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O. Duŕan, N. P. Kruyt and S. Luding
Department of Mechanical Engineering, University of Twente, The Netherlands

October 8, 2009

Abstract

An important objective of recent research on micro-mechanics of granular materials is
to develop macroscopic constitutive relations in terms of micro-mechanical quantities at
inter-particle contacts. Although the micro-mechanical formulation of the stress tensor is
well established, the corresponding formulation for the strain tensor has proven to be much
more evasive, still being the subject of much discussion. Inthis paper, we study various
micro-mechanical strain formulations for three-dimensional granular assemblies, follow-
ing the work of Bagi in two dimensions [Bagi, K. (2006)Int. J. of Solids and Structures,
43: 3166-3184]. All of these formulations are either based on an equivalent continuum
approach, or follow the best-fit approach. Their accuracy isevaluated by comparing their
results, using data from Discrete Element Method simulations on periodic assemblies, to
the macroscopic deformation. It is found that Bagi’s formulation [Bagi, K. (1996)Mech.
of Materials, 22: 165-177], which is based on the Delaunay tessellation of space, is the
most accurate. Furthermore, the best-fit formulation basedon particle displacements only
did unexpectedly well, in contrast to previously reported results for two-dimensional as-
semblies.

1 Introduction

The constitutive relations that describe the interplay between stress and strain increments in
quasi-static deformation of granular materials are very important in many branches of science
and engineering, such as in soil mechanics and geophysics. Usually, such constitutive relations
are based on experimental observations and are phenomenological in nature. An alternative ap-
proach is the micro-mechanical (or multi-scale) approach,in which an objective is to formulate
relations between microscopic characteristics of the particles that form the granular assembly
and macroscopic continuum characteristics. Thus, the micro-mechanical approach in principle
allows to account for the discrete nature of granular materials.

An important component of this approach is the conversion ofdiscrete information at the
contact level, such as forces and deformations at contacts,into macroscopic continuum quanti-
ties, like stress and strain. The formulation for the average stress tensor (for example [Drescher
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and de Josselin de Jong, 1972,Bagi, 1996]) as a sum over all contacts involving the contact force
and one additional geometrical quantity (the branch vector), is well-established. An alternative
formulation is given by [Goldhirsch and Goldenberg, 2005].

The analogous formulation for the average displacement gradient, in terms of the relative
displacement between particles in contact and associated geometrical quantities [Bagi, 1996,
Kruyt and Rothenburg, 1996,Liao et al., 1997,Satake, 2002,Kruyt, 2003,Satake, 2004], has no
commonly accepted formulation. In general, the strain formulations can be classified into three
groups: based on (1) an equivalent continuum approach [Bagi, 1996, Kruyt and Rothenburg,
1996, Kuhn, 1999, Kruyt, 2003, Tordesillas et al., 2008] or acontact-cell deformation approach
[Satake, 2002, Satake, 2004], (2) the best fit between the actual particle relative displacements
and assumed mean-field displacements determined by the macroscopic strain tensor [Liao et al.,
1997, ITASCA, 1999, Cambou et al., 2000] and (3) direct calculation of the velocity gradient
from an averaged continuous velocity field [Lätzel et al., 2001, Goldhirsch and Goldenberg,
2005, Luding, 2008a, Luding, 2008b]. Best-fit strain formulations (2) are attractive due to their
simplicity. Although the direct velocity gradient field (3)is simpler to obtain, it averages out
the statistical fluctuations of the displacement field.

Recently, Bagi [Bagi, 2006a] performed a two-dimensional numerical comparison between
various micro-mechanical formulations for the strain tensor, based on an equivalent continuum
approach [Bagi, 1996,Kruyt and Rothenburg, 1996,Kruyt, 2003] and the best-fit approach [Liao
et al., 1997,Bagi, 2006a]. When compared to the macroscopicdeformation during uni- and bi-
axial loading, the strain formulations of Bagi [Bagi, 1996]and Kruyt & Rothenburg [Kruyt
and Rothenburg, 1996] were very accurate, with errors closeto 1%, whereas the contact-based
best-fit strain of Liaoet al. [Liao et al., 1997] and the Cosserat strain of Kruyt [Kruyt, 2003]
failed to reproduce the macroscopic deformation, with errors of about 20% and 10%, respec-
tively [Bagi, 2006a]. Furthermore, the particle-based best-fit strain, used in the commercial soft-
ware ITASCA [ITASCA, 1999], had mixed results: for frictionless assemblies, it was very ac-
curate, while for frictional grains it gave errors of 5-20%,depending on the loading state [Bagi,
2006a].

