ref. [8], where

a tangential spring was introduced to account for static friction. For related literature,

see Refs. [9, 11, 12]. In the static case, the tangential force is coupled to the normal

force via Coulombs law, i.e., f t ≤ µsfn, whereas for the sliding case one has dynamic

friction with f t = µdfn. The dynamic and the static friction coefficients follow generally

the relation µd ≤ µs. The static case requires an elastic spring, related to the tangential

displacement, to allow for a static restoring force, i.e., a non-zero tangential force in

static equilibrium due to activated Coulomb friction.

If a contact exists with non-zero normal force, the tangential force is active too, and

we project (rotate) the tangential spring, with deformation ξ, into the actual tangential

plane (this is necessary, since the frame of reference of the contact may have rotated

since the last time-step)

ξ = |ξ′|t∗ , with t∗ = ξ∗/|ξ∗| , and ξ∗ = ξ′ − n(n · ξ′) , (2)

where ξ′ refers to the tangential spring at the previous iteration, ξ∗ is the spring

projected into the tangential plane, and n (t) are the normal (tangential) unit vectors.

This action is relevant only for an already existing spring; if the spring is new, the

tangential spring-length is zero anyway, however, its evolution is well defined as shown

below. The tangential velocity,

vt = vij − n(n · vij) , (3)

is computed from the total relative velocity of the surfaces of the two contacting particles,

vij = vi − vj + ain × ωi + ajn × ωj . (4)

Next, we calculate the tangential test-force as the sum of the tangential elastic and

viscous forces (in analogy to the normal force model),

f t
o

= −kt ξ − γtvt , (5)

with the tangential spring stiffness kt and a tangential dissipation parameter γt. As long

as |f t
o
| ≤ f s

C , with f s
C = µsfn, one has the static friction case (1) and, on the other

hand, if |f t
o
| becomes larger than f s

C , the sliding, dynamic friction case (2) is active

with the (possibly lower) Coulomb limit f d
C = µdfn. Sliding case (2) is active as long

as, in the next steps, the test force remains |f t
o
| > f d

C . If the tangential force drops

below the dynamic Coulomb limit, |f t
o
| ≤ f d

C , static friction becomes active again, with

the (possibly larger) Coulomb limit f s
C , giving rise to stick-slip behavior. Typically, a

contact starts with finite tangential velocity and ξ = 0; during the first time-steps, the

spring is stretched and the velocity decreases.
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In the static case (1), the tangential spring is incremented

ξ′ = ξ + vt δtMD , (6)

with the time step δtMD of the DEM simulation. The new value of ξ′ is to be used in

the next iteration in Eq. (2), along with the tangential force f t = f t
o

as defined in Eq.

(5).

In the sliding case (2), the tangential spring is adjusted to a length, which is

consistent with the Coulomb condition,

ξ′ = − 1

kt

(

f d
C t + γtvt

)

, (7)

with the tangential unit vector, t = f t
o
/|f t

o
|, defined by the direction of the force in Eq.

(5). Note that this guarantees that the force magnitude does not exceed the Coulomb

limit: Inserting ξ′ into Eq. (5) leads to f t
o
≈ f d

Ct, where f t
o

and vt are not necessarily

parallel to each other in 3D. In short notation the tangential force on particle i reads

f t
i = min

(

fC , |f t
o
|
)

t , (8)

where fC follows the selection rules described above.

