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Abstract

An important objective of recent research on micro-meatsnof granular materials is
to develop macroscopic constitutive relations in terms afroamechanical quantities at
inter-particle contacts. Although the micro-mechanicahfulation of the stress tensor is
well established, the corresponding formulation for thaisttensor has proven to be much
more evasive, still being the subject of much discussionthils paper, we study various
micro-mechanical strain formulations for three-dimensaiogranular assemblies, follow-
ing the work of Bagi in two dimensions [Bagi, K. (2008)t. J. of Solids and Structurgs
43: 3166-3184]. All of these formulations are either basaedan equivalent continuum
approach, or follow the best-fit approach. Their accurasgv@uated by comparing their
results, using data from Discrete Element Method simulation periodic assemblies, to
the macroscopic deformation. It is found that Bagi’s foratian [Bagi, K. (1996)Mech.
of Materials 22: 165-177], which is based on the Delaunay tessellatfagpace, is the
most accurate. Furthermore, the best-fit formulation baseplarticle displacements only
did unexpectedly well, in contrast to previously reportedults for two-dimensional as-
semblies.

1 Introduction

The constitutive relations that describe the interplayMeen stress and strain increments in
guasi-static deformation of granular materials are vergartant in many branches of science
and engineering, such as in soil mechanics and geophysscglly, such constitutive relations
are based on experimental observations and are phenorgerabio nature. An alternative ap-
proach is the micro-mechanical (or multi-scale) approacthich an objective is to formulate
relations between microscopic characteristics of thegestthat form the granular assembly
and macroscopic continuum characteristics. Thus, theaamechanical approach in principle
allows to account for the discrete nature of granular maieri

An important component of this approach is the conversiodisdrete information at the
contact level, such as forces and deformations at contatdsnacroscopic continuum quanti-
ties, like stress and strain. The formulation for the averstgess tensor (for example [Drescher
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and de Josselin de Jong, 1972,Bagi, 1996]) as a sum ovenadlate involving the contact force
and one additional geometrical quantity (the branch veci®uell-established. An alternative
formulation is given by [Goldhirsch and Goldenberg, 2005].

The analogous formulation for the average displacememligmg in terms of the relative
displacement between particles in contact and associaahefrical quantities [Bagi, 1996,
Kruyt and Rothenburg, 1996, Liao et al., 1997, Satake, 2KBt, 2003, Satake, 2004], has no
commonly accepted formulation. In general, the strain fdations can be classified into three
groups: based on (1) an equivalent continuum approach [B&§6, Kruyt and Rothenburg,
1996, Kuhn, 1999, Kruyt, 2003, Tordesillas et al., 2008] opatact-cell deformation approach
[Satake, 2002, Satake, 2004], (2) the best fit between thealgearticle relative displacements
and assumed mean-field displacements determined by thescapic strain tensor [Liao et al.,
1997, ITASCA, 1999, Cambou et al., 2000] and (3) direct dakoon of the velocity gradient
from an averaged continuous velocity field [Latzel et aQQ2, Goldhirsch and Goldenberg,
2005, Luding, 2008a, Luding, 2008b]. Best-fit strain foratidns (2) are attractive due to their
simplicity. Although the direct velocity gradient field (8 simpler to obtain, it averages out
the statistical fluctuations of the displacement field.

Recently, Bagi [Bagi, 2006a] performed a two-dimensionaherical comparison between
various micro-mechanical formulations for the strain tenbased on an equivalent continuum
approach [Bagi, 1996,Kruyt and Rothenburg, 1996, Kruyd3}@nd the best-fit approach [Liao
et al., 1997, Bagi, 2006a]. When compared to the macroscgiarmation during uni- and bi-
axial loading, the strain formulations of Bagi [Bagi, 19%6]d Kruyt & Rothenburg [Kruyt
and Rothenburg, 1996] were very accurate, with errors dm4€6, whereas the contact-based
best-fit strain of Liacet al. [Liao et al., 1997] and the Cosserat strain of Kruyt [Kruy®03]
failed to reproduce the macroscopic deformation, withrsrod about 20% and 10%, respec-
tively [Bagi, 2006a]. Furthermore, the particle-basedfieéstrain, used in the commercial soft-
ware ITASCA [ITASCA, 1999], had mixed results: for frictiass assemblies, it was very ac-
curate, while for frictional grains it gave errors of 5-208epending on the loading state [Bagi,
2006a].