Due to its relevance for micro-mechanical investigations,we extend here the previous work
of Bagi for the two-dimensional case, to the three-dimensional case. Strain formulations that are
investigated here are the equivalent continuum formulation of Bagi [Bagi, 1996], and three best-
fit formulations: the particle-based one [ITASCA, 1999], and two modifications made by [Cam-
bou et al., 2000] of the contact-based best-fit formulation proposed by [Liao et al., 1997]. Note
that other interesting formulations are not included, either because they are defined only for
the two-dimensional case, for instance [Kruyt and Rothenburg, 1996] or because they involve
rather high computational costs [Goldhirsch and Goldenberg, 2005,Satake, 2004].

To our knowledge, there is only one similar study for the three-dimensional case [Drummen,
2006], where different strain formulations, in particular, the equivalent continuous strain of
Bagi [Bagi, 1996] and Satake [Satake, 2004] and the particle-based best-fit strain [ITASCA,
1999], are applied to the deformation of a periodic hexagonal close packed (HCP) assembly
[Drummen, 2006]. For this ideal packing, the three strain formulations reproduce the imposed
macroscopic strain with an error of less than 3% [Drummen, 2006]. However, this ideal result is
not sufficient to demonstrate their accuracy in the more general case of disordered packings. An
important difference between the present analysis and previous studies is that boundary effects
are excluded here by the use of periodic boundaries.
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The outline of this study is as follows: in the second sectionwe introduce the different strain
formulations. In the third section, we presentDEM (Discrete Element Method) simulations
of both isotropic and triaxial compression. Using theDEM simulation results, we compare
the micro-mechanical strains with the actual macroscopic deformation in the fourth section.
Finally, in section 5, findings are discussed and conclusions presented.

2 Micro-mechanical strain

The strain tensorǫij is defined as the symmetrical part of the continuum-mechanical displace-
ment gradient∂ui/∂xj , whereui(xj) is the displacement field with respect to the selected ref-
erence configuration. However, for simplicity in the terminology, in the following we will refer
to the displacement gradient (∂ui/∂xj) simply as the strain tensorǫij ,

ǫij ≡
∂ui

∂xj

. (1)

Furthermore, as the sign convention for stresses and strains, we will consider compression as
negative.

The averagēǫij of the strain tensor over a volumeV , enclosed by the surfaceS, is given by

ǭij =
1

V

∫

V

ǫijdV =
1

V

∫

V

∂ui

∂xj

dV =
1

V

∫

S

uinjdS , (2)

where the last equality is due to the Gauss theorem andnj are the components of the outward
normal vector to the surfaceS. Note that the continuum-mechanical displacement fieldui(xj) is
defined over the whole singly-connected domainV . The pore space between the particles of the
assembly is averaged out in the homogenisation process, from discrete particle considerations
to continuum formulation.

For small and uniform deformations the displacement field, up to linear order in strain, is

ui(x) = u0
i + ǭijxj , (3)

whereu0
i is the displacement of the origin in the reference configuration and a summation over

equal subscripts is implied.

2.1 Bagi’s equivalent continuum strain

In this section we will summarize the strain tensor formulation of Bagi [Bagi, 1996]. Since
this strain formulation is based on the Delaunay tessellation of space, this tessellation is briefly
described first. Details of tesselations of space within thecontext of granular materials are
discussed in [Bagi, 1996,Bagi, 2006b].

The Delaunay tessellation consists of the tessellation of space into simplices, i.e. triangles
in the two-dimensional and tetrahedra in the three-dimensional case. Given a set ofN points,
the simplices defined by the Delaunay tessellation connect the points in such a way that their
E edges (connecting lines) are the shortest path between the points. An equivalent definition is
that any circle (two dimensions) or sphere (three dimensions) circumscribed around an arbitrary
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simplex contains no other point. Such a tessellation satisfies the so-called Euler relation between
the number of simplices (L), faces (S), edges (E) and vertices (N): N −E +S−L = 1 (3D) or
N −E + L = 1 (2D). Note that the tessellation is such that no gaps or overlapsoccur between
the simplices.

In a granular system the vertices are chosen to be the centresof theN particles and their
edges correspond to the shortest path between them (see Fig.1). In the sequel only the three-
dimensional case of convex particle assemblies is considered.

An edge between particlesp andq is geometrically characterized by the branch vectorl
pq ≡

x
q − x

p, wherexp (xq) is the position of particlep (q). For convex particles, the subsetC of all
edgesE, resulting from the Delaunay tessellation, that represents a physical contact between
the particles will be calledreal contacts or simplycontacts. In contrast, the otherE − C edges
will be calledvirtual contacts (Fig.1). Note that spherical particles are in contact when the
distance between their centres is smaller than (or equal to)the sum of their radii.

There are many codes available for performing the Delaunay tessellation [Liu and Snoeyink,
2005]. The computational complexity of the tessellation varies between the different codes,
being at worstO(N log N) for efficient implementations.