2.2. Model system

The configuration considered here is a dense, static packing of grains contained in a

cuboid. In the following, monodisperse, structured (crystal) packings are studied, and

a few results obtained by introducing a small polydispersity in the particle size of 0.2%,

is presented. A more detailed study where both (large) polydispersity and disorder

are considered, will be presented elsewhere [14]. The monodisperse structured packing

used here is a Face Centered Cubic (FCC) packing: square-layers in the x-y-plane are

stacked on top of each other (in z-direction), such that each layer fits into the holes

of the one below, and each second layer is just a z-shifted copy of the original. The

distance between square layers is l0 = d/
√

2 for a particle diameter d. In Fig. 1 a

part of a packing with 3200 particles is displayed, with 4 times 4 particles in the x, y-

planes (lx = ly = 4d) and 200 layers in z-direction (lz = 200l0 – only about 90 layers

are shown). Based on a particle-centred square in the first layer, a unit-cell (cuboid)

therefore has a volume Vu =
√

2d3 and contains 2 particles with volume 2Vp = (π/3)d3

such that the volume fraction is ν = 2Vp/Vu = π/(3
√

2) ≈ 0.74. Each particle has four

contacts inside each square-layer, and eight with particles in both neighbouring layers,

corresponding to a coordination number C = 12. This structure will not change in the

simulations described below (except for the results with polydispersity), i.e., the case

of small amplitude perturbations is considered. Note that the packing is translationally

invariant in the x- and y-directions, but different in the z-direction, hence it is an

anisotropic system (see Fig. 1). Polydisperse packings are obtained by using the regular

structure where a tiny size distribution is given to the particles. The volume is kept

constant, the deformations are thus tiny also so that the polydisperse packings are still

ordered.
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Figure 1. Snapshot of a part of the typical system used (long FCC packing). The

dark particles belong to the fixed layer.

The packing is treated as piece of a larger sample via periodic boundaries, i.e.,

if a particle exits the simulation volume at one side, it enters at the opposite side at

a corresponding position with the same velocity; particles feel each other across the

periodic boundaries. While creating the regular structure, the position of particles is

chosen such that the overlap is the same at all contacts in the system, hence giving

an anisotropic stress, σ0

xx = σ0

yy 6= σ0

zz due to the anisotropic structure. The contact

overlaps are chosen much smaller than the particle diameter, δ/d ≈ 10−3. Before a

small amplitude sound wave is excited (2), the system must be relaxed (1) first to a

reasonable static equilibrium state.

(1) One possible criterion for a relaxed static state is the ratio of kinetic to potential

energy. When this ratio becomes smaller than a given limit (10−7 in this study), the

packing is said to be in a static state. For the regular, homogeneous packings used in the

following, the system can be prepared immediately in a static configuration, whereas for

the polydisperse packing (last paragraph) the system has to be relaxed. Note that such

a relaxation typically takes much longer than a typical wave propagation simulation.

(2) Waves are excited by applying a small perturbation at one side of the system,

i.e., by shifting a layer of particles. The wave vector, k, and thus the wave propagation

direction are perpendicular to the excited layer. Compressive (P) and shear (S) modes

can be triggered by directing the perturbation parallel or perpendicular to the wave

propagation direction, respectively. The typical packing used is long in the z-direction

(200l0 with l0 the distance between two layers), which allows to study the wave for a long

time and large distances. We checked that the results do not depend on the extension

in x- and y-direction by comparing simulations with different size lx, ly. Therefore

lx = ly = 4d was used in order to reduce the number of particles. Such a long but thin

system contains only N = 3200 particles with radius a = d/2 = 0.001 m. The mass of

a spherical particle is m = ρ0(4/3)πa3, with the material density ρ0 = 2. 103 kg m−3.

The total mass of the system is thus M ≈ 0.027 kg. The stiffness material parameters

in normal and tangential direction are k = 105 Nm−1 and kt, given in units of k, e.g.,

kt = 0.2k. Dissipation γt = γ0 = 0 is used if not explicitly specified. This leads
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to a typical (two-particle) contact duration tc = 2.033 10−5 s and collision frequency

ωc = 150 kHz, (the equations used to calculate these values are given in section 2.1).

Note that the oscillation frequency of a particle in a crystal, with more than one contact,

is higher than the collision frequency based on only one contact. For reliable numerical

results, the criterion for the integration time-step is δtMD < tc
50

≈ 4.10−7 s.