Due to its relevance for micro-mechanical investigatiovesextend here the previous work
of Bagi for the two-dimensional case, to the three-dimamsioase. Strain formulations that are
investigated here are the equivalent continuum formutaifd@agi [Bagi, 1996], and three best-
fit formulations: the particle-based one [ITASCA, 1999]dawo modifications made by [Cam-
bou et al., 2000] of the contact-based best-fit formulati@mppsed by [Liao et al., 1997]. Note
that other interesting formulations are not included, ezithecause they are defined only for
the two-dimensional case, for instance [Kruyt and Rothemhi©96] or because they involve
rather high computational costs [Goldhirsch and Goldenli#005, Satake, 2004].

To our knowledge, there is only one similar study for the éhdemensional case [Drummen,
2006], where different strain formulations, in particuldre equivalent continuous strain of
Bagi [Bagi, 1996] and Satake [Satake, 2004] and the paitaked best-fit strain [ITASCA,
1999], are applied to the deformation of a periodic hexabolwse packedHCP) assembly
[Drummen, 2006]. For this ideal packing, the three strammialations reproduce the imposed
macroscopic strain with an error of less than 3% [Drummefg620However, this ideal result is
not sufficient to demonstrate their accuracy in the more iggigase of disordered packings. An
important difference between the present analysis andquestudies is that boundary effects
are excluded here by the use of periodic boundaries.



The outline of this study is as follows: in the second sectverintroduce the different strain
formulations. In the third section, we presddEM (Discrete Element Method) simulations
of both isotropic and triaxial compression. Using DEM simulation results, we compare
the micro-mechanical strains with the actual macroscopforthation in the fourth section.
Finally, in section 5, findings are discussed and conclissprasented.

2 Micro-mechanical strain

The strain tensog;; is defined as the symmetrical part of the continuum-mechadisplace-
ment gradiendu,; /J0z;, whereu;(x;) is the displacement field with respect to the selected ref-
erence configuration. However, for simplicity in the terology, in the following we will refer

to the displacement gradierity; /0x;) simply as the strain tensey;,

aui

Eij = — .
0x;
J

(1)

Furthermore, as the sign convention for stresses and stragwill consider compression as
negative.
The average;; of the strain tensor over a volumég enclosed by the surfacg is given by

1 1 ouy; 1
i V/VEU v V' ]y O, v V/sum] % )

where the last equality is due to the Gauss theoremraradte the components of the outward
normal vector to the surface Note that the continuum-mechanical displacement figld, ) is
defined over the whole singly-connected domidinThe pore space between the particles of the
assembly is averaged out in the homogenisation process,digcrete particle considerations
to continuum formulation.

For small and uniform deformations the displacement fighdtadinear order in strain, is

UZ(X> = U? + Eijxj s (3)

whereu! is the displacement of the origin in the reference configomaand a summation over
equal subscripts is implied.

2.1 Bagi’'s equivalent continuum strain

In this section we will summarize the strain tensor formolatof Bagi [Bagi, 1996]. Since
this strain formulation is based on the Delaunay tessefiaif space, this tessellation is briefly
described first. Detalls of tesselations of space withindbwetext of granular materials are
discussed in [Bagi, 1996, Bagi, 2006b].

The Delaunay tessellation consists of the tessellatiopate into simplices, i.e. triangles
in the two-dimensional and tetrahedra in the three-dinmeradicase. Given a set of points,
the simplices defined by the Delaunay tessellation conhecpoints in such a way that their
E edges (connecting lines) are the shortest path betweermthis pAn equivalent definition is
that any circle (two dimensions) or sphere (three dimers3icincumscribed around an arbitrary
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simplex contains no other point. Such a tessellation sagififie so-called Euler relation between
the number of simpliced)), faces (), edges £) and vertices§): N—E+S—L =1(3D)or

N — E+ L =1(2D). Note that the tessellation is such that no gaps or ovedepsr between
the simplices.

In a granular system the vertices are chosen to be the caitthe V particles and their
edges correspond to the shortest path between them (sé¢. Higthe sequel only the three-
dimensional case of convex particle assemblies is coresider

An edge between particlesandg is geometrically characterized by the branch vettoe=
x9 — xP, wherex? (x9) is the position of particle (¢). For convex particles, the subgef all
edgesk, resulting from the Delaunay tessellation, that represanthysical contact between
the particles will be calledeal contacts or simplgontacts In contrast, the othefl — C' edges
will be calledvirtual contacts (Fig.1). Note that spherical particles are in @aomivhen the
distance between their centres is smaller than (or equéiéum of their radii.