Figure 1: Delaunay tessellation of a granular system of 6 spheres of different sizes. The tessel-
lation contains three tetrahedra:{a, b, c, f}, {b, c, d, f} and{c, d, e, f}. Red edges are contacts,
while blue edges indicatevirtual contacts.

2.1.1 Strain

Following its continuum definition, the strain tensor for a three-dimensional packing ofN par-
ticles in a representative volumeV can be expressed as the volume average

ǭij =
1

V

∑

L

VLǭL
ij , (4)
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whereL runs over all tetrahedra defined by the Delaunay tessellation within the volumeV =
∑

L VL andVL is the volume of theL-th tetrahedron. The average strain tensor of theL-th
tetrahedron̄ǫL

ij can be expressed as [Bagi, 1996]

ǭL
ij =

1

12 VL

∑

e(p,q)∈EL

∆upq
i (bq

j − bp
j ) , (5)

where the sum is over all six edgese(p, q) ∈ EL of theL-th tetrahedron. Indicesp andq repre-
sent the particle at thetail andheadof the directed edge, respectively. The relative displacement
at the edgee(p, q) is defined as

∆u
pq ≡ u

p − u
q , (6)

whereup is the displacement of particlep. For a given tetrahedronL, the vectorbp (bq) repre-
sents the outward area-vector of thep (q) face, which is defined as the face opposite to vertexp
(q) (see Fig.2). The norm|bp| gives the area of the face.

Figure 2: Sketch of the main quantities corresponding to a tetrahedron containing the edge
e(p, q) between particlesp (the edge tail) andq (the edge head): the branch vectorl

pq ≡ r
q − r

p

and the area-vectorbq (bp) of the face opposite to particleq (p).

By collecting the contributions of the various tetrahedra that share the same edge, Eqs. (4)
and (5) can be rewritten as an average over the set of edges{e} [Bagi, 1996]

ǭij =
1

V

∑

e

∆ue
id

e
j =

E

V
〈∆ue

id
e
j〉e , (7)

where brackets with subscripte represent edge averaging:〈.〉e 〈 . 〉e ≡ E−1
∑

e (.) . The vector
d

e is the complementary area vector of the edgee(p, q), defined as:

d
e ≡ 1

12

Te
∑

t=1

(bqt − b
pt) (8)

where the sum is over allTe tetrahedra that share the edgee(p, q) (Fig. 3). The geometrical
meaning of the complementary area vectorde

i is discussed in appendix A.
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Figure 3: Tetrahedra that share the edgee(p, q). The tetrahedra are formed by the particles in
contact with bothp andq (spheres in dashed lines). Red edges are contacts while blueedges
indicatevirtual contacts.

2.1.2 Analogies between the stress and strain formulations

Here, analogies between the micro-mechanical descriptions of strain and stress are emphasized.
Firstly, as was shown before, Bagi’s strainǭij , Eq. (7) involves the volume average (as a

discrete sum over edges) of the relative edge displacement∆u
e and a geometrical quantityde.

Analogously, the micro-mechanical stress tensorσ̄ij can be formulated as a volume average of
edge forcesfe and a geometrical quantity, in this case the branch vectorsl

e (see for example
[Bagi, 1996]). The micro-mechanical expressions for the average stress and strain tensors are
given by

σ̄ij =
1

Vσ

∑

e

f e
i lej (9)

ǭij =
1

V

∑

e

∆ue
id

e
j . (10)

whereVσ is the summed volume of the Voronoi cells associated with theDelaunay tetrahedra,
whileV is by definition the summed volume of the Delaunay tetrahedra[Bagi, 1996]. However,
in the limit of large numbers of particles or for periodic assemblies, both volumes are equal.
Therefore, in the sequel we will neglect the distinction between both volumes and consider
Vσ = V .

Furthermore, note that strictly speaking, the stress is averaged over contactsC (the subset
of all Delaunay edges that contributes to the force distribution). TheE − C virtual contacts in
the sum do not contribute, since in this casef

e = 0.
Secondly, by pursuing the reverse process, from the macro-scale to the micro-scale, under

certain conditions it is possible to estimate the local force and relative displacement at edges
from the macroscopic stress and strain, respectively, a process called localization [Cambou
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et al., 1995]. For this process, it is convenient to have a relation between the two geometrical
quantities involved in the stress and strain formulation,d

e andl
e, respectively.