3. SIMULATION RESULTS

In this section, a typical wave propagation simulation is presented. Then the effects

of dissipation and friction are discussed. Also the wave propagation speed and the

dispersion relations are determined and, finally, some irregularity is introduced in the

crystal lattice.

3.1. A typical wave propagation simulation

As result of the strain-controlled perturbation of a layer, as described above in section

2.2, a plane compressive stress pulse (P wave) is created and propagates in the system

in z direction, see Fig. 2. More specific, a x, y-layer is shifted by ∆z/d = 10−4. This

displacement amplitude, ∆z, that excites the wave is still small as compared to the

typical overlap ∆z/δ = 10−1. The travelling plane wave can be observed in various

quantities like stress, displacement, kinetic energy, etc. Since the system is made of

layers, it is possible to “record” the pulse at each layer as a function of time. Fig. 2 shows

the scaled normal stress versus time at different positions along the wave propagation

direction.

The advantage of periodic boundaries is that all particles are embedded in the same

environment. As consequence, two opposite ends of the system are connected, and a

tensile wave would travel in the direction opposite to the compressive pulse. The two

waves will interfere after having travelled half of the system. In order to avoid this,

and to maximise the distance that can be traveled by a pulse, two layers of particles

at the opposite ends of the system (z-direction) are fixed – the other two directions

remain periodic. This avoids the tensile pulse, but not boundary reflections that lead

to an oscillating “coda” traveling after the primary pulse, see Fig. 2. The alternative

way of driving by specifying an initial velocity as perturbation of the layer (without

controlling its displacement further on) excites a wave of the same nature and with the

same properties, but a weaker primary pulse relative to the coda is observed.

With increasing distance from the exciting “source” layer the particles experience

an increase in stress with a time delay and also with smaller amplitude and a slower rate

of change, see Fig. 2. When the wave arrives at the other side, it is reflected from this

“receiver” layer and travels back and forth between source and receiver several times,

ever decreasing in amplitude (data not shown here). Modulations of the stress, much

smaller than the agitation peak-stress, persist throughout the whole simulation. The

analysis presented in the following considers only the initial, undisturbed wave, since
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interference with the reflected wave would disturb the signal. The shape of the signals

and the wave speed will be examined next.

 0.99
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σ z
z/σ

zz
0
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z=10 l0z=80 l0z=150 l0

Figure 2. Normal stress (σzz) scaled by the equilibrium stress (σ0

zz) as function of

time at different positions z/l0 = 10, 80, and 150, with the distance from the source,

z, and the layer distance l0.

3.2. Signal shape and damping

The pulse in Fig. 2 consists of two parts. The first strong peak corresponds to the

increase of stress when the wave front arrives at the recording position. The second part,

the “coda” of the signal, consists of secondary wave fronts created by the oscillation of

the layer closest to the shifted layer (that stays fixed after the shift). During propagation,

the first peak’s amplitude decreases and its width increases. Note that there is no active

dissipation, so that the described signal behaviour is caused by the frequency-dependent

nature of the wave (dispersion), and the particular boundary condition.

When two real particles interact or collide with each other, a part of the kinetic

energy is transformed into thermal energy, due to the local plastic deformation at the

contact. It is not clear whether this phenomenon can be described properly by a linear

spring-dashpot model. However, it appeared relevant for the sake of completeness, to

study the influence of the dissipation model parameter on our results. More advanced

contact models will be studied elsewhere [14].

As result of dissipation in the contact law (setting γ0 > 0 and r < 1, where γ0 and

r were defined in section 2.1), both the amplitude of the first wave front and of the coda

decrease, see Fig. 3 (Left). Note that the first pulse is affected much less than the coda,

i.e., for a strong enough dissipation γ0 > 0.1 kg s−1, the coda has almost disappeard

after ten layers, while the first peak continues travelling.

Fig. 3 (Right) shows the dependence of the peak amplitude evolution on dissipation.