There are many codes available for performing the Delauessetlation [Liu and Snoeyink,
2005]. The computational complexity of the tessellationasbetween the different codes,
being at worsO (N log N) for efficient implementations.

Figure 1: Delaunay tessellation of a granular system of @sgshof different sizes. The tessel-
lation contains three tetrahedfa; b, c, f}, {b, c,d, f} and{c,d, e, f}. Red edges are contacts,
while blue edges indicat@rtual contacts.

2.1.1 Strain

Following its continuum definition, the strain tensor fohage-dimensional packing of par-
ticles in a representative volumécan be expressed as the volume average

1
€ij = % Z VLEiLj ; (4)
L



where L runs over all tetrahedra defined by the Delaunay tessallatithin the volumel” =
> Vi andV}, is the volume of thel-th tetrahedron. The average strain tensor of ik
tetrahedrortfj can be expressed as [Bagi, 1996]

1
~L Pq
€= 1 - E Aui? (b = VF) (5)
e(p,9)€EL

where the sum is over all six edge®, q) € F, of the L-th tetrahedron. Indicgsandq repre-
sent the particle at tht@il andheadof the directed edge, respectively. The relative displaagm
at the edge(p, q) is defined as

AuP? = uf —u?, (6)
whereu? is the displacement of particle For a given tetrahedroh, the vectomb? (b?) repre-
sents the outward area-vector of thé) face, which is defined as the face opposite to veptex
(¢) (see Fig.2). The norrb?| gives the area of the face.

Figure 2: Sketch of the main quantities corresponding totraltedron containing the edge
e(p, q) between particles (the edge tail) and (the edge head): the branch vedf§r= r? — r?
and the area-vectd¥ (b?) of the face opposite to particte(p).

By collecting the contributions of the various tetrahedvat tshare the same edge, Egs. (4)
and (5) can be rewritten as an average over the set of ddg¢Bagi, 1996]

€= — ZAuede: (Ausds), (7)

where brackets with subscriptepresent edge averagingj. (. ). = E~' > (.) . The vector
d¢ is the complementary area vector of the ed@e ¢), defined as:

1 &

f=5 D (b = b (8)

t=1

where the sum is over all, tetrahedra that share the edge, ¢) (Fig. 3). The geometrical
meaning of the complementary area veectors discussed in appendix A.
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Figure 3: Tetrahedra that share the ed@e ¢). The tetrahedra are formed by the particles in
contact with bottp andg (spheres in dashed lines). Red edges are contacts whileetges
indicatevirtual contacts.

2.1.2 Analogies between the stress and strain formulations

Here, analogies between the micro-mechanical descrgptbstrain and stress are emphasized.

Firstly, as was shown before, Bagi’s strain, Eq. (7) involves the volume average (as a
discrete sum over edges) of the relative edge displacethefhtind a geometrical quantity’.
Analogously, the micro-mechanical stress tengpcan be formulated as a volume average of
edge forced® and a geometrical quantity, in this case the branch vettqsee for example
[Bagi, 1996]). The micro-mechanical expressions for therage stress and strain tensors are
given by

— 1 § eje
1
gij = V E Aufd; . (10)

whereV/, is the summed volume of the Voronoi cells associated wititekunay tetrahedra,
while V' is by definition the summed volume of the Delaunay tetrahf®lgi, 1996]. However,
in the limit of large numbers of particles or for periodic esblies, both volumes are equal.
Therefore, in the sequel we will neglect the distinctionwesn both volumes and consider
V,="V.

Furthermore, note that strictly speaking, the stress isagesl over contacts' (the subset
of all Delaunay edges that contributes to the force distigo). The £ — C virtual contacts in
the sum do not contribute, since in this céSe- 0.

Secondly, by pursuing the reverse process, from the maale-$0 the micro-scale, under
certain conditions it is possible to estimate the local éoand relative displacement at edges
from the macroscopic stress and strain, respectively, aegeocalled localization [Cambou
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et al., 1995]. For this process, it is convenient to have aticel between the two geometrical
guantities involved in the stress and strain formulatinandl®, respectively.

From their definition, it is possible to show that the surfadefined by the complementary
area vectorsl® and the generalized branch vectirsdetermined by the Delaunay tessellation,
satisfy the geometrical relation

Vi = I5dS (11)

whered,; is the Kronecker delta symbol: 1if= j and O otherwise.