From their definition, it is possible to show that the surfaces defined by the complementary
area vectorsde and the generalized branch vectorsl

e, determined by the Delaunay tessellation,
satisfy the geometrical relation

V δij =
∑

e

lei d
e
j (11)

whereδij is the Kronecker delta symbol: 1 ifi = j and 0 otherwise.
Using Eq. (11), we can formulate an explicit example of a localization operation. The edge

forces and relative displacements are determined from the average stress and strain tensors and
l
e andd

e, by

f e
i = σ̄ikd

e
k (12)

∆ue
i = ǭikl

e
k . (13)

This is what we calluniform stressanduniform strain(see also [Kruyt and Rothenburg, 1996]).
Indeed, after multiplying bylej andde

j in Eqs. (12) and (13), respectively, summing over all
edges, and substituting Eq. (11), we recover the micro-mechanical stress and strain. There-
fore, Eqs. (12) and (13) provide edge forces and relative displacements that are consistent with
Eqs. (9) and (10).

In the next section we will briefly introduce particle-basedand contact-based best-fit strains.

2.2 Best-fit strain based on particles

The mean best-fit strain is determined by finding the tensorǭij for which the actual particle
displacements most closely match the particle displacements according to Eq. (3) [ITASCA,
1999]. Thus, the particle displacement predicted by the average strain̄ǫij is assumed to be

up
i ≈ u0

i + ǭijx
p
j (14)

with ǭij to be determined.
After transforming the particle coordinatesxp

i and the particle displacementsup
i to new ones,

x̃p
i ≡ xp

i − 〈xp
i 〉p andũp

i ≡ up
i − 〈up

i 〉p, relative to the geometrical centre of the assembly〈xp
i 〉p

(here the brackets,〈 . 〉p ≡ N−1
∑

p(.), imply an average over allN particles), the constantu0
i

in Eq. (14) becomes zero, and the shifted particle displacements are assumed to be given by

ũp
i ≈ ǭij x̃

p
j . (15)

The strain tensor̄ǫij is then obtained from a least-squares approach by minimizing the dif-
ference between the mean-field relative particle displacement (̄ǫij x̃

p
j ) and the actual particle

displacement̃up
i , i.e.

min
ǭij

∑

p

(ũp
i − ǭij x̃

p
j )(ũ

p
i − ǭikx̃

p
k) . (16)

The solution for̄ǫij is
ǭij = w−1

ik 〈ũp
j x̃

p
k〉p (17)

wherew−1
ik is the inverse of the tensorwik ≡ 〈x̃p

i x̃
p
k〉p. This tensor shows some similarities with

a (massless) moment of inertia tensor of the assembly.
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2.3 Best-fit strain based on contacts

In a similar way as for the particle-based strain, the contact-based strain, in its original form
[Liao and Chan, 1997], is obtained after minimizing the difference between the mean-field
contact relative deformation̄ǫijl

c
j , that corresponds to uniform strain (wherel

c is the contact
branch vector), and the actualδuc

i . Here, the strain is determined from

min
ǭij

∑

c

(δuc
i − ǭijl

c
j)(δu

c
i − ǭikl

c
k) (18)

where the sum runs over all contactsc ∈ C.
In contrast to the relative contact displacement∆uc

i , the relative contact deformationδuc
i

involves not only particle translations, but also particlerotations

δupq = (up + θp × r
pq) − (uq + θq × r

qp) = ∆u
pq + (θp × r

pq − θq × r
qp) , (19)

whererpq (rqp) is the vector from the centre of particlep (q) to the contact point with particleq
(p), andθp (θq) is the rotation vector of particlep (q).

The solution of the least-squares problem leads to the strain expression

ǭij = F−1
ik 〈δuc

jl
c
k〉c (20)

whereF−1
ik is the inverse of the fabric tensorFik ≡ 〈lci lck〉c. Brackets with the subscriptc,

〈 . 〉c ≡ C−1
∑

c (.) , imply an average over allC contacts.
Based on the failure of the original contact-based best-fit strain to reproduce the macroscopic

strain, two improved versions have been proposed [Cambou etal., 2000]. In the first version,
the relative contact deformationδuc is replaced by the contact relative displacement∆u

c, thus
eliminating particle rotations from the strain expression

ǭij = F−1
ik 〈∆uc

jl
c
k〉c (21)

The second improvement is described in the next subsection.

2.4 Best-fit strain based on edges

In their second version [Cambou et al., 2000] extended the sum to edges (E), instead of only
contacts (C). Thus

ǭij = F∗−1
ik 〈∆ue

jl
e
k〉e (22)

whereF∗

ik ≡ 〈lei lek〉e is an extended fabric tensor and brackets with a subscripte, 〈 . 〉e ≡
E−1

∑

e . , imply an average over allE edges of the tessellation.
It is shown in appendix B that the edge-based best-fit strain is a close approximation of

the Bagi strain, Eq. (7), when the complementary area vectord
e and the branch vectorle are

co-linear. Therefore, the edge-based best-fit strain is nota completely independent formulation
and it is not expected to be more accurate than the Bagi strain.
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3 Discrete element simulations

Discrete Element Method simulations [Cundall and Strack, 1979] have been performed to ob-
tain particle displacements under macroscopic isotropic and triaxial loading conditions. These
particle displacements are used to evaluate the accuracy ofthe various strain formulations in-
troduced in the previous section, by comparing them with themacroscopic strain.