The strongest decay rate is observed when the dissipation time-scale tγ = mij/γ0 and

a typical contact duration time-scale (oscillation period) become comparable: tγ ≈ 2tc.
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In summary, the wave is not affected by very weak dissipation. Stronger dissipation,

however, lets the coda vanish but hardly changes the wave speed of the first peak, as

discussed in the following paragraph.
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Figure 3. (Left) Two wave signals are plotted at z/l0 = 10 and 80, as in Fig.

2, without damping (dashed line) and with damping (solid line). The dissipation

strength is γ0 = 0.1 kg s−1, which corresponds to a restitution coefficient r = 0.78 and

a contact duration tc = 2.039 10−5 s, comparable to the viscous damping time scale

tγ = mij/γ0 = 4.19 10−5 s.

(Right) The first peak amplitude at different positions (z/l0 = 10, 45, 80, 115,

and 150 from top to bottom) is plotted against the dissipation strength, displaying

the decay of the wave amplitude with increasing dissipation and traveling time. The

strongest decay rate is the point with the largest (negative) slope.

3.3. The wave speed in frictionless packings

One way to define the wave speed is to measure the time it takes the peak of the first

pulse to travel a certain distance. Plotting the z-position of the peak against the time t

when it reaches that position (not shown here) gives an almost straight line. The slope

of this line then gives the speed Vp during propagation, see Fig. 4. Just assuming a

constant speed (a linear fit to the z, t-data) leads to Vp1 ≈ 216m/s. This disregards the

interesting acceleration of the pulse early during propagation. In Fig. 4, the wave speed

is compared to the simply fitted Vp1 and to the theoretical prediction Vpz as obtained

from a micro-macro transition next. Note that in the article by Somfai et al [6], such

an acceleration is also observed.

In order to compare the measured propagation speed with existing theories, it is

assumed that the granular material behaves like an elastic continuum [7, 15]. The

anisotropic relation between stress- and strain-increments involves a material tensor C

of rank four. In symbolic and index notation (Einstein convention with summation over

double indices) this reads in incremental form:

σ̇ = C : ė , or σ̇ij = Cijklėkl , (9)

with the stress- and strain-rates on the left and right, respectively. This describes the

response of our packing to large wavelength perturbations and implies the assumption of
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Figure 4. From the simulation without dissipation, see Fig. 3, the speed of the first

peak maximum, Vp, is plotted as a function of the distance from the source. (A center-

weighted average over five layers is used here. Also a higher output frequency was

needed to obtain reliable data.) The dashed line indicates the average speed, Vp1, and

the solid line is the theoretical prediction, Vpz .

a constant, time-invariant material tensor, which can hold only for small deformations,

and does not allow for opening or closing of contacts or even large scale rearrangements.

In our regular system, neither of these conditions is violated.

The stiffness tensor of the material can be derived from the potential energy density

via virtual displacement, see Refs. [12, 16],

Cαβγφ =
1

V

∑

p∈V

(

k
C
∑

c=1

(l2/2)nc
αnc

βnc
γn

c
φ + kt

C
∑

c=1

(l2/2)nc
αtcβnc

γt
c
φ

)

, (10)

with the branch vector l ≈ d and a representative volume V , e.g., the volume of the unit

cell Vu. For a frictionless packing the second term involving kt is of course disregarded.

From continuum theory, the P wave speed in z-direction is expected to be Vpz
2 = Czzzz/ρ

and, e.g., the S wave speed in the same direction is Vsz
2 = Czxzx/ρ. In Ref. [17] the

prediction for the ratio (Vpz/Vsz)
2 ≈ Czzzz/Czxzx = 2 was confirmed.

Inserting the contact normal and tangential vectors into Eq. (10), one can compute,

e.g., Czzzz, which leads to Vpz = 218.5m/s close to the linear fit estimate Vp1 ≈ 216m/s

(see above section 3.3). This holds also for the plane S-wave propagating in the

same direction (either polarised in the x or y direction), for which the theory gives

Vsz = 154.5m/s and the linear fit Vs1 ≈ 153m/s.