Using Eq. (11), we can formulate an explicit example of ali@aation operation. The edge
forces and relative displacements are determined fromviti@ge stress and strain tensors and
1° andd®, by
ff = ouds (12)

)

Au¢ = &ls . (13)

2

This is what we caluniform stresanduniform strain(see also [Kruyt and Rothenburg, 1996)).
Indeed, after multiplying by$ andd; in Egs. (12) and (13), respectively, summing over all
edges, and substituting Eg. (11), we recover the micro-ar@chl stress and strain. There-
fore, Egs. (12) and (13) provide edge forces and relativelaiements that are consistent with
Egs. (9) and (10).

In the next section we will briefly introduce particle-basedl contact-based best-fit strains.

2.2 Best-fit strain based on particles

The mean best-fit strain is determined by finding the temgdior which the actual particle
displacements most closely match the particle displacesracording to Eq. (3) [ITASCA,
1999]. Thus, the particle displacement predicted by thes@eestrairg;; is assumed to be

ul =~ ul + & " (14)

with €;; to be determined.

After transforming the particle coordinatesand the particle displacemenitsto new ones,
¥ = ol — (aF), andil = ! — (ul),, relative to the geometrical centre of the assenibfy,
(here the bracket$ > Z (.), imply an average over alV particles), the constant’
in Eq. (14) becomes zero, and the shifted particle displacésrare assumed to be given by

o =~ €t (15)

J

The strain tensox;; is then obtained from a least-squares approach by minigthe dif-
ference between the mean-field relative particle displacer(;;i!) and the actual particle
displacement?, i.e.

mlnz (a? — e” (@) — €ray) . (16)

€ij

The solution fore;; is

€ij = zk1<u T3 )p 17)
wherew;,! is the inverse of the tensar;, = (77#%),. This tensor shows some similarities with
a (massless) moment of inertia tensor of the assembly.
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2.3 Best-fit strain based on contacts

In a similar way as for the particle-based strain, the cdrtased strain, in its original form
[Liao and Chan, 1997], is obtained after minimizing the eli#nce between the mean-field
contact relative deformatios;/¢, that corresponds to uniform strain (whdfes the contact
branch vector), and the actual{. Here, the strain is determined from

min ouy — €;15)(du; — €xly 18

& ;( % J ])( k k:) ( )
where the sum runs over all contaets C.

In contrast to the relative contact displacemént, the relative contact deformatian:;
involves not only particle translations, but also partid&ations

SUPt = (WP + 07 x 1P7) — (u? + 09 x 1) = AuP + (07 x 1 — 07 x v7) | (19)

wherer?? (r?) is the vector from the centre of partiggg) to the contact point with particle
(p), and@? (67) is the rotation vector of particle (¢).
The solution of the least-squares problem leads to thenstsgiression
& = Fir (OuSl5)e (20)
Where}“i;1 is the inverse of the fabric tensdf;, = (I{l5).. Brackets with the subscrifpt
()e=C"'3. (), imply an average over all' contacts.

Based on the failure of the original contact-based bestréirsto reproduce the macroscopic
strain, two improved versions have been proposed [Cambal, &000]. In the first version,
the relative contact deformatiom® is replaced by the contact relative displacem&nt, thus
eliminating particle rotations from the strain expression

€ij = Fir (AuSl;). (21)

The second improvement is described in the next subsection.

2.4 Best-fit strain based on edges

In their second version [Cambou et al., 2000] extended thetsuedges k), instead of only
contacts (). Thus
€ = Fo, (Auslp). (22)

where 7}, = (I¢l5). is an extended fabric tensor and brackets with a subseript ). =
E~'3" ., imply an average over all edges of the tessellation.

It is shown in appendix B that the edge-based best-fit steag ¢lose approximation of
the Bagi strain, Eg. (7), when the complementary area vett@and the branch vectdf are
co-linear. Therefore, the edge-based best-fit strain is.wompletely independent formulation
and it is not expected to be more accurate than the Bagi strain



3 Discrete element simulations

Discrete Element Method simulations [Cundall and Stra®&9] have been performed to ob-
tain particle displacements under macroscopic isotropicteaxial loading conditions. These
particle displacements are used to evaluate the accuratye efarious strain formulations in-
troduced in the previous section, by comparing them withnlaeroscopic strain.