The assembly of particles consists of 250,000 spheres with log-normal radii distribution,
with standard deviation 0.25, relative to the mean particleradiusR̄. The initial packing is pre-
pared under isotropic stressσ0. Its packing density, i.e. the volume occupied by the particles
divided by the total assembly volume (including voids), is 0.65. The contact constitutive rela-
tion of [Cundall and Strack, 1979] is used, with interparticle friction coefficientµ = 0.5 and
ratio kt/kn = 0.5, wherekn andkt are the constant normal and tangential contact stiffnesses,
respectively. The interparticle deformations (or ‘overlaps’) are small, since the non-dimensional
stress ratioσ0R̄/kn = 10−3 is rather small.

Periodic boundary conditions have been employed to avoid wall effects and to suppress the
formations of shear bands so that large, relatively homogeneous deformations can be studied.
The length of the initial cubic assembly is about 60 times theaverage particle diameter.

 0

 0.2

 0.4

 0.6

 0  5  10  15  20

q
 /
 p

-e
w

11 (%)

q/p
 0

 2

 4

 6

 8

e
w V
 (

%
)

εV

Figure 4: Triaxial loading: evolution of the total volumetric strain ew
V and the ratio of the

deviatoric stressq = (σ11 − σ22)/2 to the pressurep = tr σij/3, as a function of the total axial
deformationew

11. Compression is considered as negative.

Two loading conditions have been considered, isotropic loading and triaxial loading. For
the former, isotropic loading, an isotropic deformation upto 5% is imposed. In the latter case,
an axial deformation up to 20% is imposed along theX-axis, while the lateral stresses are kept
constant equal to the initial hydrostatic stressσ0.

The macroscopic deformation of the periodic box is described by the macroscopic incre-
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mental strain, defined as

ǫw
ij ≡

(

dLi

Li

)

δij , (23)

whereLi is the actual system length in thei-direction andδij is the Kronecker delta tensor. No
summation over indexi is assumed. The total straineij is then obtained by integration of the
successive incremental partsǫij , starting from a reference state ‘0’, with corresponding initial
system lengthsL0

i . Therefore,

ew
ij =

∫

0

ǫw
ij (24)

= ln
Li

L0
i

δij . (25)

For the triaxial loading, Figure 4 shows the evolution of thetotal volumetric strainew
V as

function of the total axial deformation,ew
11 = ln L1/L

0
1, with the characteristic compression-

dilation behavior. The volumetric strain is defined asew
V ≡ tr ew

ij = ln V/V0, whereV is the
actual averaging volume andV0 is the volume of the initial state. The evolution of the stress
ratio q/p, with deviatoric stressq = (σ11 − σ22)/2 and pressurep = trσij/3, is also shown
in Fig. 4. The smallest volume and the yield stress are reached after about 1 and 2% of axial
deformation, respectively.

4 Results

In order to evaluate the accuracy of the different strain formulations, we calculate the micro-
mechanical strains̄ǫij , given by Eqs. (7), (17), (21) and (22), from the DEM simulation data.
Note that, for the Bagi and the edge-based best-fit strains, Eqs. (7) and (22), the three-dimensional
Delaunay tessellation needs to be determined. This is done using Qhull1. An important draw-
back is that Qhull cannot handle periodic boundary conditions at present. The non-periodic
tessellation of points close to the system boundaries wouldlead to artificially flat tetrahedra,
which do not represent the actual nearest-neighbor topology of the granular assembly. In order
to avoid this spurious effect, we perform the tessellation on the whole domain but calculate the
strain on an internal volume, that will be called ‘reduced’ volume, that containsM ≈ 0.93N
particles. The Bagi strain is then calculated by only takingthe contributions of internal tetrahe-
dra, using Eqs. (4) and (5), while the different best-fit strains are calculated using those particles,
edges or contacts inside the ‘reduced’ volume. As is shown below, for this internal volume the
mean-field strain is already attained with satisfactory accuracy.

4.1 Comparison of different strain formulations

We compare Bagi’s equivalent continuum and the best-fit strains based on particles, contacts
and edges, to the macroscopic strain obtained from the deformation of the periodic boxǫw

ij

Eq. (23). Two loading conditions are considered, isotropicand triaxial compression. In both
cases, the comparison is performed at different total axialdeformationsew

11, Eq. (25).