We performed a set of simulations exploring the anisotropy in the frictionless

packing with P- and S-waves in other directions for the propagation and for the particle

movements and obtained similar agreement concerning the wave speeds. The anisotropy

is summarised by the ratios of coefficients of the material tensor, Cxxxx/Czzzz = 1.25,

Czxzx/Cyxyx = 2 and Czzzz/Czxzx = 2.
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3.4. Dispersion relation for frictionless packings

The frequency dependence of the waves in our system can be studied by performing

a Fourier analysis in time and space. From a (t, x) data set in a system of length

lz = 200 l0, with spacing ∆z = l0 = d/
√

2, every layer position is taken into account,

i.e., 200 points in x-space are available. The time-window 0 ≤ t ≤ tmax (with time step

∆t = 10−6 s and tmax = 1199∆t, i.e., 1200 data points), is chosen such that the wave

has not yet arrived at the end of the system, so that reflections are not included in the

signal.
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Figure 5. Dispersion relations (grey-scale corresponds to the amplitude, absolute

value, of the Fourier coefficients) for P wave (Left) and S wave (Right) propagating in

z direction in the anisotropic packing.

The dispersion relations are obtained for P and S waves propagating in z direction,

see Fig. 5. The MATLAB function fft2 has been used, which returns the Fourier

coefficients in an indexed (ω, k)-field F (ω, k) of the same size as the input (t, x) data.

Transformation to frequency and wave-number is performed by multiplying the index

with ∆ω = 2π/tmax and ∆k = 2π/lz. Special care has to be taken that the indices

corresponding to ω = 0 and k = 0 are properly shifted to zero.

In order to obtain a sine fit ω(k) = ω0 sin(kl0
2

) to the Fourier data, the locations

of the maximal Fourier coefficients on the frequency axis are determined by a power-

law weighted average, ωmax(k) = ΣF (ω, k)φ ω/ΣF (ω, k)φ, with φ = 4. The quality

of the fit is impressive with respect to both shape of the curve and magnitude of ω0.

The sine function is consistent with the theoretical work by Suiker et al. [4], where

the dispersion relation for 2D lattices is discussed. According to the fits, the maximal

frequencies are ωpz
0 = 309132 s−1, ωsz

0
= 218437 s−1, and the minimal wavelength is 2l0.

The largest wave speed is obtained for V ω
pz(k = 0) = dω

dk
|
(k=0)

= ω0l0/2 = 218.59m/s, and

V ω
sz(k = 0) = 154.45m/s. These values have to be compared to the prediction based

on the micro-macro transition: Vpz = 218.50m/s and Vsz = 154.50m/s, respectively, in

order to appreciate the perfect agreement between an effective continuum theory and

the discrete simulation.
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The acceleration of the wave observed above can now be quantitatively related to

an increasing wave-length during propagation. As crude approximation, the duration T

of the first oscillation of a signal (based on first-arrival time – one per-cent peak level),

see Fig. 2, at a given position (z), multiplied by the corresponding speed V , see Fig. 4,

gives an estimated wavelength λ = V T , for this part of the signal at the given position.

We obtain λ/l0 ≈ 8, 9, 10, 16, and 19, with error-margin ±1, at z/l0 = 10, 15, 20, 80,

and 150, respectively.

Using the dispersion relation, a typical wave-number can be related to a local wave

propagation speed. In subsection 3.3, the wave is excited with a minimal wave-length

and rapidly adapts to a speed of V ω
pz(z/l0) ≈ 208m/s at z/l0 ≈ 20, and accelerates

further on, see Fig. 4. The dispersion relation leads to a prediction of the wave-number

as function of the local wave-speed at position z/l0,

k
(

z

l0

)

=
2

l0
arccos

V ω
pz(z/l0)

V ω
pz(k = 0)

,

an expression that works well for short and intermediate distances. At different positions

one finds the wavelengths λ = 2π/k with λ10 ≈ 8.3 l0, λ15 ≈ 9.2 l0, λ20 ≈ 10.1 l0,

λ80 ≈ 13.9 l0, λ150 ≈ 17.0 l0, consistent with the crude average obtained from the

oscillation duration of the signal for the shorter distances. At longer distances from

the source, the strong fluctuations and the fact that the slope of the dispersion relation

only weakly changes for small k, leave the prediction with too large error margin to be

useful.