The assembly of particles consists of 250,000 spheres wgnbrmal radii distribution,
with standard deviation 0.25, relative to the mean partiatbus?. The initial packing is pre-
pared under isotropic stress. Its packing density, i.e. the volume occupied by the pkagic
divided by the total assembly volume (including voids), 83 The contact constitutive rela-
tion of [Cundall and Strack, 1979] is used, with interpadifriction coefficienty = 0.5 and
ratio k;/k, = 0.5, wherek,, andk, are the constant normal and tangential contact stiffnesses
respectively. The interparticle deformations (or ‘ovpdd are small, since the non-dimensional
stress ratiorg R/ k,, = 10~% is rather small.

Periodic boundary conditions have been employed to avoideffacts and to suppress the
formations of shear bands so that large, relatively homeges deformations can be studied.
The length of the initial cubic assembly is about 60 timesaverage particle diameter.
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Figure 4: Triaxial loading: evolution of the total volumietistrain eiy and the ratio of the
deviatoric stresg = (011 — 092)/2 to the pressurg = tro;;/3, as a function of the total axial
deformatiore};,. Compression is considered as negative.

Two loading conditions have been considered, isotropidifgaand triaxial loading. For
the former, isotropic loading, an isotropic deformationtaf% is imposed. In the latter case,
an axial deformation up to 20% is imposed along Maxis, while the lateral stresses are kept
constant equal to the initial hydrostatic stregs

The macroscopic deformation of the periodic box is desdrime the macroscopic incre-



mental strain, defined as
dL;
5?} = (T) dij (23)

whereL; is the actual system length in tixlirection andj;; is the Kronecker delta tensor. No
summation over indexis assumed. The total straif) is then obtained by integration of the
successive incremental pagts, starting from a reference state ‘0’, with correspondingah
system length&?. Therefore,

el = / e (24)
0
Li

For the triaxial loading, Figure 4 shows the evolution of tb&l volumetric strairey’ as
function of the total axial deformatior;;, = In L, /L9, with the characteristic compression-
dilation behavior. The volumetric strain is definedegs= trej; = InV/V,, whereV is the
actual averaging volume arg is the volume of the initial state. The evolution of the séres
ratio ¢/p, with deviatoric stresg = (o1; — 022)/2 and pressurg = tro;;/3, is also shown
in Fig. 4. The smallest volume and the yield stress are rehafter about 1 and 2% of axial
deformation, respectively.

4 Results

In order to evaluate the accuracy of the different straimfadations, we calculate the micro-
mechanical straing;, given by Egs. (7), (17), (21) and (22), from the DEM simwatdata.
Note that, for the Bagi and the edge-based best-fit stragss, () and (22), the three-dimensional
Delaunay tessellation needs to be determined. This is deing @hull'. An important draw-
back is that Qhull cannot handle periodic boundary conuiitiat present. The non-periodic
tessellation of points close to the system boundaries wieald to artificially flat tetrahedra,
which do not represent the actual nearest-neighbor togabthe granular assembly. In order
to avoid this spurious effect, we perform the tessellatioth® whole domain but calculate the
strain on an internal volume, that will be called ‘reducedlume, that containd/ ~ 0.93N
particles. The Bagi strain is then calculated by only takhmgcontributions of internal tetrahe-
dra, using Egs. (4) and (5), while the different best-fitisgare calculated using those patrticles,
edges or contacts inside the ‘reduced’ volume. As is showowhéor this internal volume the
mean-field strain is already attained with satisfactoryueacy.

4.1 Comparison of different strain formulations

We compare Bagi’s equivalent continuum and the best-fitrstrbased on particles, contacts
and edges, to the macroscopic strain obtained from the mefan of the periodic box;;
Eq. (23). Two loading conditions are considered, isotr@wid triaxial compression. In both
cases, the comparison is performed at different total adtdrmations:’, Eq. (25).

1C-code software developed by the Geometry Center of the Ubityeof Minnesota. Qhull is the standard
code used by the MATLAB functiodelaunayr(http://www.ghull.org)
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For the isotropic compression, the Bagi and particle-basstHit strains are indistinguish-
able and very accurate, with deviations around 0.1% (Figght), as compared to the contact-
based best-fit strain, with deviations above 10%.
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Figure 5: Isotropic loading: deviation of the axial compone;; of the different micro-
mechanical strains, from the macroscopic axial stedindetermined from the deformation of
the periodic boxp-BF corresponds to the particle-based best-fit str@iBFto the edge-based
best-fit andc-BF to the contact-based best-fit strain (the same conventigsed in similar fol-
lowing figures). Linear scale (left) and semi-log scalel{t)gare used to clearly identify the
scale of the deviations for the different strains.