1C-code software developed by the Geometry Center of the University of Minnesota. Qhull is the standard
code used by the MATLAB functiondelaunayn(http://www.qhull.org)
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For the isotropic compression, the Bagi and particle-basedbest-fit strains are indistinguish-
able and very accurate, with deviations around 0.1% (Fig. 5,right), as compared to the contact-
based best-fit strain, with deviations above 10%.
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Figure 5: Isotropic loading: deviation of the axial component ǭ11 of the different micro-
mechanical strains, from the macroscopic axial strainǫw

11, determined from the deformation of
the periodic box.p-BF corresponds to the particle-based best-fit strain,e-BF to the edge-based
best-fit andc-BF to the contact-based best-fit strain (the same convention isused in similar fol-
lowing figures). Linear scale (left) and semi-log scale (right) are used to clearly identify the
scale of the deviations for the different strains.

In the case of the edge-based best-fit strain, after including the contribution ofvirtual con-
tacts to the overall deformation, the agreement improves (see Fig. 5). Nevertheless, it is still not
as accurate as either Bagi or the particle-based strain. This is understandable since, as is shown
in appendix B, the edge-based best-fit strain is an approximation of the Bagi strain.

A similar picture is obtained for the triaxial loading (Figs. 6 and 7). In this case, the strain
of Bagi has a small deviation from the macroscopic strain (inthe range of 0.1-0.5%), as for
isotropic compression. Furthermore, the particle-based best-fit strain is still as accurate as the
Bagi strain for describing the internal deformation of a granular system. This differs from the
conclusion of a two-dimensional comparison (biaxial test)that showed larger deviations for the
former [Bagi, 2006a].

Furthermore, from Figs. 6 and 7, it is clear that the contact-based best-fit strain is not able
to properly describe the deformation of a granular system. Interestingly, for large axial de-
formations, the lateral componentǭ22 converges to the macroscopic strain, while its maximum
deviation is reached forew

11 ≈ 2%, where the granular system has its maximum stress ratioq/p
(Fig. 4).

Similarly to the isotropic compression case, the edge-based best-fit strain, as the Bagi and
the particle-based ones, also reproduces the macroscopic deformation within a few percents
deviation, although this deviation increases with the loading−ew

11 (Fig. 7).
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Figure 6: Triaxial loading: deviation of the axialǭ11 (top) and lateral,̄ǫ22 and ǭ33 (bottom left
and right, respectively), components of the different strains from the wall strainǫw

ij . Linear scale
(top left) and semi-log scale (top right) are shown. The latter allows for the identification of the
scale of the deviation for the different strains.

4.2 Size effect

How close the average strain̄ǫij is to the macroscopic strainǫw
ij obviously depends on the size

of the averaging volume. It has to be large enough to average out the intrinsic heterogeneity of
a granular system.

In order to study the size effect, the ‘reduced’ system, i.e., the system formed by theM
particles inside the ‘reduced’ volumeV ∗, with sizeLx × Ly × Lz, is first uniformly divided
into n3 non-overlapping cells of equal size:Lx/n × Ly/n × Lz/n and volumeVcell = V ∗/n3.
In the following, the indexn will uniquely characterize a given division of the system. The
strain tensorǫa

ij is then calculated for each cella, using the Bagi and the particle-based best-fit
formulations. These formulations were selected since, as shown in the previous section, they
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Figure 7: Triaxial loading: deviation of the normalized volumetric strain̄ǫV ≡ tr ǭij (left) and
deviatoric strain̄ǫD ≡ ǭ11 − ǭ22 (right) from macroscopic deformations.

are the most accurate for describing the macroscopic deformation of the system.
The Bagi strain of a given cella is calculated by taking the contributions of those tetrahedra

with centroids inside the cell (using Eqs. (4) and (5)). The particle-based strain is directly
calculated from those particles inside cella.

After calculating the local strain tensor in each cell, two different strain averaging methods
have been investigated: these are called ‘Vcell-averaging’ and ‘Ncell-averaging’.

With ‘Vcell-averaging’, we calculate the mean strain〈ǫij〉P̄ ≡ (P̄ /M)
∑a=n3

a=1 ǫa
ij , and the

standard deviationSǫ
ij of the strain distribution from thosen3 cells with equal volume, where

P̄ = M/n3 corresponds to the mean number of particles in each cell. However, due to the
random distribution of particles in the system, equal-volume cells, corresponding to a given
divisionn of the system, may not contain the same number of particles.Vice versa, cells with
the same number of particles may correspond to a different divisionn.