The typical wavelength is increasing while the wave (slightly) accelerates. The

dispersion relation acts such that low-frequency/long wavelength components are faster

than the high-frequency wave components with smaller wavelength. With other words,

narrow pulses can not travel fast, and high frequency perturbations (ω ≈ ω0) will

practically not propagate at all, so that the larger wavelenghts remain travelling after

long distances.

This detailed quantitative study of the classical dispersion relation in a crystal (see

literature in solid state physics) is only the reference basis for more detailed research

on sound propagation in polydisperse, disordered, frictional and anisotropic granular

media.

3.5. The influence of friction

Friction is now introduced in the same system as described previously. The new

parameters are µ, the friction coefficient, which is kept constant to µ = 0.5 and kt

the tangential stiffness for which we performed a parameter study with the following

values: kt/k = 0, 0.2, 0.5, 1, 1.5 and 2. Since there are no sliding contacts, due to the

small amplitude perturbation, neither are differences of static and dynamic friction

coefficients, or different magnitudes of µ, relevant here (data not shown). Of course by

choosing an artificially low value for µ (µ = 0.001), see [17], sliding contacts occur and
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influence the results. This was checked by performing several simulations with µd 6= µs

and different magnitudes. Since details of the friction model are not relevant here, we

use µd = µs = µ = 0.5 in the following. The system is prepared without friction such

that ft = 0 (ft is the contact force in the tangential direction) at t = 0 and ft 6= 0

as soon as displacements and deformations occur. Note that a different preparation

procedure (data not shown) will lead to a different initial condition, with contacts close

to the sliding limit, and thus to different observations and conclusions.

The same analysis is performed as before (without friction) for both P- and S-waves.

In both cases (P- and S-wave) the first peak amplitude decreases as the tangential

stiffness (kt) is increasing. Also the “coda” tends to decay stronger and vanishes. The

velocity increases with kt increasing and it is pretty well predicted for the P-wave by

using Eq.(10) for the stiffness tensor and using the simulation data in order to get the

direction of both contact normals and tangential springs, see Fig. 6 (theory). However

for the S-wave it is not possible to use the same formula for the stiffness tensor, since

the influence of rotations is strong and irregular in the tangential direction of contacts

and renders Eq. (10) inappropriate. A more complete model like introduced in [4, 5] is

needed in order to take rotations into account.
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Figure 6. Wave velocities as function of the ratio kt/kn, with the normal stiffness,

kn = k, as introduced in section 2 (simulation and theory as described in the text).

The same agreement as in section 3.4, between theory and simulations, is obtained

for the dispersion relation for the P-wave with friction. For the S-wave, a new

branch appears in the ω(k) picture for negative wave numbers, see Fig. 7, and the

original branch deviates from the sine shape towards higher frequencies and higher

wave velocities. Larger wave numbers (smaller wavelength) modes can propagate

with higher speed (slope of the dispersion relation), dependent on the magnitude of

kt. The frequency range of the new branch is tuneable, i.e., smaller kt leads to
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smaller frequencies. The positive trend of this branch indicates that it is related to

a wave travelling in the same direction as the S-wave. However, we still have no clear

interpretation for this branch. Presumably it is a trace of the rotational degree of

freedom of the particles. A more quantitative study of wave propagation in frictional,

rotating systems will be presented elsewhere [14].
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Figure 7. Dispersion relation (grey-scale corresponds to the amplitude of the Fourier

coefficients) for the S-wave with kt/kn = 2. The solid line gives the best fit to the

P-wave dispersion relation from the system without friction, as discussed in section

3.4.