In the case of the edge-based best-fit strain, after incuttie contribution ovirtual con-
tacts to the overall deformation, the agreement improwasfsy. 5). Nevertheless, it is still not
as accurate as either Bagi or the particle-based strais.iJbhinderstandable since, as is shown
in appendix B, the edge-based best-fit strain is an apprdxamaf the Bagi strain.

A similar picture is obtained for the triaxial loading (Figsand 7). In this case, the strain
of Bagi has a small deviation from the macroscopic strairtl{gmrange of 0.1-0.5%), as for
isotropic compression. Furthermore, the particle-bassd-fit strain is still as accurate as the
Bagi strain for describing the internal deformation of argiar system. This differs from the
conclusion of a two-dimensional comparison (biaxial tdsdf showed larger deviations for the
former [Bagi, 2006a].

Furthermore, from Figs. 6 and 7, it is clear that the conbested best-fit strain is not able
to properly describe the deformation of a granular systenmteréstingly, for large axial de-
formations, the lateral componefnt converges to the macroscopic strain, while its maximum
deviation is reached fof}; ~ 2%, where the granular system has its maximum stress ¢atio
(Fig. 4).

Similarly to the isotropic compression case, the edgebhsst-fit strain, as the Bagi and
the particle-based ones, also reproduces the macroscefamuation within a few percents
deviation, although this deviation increases with the iogd-¢?; (Fig. 7).
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Figure 6: Triaxial loading: deviation of the axial; (top) and lateral¢,, andeés; (bottom left
and right, respectively), components of the differentisrérom the wall strair’. Linear scale
(top left) and semi-log scale (top right) are shown. Thestadtlows for the identification of the
scale of the deviation for the different strains.

4.2 Size effect

How close the average straidy) is to the macroscopic straiff; obviously depends on the size
of the averaging volume. It has to be large enough to average intrinsic heterogeneity of
a granular system.

In order to study the size effect, the ‘reduced’ system, thee system formed by th&/
particles inside the ‘reduced’ volunié*, with sizeL, x L, x L,, is first uniformly divided
into n® non-overlapping cells of equal sizé;. /n x L,/n x L,/n and volumeV ., = V*/n3.

In the following, the index: will uniquely characterize a given division of the systemheT
strain tensoty; is then calculated for each cell using the Bagi and the particle-based best-fit
formulations. These formulations were selected sincehaws in the previous section, they
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Figure 7: Triaxial loading: deviation of the normalized woietric straire, = tre;; (left) and
deviatoric strairep = €;; — €2 (right) from macroscopic deformations.

are the most accurate for describing the macroscopic detawmof the system.

The Bagi strain of a given cell is calculated by taking the contributions of those tetrahed
with centroids inside the cell (using Egs. (4) and (5)). Tlagtiple-based strain is directly
calculated from those particles inside cell

After calculating the local strain tensor in each cell, twfbedent strain averaging methods
have been investigated: these are calléd,*averaging’ and N.;-averaging’.

With V.. -averaging’, we calculate the mean stréin) = (P/M) zgjf’ e, and the
standard deviatios;; of the strain distribution from those’ cells with equal volume, where
P = M/n?® corresponds to the mean number of particles in each cell. edery due to the
random distribution of particles in the system, equal-wmducells, corresponding to a given
divisionn of the system, may not contain the same number of partities. versacells with
the same number of particles may correspond to a differeigidn .

This observation is the basis of the second averaging mgetiaidh will be called N ;-
averaging’. Here all possible divisions of the system imtanon-overlapping equal-sized cells
are performed, i.e. from = 1 (only one cell) ton = int(v/M) (M cells, as many as the
number of particles inside the ‘reduced’ volume). Nextsthaells with the same numbgrof
particles are grouped and for each group, we calculate tlaag) » and standard deviation
Si; of the strain distribution.

Figure 8 shows the size effect on the axial strain compoagmnesulting from the equal-
volumeV,-averaging of the Bagi and the particle-based best-fit fétaitians (symbolsd) and
(e), respectively). The equal-particle-numbér,-averaging of the particle-based strain is also
shown (symbols (+)). In Figure 8, symbols (+) correspondlightly different numbers of
particles, although they appear clustered due to the eragllmgarithmic scale.