This observation is the basis of the second averaging method, which will be called ‘Ncell-
averaging’. Here all possible divisions of the system inton3 non-overlapping equal-sized cells
are performed, i.e. fromn = 1 (only one cell) ton = int( 3

√
M) (M cells, as many as the

number of particles inside the ‘reduced’ volume). Next, those cells with the same numberP of
particles are grouped and for each group, we calculate the mean〈ǫij〉P and standard deviation
Sǫ

ij of the strain distribution.
Figure 8 shows the size effect on the axial strain componentǭ11 resulting from the equal-

volumeVcell-averaging of the Bagi and the particle-based best-fit formulations (symbols (◦) and
(•), respectively). The equal-particle-numberNcell-averaging of the particle-based strain is also
shown (symbols (+)). In Figure 8, symbols (+) correspond to slightly different numbers of
particles, although they appear clustered due to the employed logarithmic scale.

As expected, deviations from the mean-field value are largerfor smaller volumes (number
of particles). In particular, for the best-fit strain (p − BF ) the size effect on the mean strain
is three orders of magnitude larger for small volumes (Fig. 8, left). This is due to the intrinsic
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non-additivity of the best-fit formulation, see Eq. (17), which hence implies a size dependence.
On the contrary, the Bagi strain is volume-additive, although in Fig. 8 (left) there is a small size
dependence since the total volume of those tetrahedra corresponding to different cells may be
slightly different (note that the Bagi strain is tetrahedron-based).

10-2

10-1

100

101 102 103 104

S
ε 1

1
/ε

1
1

# particles

-0.4
-0.5

Bagi(Vcell)
p-BF(Vcell)
p-BF(Ncell)

10-6

10-5

10-4

10-3

10-2

10-1

100

101

101 102 103 104

<
ε 1

1
>

P
/ε

1
1
 -

 1

# particles

-4/3

-2/3

Bagi(Vcell)
p-BF(Vcell)
p-BF(Ncell)

Figure 8: Influence of the size of the averaging volume (in terms of the number of particles)
on the convergence of the normalized average axial strain〈ǫ11〉P /ǭ11 (left), and its fluctuation
Sǫ

11/ǭ11 (right), toward their mean-field values. Symbols representthe values obtained, in the
case of Bagi, fromVcell-averaging (◦), and, in the case of the particle-based best-fit strain (p −
BF ), fromVcell-averaging (•) andNcell-averaging (+). Lines correspond to power-law scalings.

For very few particles (roughly less than 10) the mean best-fit strain arising from theVcell-
averaging increases sharply by more than 5 orders of magnitude above the mean-field value
(not directly visible in Fig. 8). However, after performingtheNcell-averaging it is possible to
determine that this increase is due to the fact that there arefew cells with around 4-5 particles
(see symbols (+) in Fig. 8, left), for which the best-fit method is not reliable anymore.

Furthermore, there seems to be a power-law scaling in the convergence behavior of the nor-
malized mean axial strain〈ǫ11〉P /ǭ11−1 as function of the number of particlesP , for both Bagi
and the particle-based best-fit strains, with exponents−2/3 and−4/3, respectively. However,
we do not have a physical interpretation for these exponents.

Regarding the size effect on the strain fluctuationsSǫ
ij (Fig. 8, right), as expected, they also

increase for decreasing volumes. In particular, for the Bagi strain, they scale as a power law
with exponent -0.4, which is close, but clearly not equal, to the exponent−1/2 predicted by
the Central Limit Theorem for independent random variables. In the case of the best-fit strain,
there is a sharp increase in the fluctuations for about 10 particles, which, after separating the
contributions of the cells based on their number of particles (by means of theNcell-averaging), it
appears to diverge at about 4 particles. For larger volumes,the scaling of the fluctuations in the
best-fit strain seems to agree to that predicted by the Central Limit Theorem, i.e. as the inverse
square root of the number of particles (Fig. 8, right).

Finally, although theVcell-averaging works well for the Bagi strain, for a proper analysis
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of the best-fit strain, both averaging methods are needed. For small averaging cells (roughly
less that102 particles per cell) theNcell-averaging is more suitable, while for larger cells, the
Vcell-averaging leads to less scattered results (Fig. 8).

5 Discussion

In this study we have presented and discussed four three-dimensional micro-mechanical strain
formulations, the equivalent continuum Bagi strain [Bagi,1996] and three best-fit strain for-
mulations: particle-based [ITASCA, 1999], contact-based[Liao et al., 1997, Cambou et al.,
2000] and edge-based [Cambou et al., 2000]. From their comparison with the macroscopic
three-dimensional strain, obtained from DEM simulations of isotropic and triaxial deformation
of a polydisperse assembly of frictional spheres, we found that the Bagi and the particle-based
best-fit strains are equally good at describing the micro-mechanical deformation of the granular
system. For large averaging volumes, both are able to reproduce the macroscopic strain within
a 1-2% accuracy. For small averaging volumes, Bagi’s strainformulation is superior.