3.6. Frictionless, slightly polydisperse and ordered systems

Some polydispersity is now introduced in the crystal structure, by applying a size

distribution to the particles. The distribution is homogeneous, centered at the original

monodisperse value of the radius (a = 0.001m) and has a width (2∆a) of the order of

the overlap (δ/a = 10−3). More precisely we studied three different cases with ∆a = δ
2
, δ

and 2δ. The simulations are performed with the same parameters as in the ordered,

elastic case (section 3.1). The difference is that a preparation-simulation is needed in

order to relax the system, as mentioned in section 2.2. As one can see from Fig. 8,

the signal is strongly affected for ∆a = 2δ. For ∆a = δ/2, the signal is practically

unchanged, and for ∆a = δ we obtained something in between the two other cases (data

not shown). In the case of ∆a = 2δ, the size variation is 0.2% of the radius but 200%

if related to the overlap (δ).

The fact that polydispersity has to be related to the overlap rather than the particle

size was already reported in [10]. As consequence, strong non-linear effects at the

contacts, such as opening and closing, are evidenced. Note that the coordination number

of the relaxed, disordered packing (∆a = 2δ) is C ' 9.975. This represents a loss of

17% of the contacts as compared to the ordered system (C = 12). During the wave

propagation the coordination number is oscillating (as result of opening and closing

of contacts), by less than 0.01%. In this non-linear context, the linear theory used to
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Figure 8. Normal stress (σzz) scaled by the equilibrium stress (σ0

zz) as function of

time at different positions z/l0 = 10, 80, and 150, with the distance from the source, z,

and the layer distance l0. Comparison between the monodisperse system (see Fig. 2)

and the polydisperse system with ∆a = 2δ.
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Figure 9. (Left) P-wave velocities as function of polydispersity (simulations and

theory). (Right) Dispersion relation (grey-scale corresponds to the amplitude of the

Fourier coefficients) for the P-wave in the polydisperse system, ∆r = 2δ. The solid

line corresponds to the dispersion relation from the monodisperse, ordered system from

section 3.4.

predict the wave velocity fails (discrepancies up to 9% for ∆a = 2δ). For a theoretical

appraoch on the moduli, that considers random arrays, see Ref. [13]. Also the dispersion

relation is much broader, more noisy, and random gaps seem to appear, although the

sine shape is still visible (see Fig. 9).

4. CONCLUSION

Wave propagation was examined in three dimensional regular (crystal) monodisperse

packings of spheres, for compressive (P) and shear (S) propagation modes. Different
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dissipation strength and friction coefficients were used and an interesting acceleration

of the wave during propagation was observed for both P- and S-waves in frictionless

systems.

For the wave speeds, quantitative agreement was obtained between simulations and

theoretical predictions based on a micro-macro computation of the stiffness material

tensor for the anisotropic lattice. Also the dispersion relation agrees perfectly well

with theory and the observed acceleration of the travelling wave can be related to the

dispersion and widening of the pulse: the initially narrow pulse travels slower than the

wider, more developed pulse. Close to the source, the major wave number (wave length)

can be well predicted as function of the wave speed.

The study of frictional packings indicates the importance of rotations, and also the

limitations of the proposed theory for the wave speed. In the dispersion relation, the

S-wave branch becomes steeper and more straight (the sine-shape is lost), and a second

branch at higher frequencies occurs.

Finally in the last paragraph, weak polydispersity was introduced and more

generally, non-linearity effects are evidenced already for rather small disorder. The

dispersion relation becomes more noisy but the shape is maintained.

All this shows that by capturing already a certain amount of relevant and interesting

features of wave propagation in granular materials, the model proposed seems to be an

appropriate starting point in order to investigate quantitatively and more deeply the

phenomenon of wave propagation in polydisperse, inhomogeneous, anisotropic, dense,

frictional granular materials.
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