As expected, deviations from the mean-field value are ldggesmaller volumes (number
of particles). In particular, for the best-fit strain £ BF') the size effect on the mean strain
is three orders of magnitude larger for small volumes (Fijde®). This is due to the intrinsic
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non-additivity of the best-fit formulation, see Eq. (17),ielhhence implies a size dependence.
On the contrary, the Bagi strain is volume-additive, altfloin Fig. 8 (left) there is a small size
dependence since the total volume of those tetrahedraspamding to different cells may be
slightly different (note that the Bagi strain is tetrahetizased).

10t

Bag'(vcell) """"""
p- BF(VceII)

p'BF(NceII)

# particles # particles

Figure 8: Influence of the size of the averaging volume (img&pf the number of particles)
on the convergence of the normalized average axial stegihp/é;; (left), and its fluctuation
S, /én (right), toward their mean-field values. Symbols represeatvalues obtained, in the
case of Bagi, fronl/.;-averaging ¢), and, in the case of the particle-based best-fit stpain (
BF), fromV,-averaging ¢) and N.;-averaging (+). Lines correspond to power-law scalings.

For very few particles (roughly less than 10) the mean béestrain arising from thé/.;-
averaging increases sharply by more than 5 orders of mafgnabove the mean-field value
(not directly visible in Fig. 8). However, after performirige /V..;-averaging it is possible to
determine that this increase is due to the fact that theréeareells with around 4-5 particles
(see symbols¥) in Fig. 8, left), for which the best-fit method is not relialdnymore.

Furthermore, there seems to be a power-law scaling in theecgence behavior of the nor-
malized mean axial straifa;1) /€11 — 1 as function of the number of particlés for both Bagi
and the particle-based best-fit strains, with expone{s3 and—4/3, respectively. However,
we do not have a physical interpretation for these exponents

Regarding the size effect on the strain fluctuatiSfjgFig. 8, right), as expected, they also
increase for decreasing volumes. In particular, for thei B&gin, they scale as a power law
with exponent 6.4, which is close, but clearly not equal, to the exponemy2 predicted by
the Central Limit Theorem for independent random variablleshe case of the best-fit strain,
there is a sharp increase in the fluctuations for about 10cfest which, after separating the
contributions of the cells based on their number of paihs means of thé/..;-averaging), it
appears to diverge at about 4 particles. For larger voluthescaling of the fluctuations in the
best-fit strain seems to agree to that predicted by the Qemtnét Theorem, i.e. as the inverse
square root of the number of particles (Fig. 8, right).

Finally, although thé/..;-averaging works well for the Bagi strain, for a proper asay
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of the best-fit strain, both averaging methods are neededsrkall averaging cells (roughly
less thatl0? particles per cell) theV,.-averaging is more suitable, while for larger cells, the
V.en-averaging leads to less scattered results (Fig. 8).

5 Discussion

In this study we have presented and discussed four threendimnal micro-mechanical strain
formulations, the equivalent continuum Bagi strain [B&lfi96] and three best-fit strain for-
mulations: particle-based [ITASCA, 1999], contact-bafigdo et al., 1997, Cambou et al.,
2000] and edge-based [Cambou et al., 2000]. From their cosgpawith the macroscopic
three-dimensional strain, obtained from DEM simulatiohsotropic and triaxial deformation
of a polydisperse assembly of frictional spheres, we fotmad the Bagi and the particle-based
best-fit strains are equally good at describing the micrahrarical deformation of the granular
system. For large averaging volumes, both are able to rapeothe macroscopic strain within
a 1-2% accuracy. For small averaging volumes, Bagi’s stoamulation is superior.

Regarding the other two best-fit formulations, contact atgkebased, the latter has a devi-
ation from the macroscopic deformation below 5% (the demiedf the former one is as much
as 25% for the lateral strain componegy).

From these results we emphasize the following aspectsoédth the particle-based best-fit
strain is able to reproduce the macroscopic deformatioalgguell as the much more complex
Bagi strain, there is a crucial difference between them.H@rhe hand, the best-fit strain is very
simple since it is formulated in terms of particles, not eats$, and thus does neither involve the
contact relative displacement nor the complexities assediwith the geometrical description
of the contact deformation, encoded in Bagi's complemgnéaea vectors [Bagi, 1996] or
Satake’s contact-cell area vectors [Satake, 2004]. On tter dvand, this very characteristic
makes the best-fit strain unsuitable for further, and furelsiad, micro-mechanical connections
to the micro-mechanical stress (described in terms of cofdeces), which is an important goal
of the micro-mechanical description of granular systentseréfore, the Bagi formulation has
a key theoretical advantage for a possible micro-mechbyicased constitutive relation. The
particle-based best-fit formulation is more suitable fomeuical post-processing of results of
DEM simulations.

From the micro-mechanical point of view, the Delaunay thsten is frequently used
as the structural basis for the construction of micro-mei# strains [Bagi, 1996, Satake,
2004, Tordesillas et al., 2008]. In contrast, the micro-nagacal stress formulation (EqQ. 9) is
based only on the contact subnetwork. This difference insthectural basis of both tensors
yields several drawbacks in the quest for the formulationafstitutive relations connecting
them. Therefore, the strain should ideally be formulatetenrms of the real contact subnet-
work only. However, this ideal situation is so far only pddsiin very few cases, all of them
in two dimensions, where the real contact network forms ggmial set that tessellates the
surface [Kruyt and Rothenburg, 1996, Kuhn, 1999, Kruyt, 300n contrast, for the three-
dimensional case, the structure of the contact networlgishihcomplex and there is no standard
tessellation method for this problem (except for crysttida configurations).

Finally, the fact that the edge-based best-fit strain is ganagmation of the Bagi strain,
and clearly is less accurate, gives considerable weighietadiea that indeed, the strain of Bagi

15



for three-dimensional granular assemblies has fundaradi@antages with respect to other
three-dimensional strain formulations. In particularséems that the Delaunay tessellation,
with its (sub)set o¥irtual contacts that do not contribute to the force network, is afctbre of

a meaningful micro-mechanical strain definition.
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A The complementary area vector

Using the fact that the sum of all area-vectors of the closethse enclosing. tetrahedra

equals zero, we have
> bt == b, (26)

Using Eg. (26), the definition of the complementary areaareety. (8) can be simplified to

1 &
d* = > b (27)
t=1

Note that in general® is not parallel td®.
Multiplication by the unit vectoe = d°/|d°|, leads to the norm

Te

1
d°| = Equt cef . (28)

t=1

Taking into account thab? - e is the projected area of the surface elemett(Fig. 2) into
the plane perpendicular tt¥, the norm of the complementary area vector for one ¢dgjehas

a well-defined geometrical meaning: itlig6 the area of the projected (non-planar) polygonal
surface formed by the centres of all particles that are samebusly neighbors gf andq (see
Fig. 9). Therefored® contains information about the distribution of particlesund a given
edgee.

B Edge-based best-fit strain as an approximation of Bagi's
strain
Here a connection between the edge-based best-fit stram @gpaoximation of Bagi’s strain

is investigated. This connection involves additional agstions, primarily the co-linearity of
The complementary area vector and the brganch vector.
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Figure 9: The complementary area veatbis 1/6 times the area-vector of the (non-planar)
polygonal surface (in magenta) defined by the position ofrtbarest neighboring particles
(vertices) of the edggqg (black line), and the midpoint of the branch vedir(see also Fig. 3).

The complementary area vecidir and the branch vectdf are co-linear when
d® =al®, (29)

The constantr can be determined from the geometrical constraint Eq. (IdKing the trace of
both sides of Eq. (11), and substitutidg by al®,

JV=> 1-d"=a) I'I°=aE(). (30)

gives
_ 3V/E
G
For a random granular packing, we have checked that the bnagxtorsi® of Delaunay
edges are isotropic on average (data not shown). Hencextaeded fabric tensotfF;, =
(I€¢)., is also isotropic with tracer 7* = (I2)., where the average is over all edges. Note that
the corresponding fabric tensor based on contacts is ggneodisotropic. This leads to

(31)

l2
Fh= <§>€5ik . (32)
Therefore, Eq. (22) becomes
_ <Au§l§>e
Eij =3 (33)




On the other hand, after substituting Egs. (29) and (31)timcexpression for the Bagi strain,
Eqg. (7), one has

E
gij = V<A’U;d;>e (34)
E
= aV(Auflj)e (35)
_ glule (36)

{I2)e

which is identical to Eq. (33).
Hence, it has been shown that the edge-based best-fit @mapproximation of the Bagi
strain, under some additional assumptions.
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