Regarding the other two best-fit formulations, contact and edge-based, the latter has a devi-
ation from the macroscopic deformation below 5% (the deviation of the former one is as much
as 25% for the lateral strain componentǭ22).

From these results we emphasize the following aspects. Although the particle-based best-fit
strain is able to reproduce the macroscopic deformation equally well as the much more complex
Bagi strain, there is a crucial difference between them. On the one hand, the best-fit strain is very
simple since it is formulated in terms of particles, not contacts, and thus does neither involve the
contact relative displacement nor the complexities associated with the geometrical description
of the contact deformation, encoded in Bagi’s complementary area vectors [Bagi, 1996] or
Satake’s contact-cell area vectors [Satake, 2004]. On the other hand, this very characteristic
makes the best-fit strain unsuitable for further, and fundamental, micro-mechanical connections
to the micro-mechanical stress (described in terms of contact forces), which is an important goal
of the micro-mechanical description of granular systems. Therefore, the Bagi formulation has
a key theoretical advantage for a possible micro-mechanically based constitutive relation. The
particle-based best-fit formulation is more suitable for numerical post-processing of results of
DEM simulations.

From the micro-mechanical point of view, the Delaunay tessellation is frequently used
as the structural basis for the construction of micro-mechanical strains [Bagi, 1996, Satake,
2004, Tordesillas et al., 2008]. In contrast, the micro-mechanical stress formulation (Eq. 9) is
based only on the contact subnetwork. This difference in thestructural basis of both tensors
yields several drawbacks in the quest for the formulation ofconstitutive relations connecting
them. Therefore, the strain should ideally be formulated interms of the real contact subnet-
work only. However, this ideal situation is so far only possible in very few cases, all of them
in two dimensions, where the real contact network forms a polygonal set that tessellates the
surface [Kruyt and Rothenburg, 1996, Kuhn, 1999, Kruyt, 2003]. In contrast, for the three-
dimensional case, the structure of the contact network is highly complex and there is no standard
tessellation method for this problem (except for crystal lattice configurations).

Finally, the fact that the edge-based best-fit strain is an approximation of the Bagi strain,
and clearly is less accurate, gives considerable weight to the idea that indeed, the strain of Bagi
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for three-dimensional granular assemblies has fundamental advantages with respect to other
three-dimensional strain formulations. In particular, itseems that the Delaunay tessellation,
with its (sub)set ofvirtual contacts that do not contribute to the force network, is at the core of
a meaningful micro-mechanical strain definition.
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A The complementary area vector

Using the fact that the sum of all area-vectors of the closed surface enclosingTe tetrahedra
equals zero, we have

Te
∑

t=1

b
qt = −

Te
∑

t=1

b
pt . (26)

Using Eq. (26), the definition of the complementary area vector Eq. (8) can be simplified to

d
e ≡ 1

6

Te
∑

t=1

b
qt . (27)

Note that in generalde is not parallel tole.
Multiplication by the unit vectoree

d ≡ d
e/|de|, leads to the norm

|de| ≡ 1

6

Te
∑

t=1

b
qt · ee

d . (28)

Taking into account thatbqt · ee
d is the projected area of the surface elementb

qt (Fig. 2) into
the plane perpendicular tode, the norm of the complementary area vector for one edge|de| has
a well-defined geometrical meaning: it is1/6 the area of the projected (non-planar) polygonal
surface formed by the centres of all particles that are simultaneously neighbors ofp andq (see
Fig. 9). Therefore,de contains information about the distribution of particles around a given
edgee.

B Edge-based best-fit strain as an approximation of Bagi’s
strain

Here a connection between the edge-based best-fit strain as an approximation of Bagi’s strain
is investigated. This connection involves additional assumptions, primarily the co-linearity of
The complementary area vector and the brqanch vector.
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Figure 9: The complementary area vectord is 1/6 times the area-vector of the (non-planar)
polygonal surface (in magenta) defined by the position of thenearest neighboring particles
(vertices) of the edgepq (black line), and the midpoint of the branch vectorl

pq (see also Fig. 3).

The complementary area vectord
e and the branch vectorle are co-linear when

d
e = αl

e , (29)

The constantα can be determined from the geometrical constraint Eq. (11).Taking the trace of
both sides of Eq. (11), and substitutingd

e by αl
e,

3V =
∑

e

l
e · de = α

∑

e

l
e · le = αE〈l2e〉e (30)

gives

α =
3V/E

〈l2e〉e
. (31)

For a random granular packing, we have checked that the branch vectorsle of Delaunay
edges are isotropic on average (data not shown). Hence, the extended fabric tensor,F∗

ik ≡
〈lei lek〉e, is also isotropic with tracetrF∗ = 〈l2e〉e, where the average is over all edges. Note that
the corresponding fabric tensor based on contacts is generally not isotropic. This leads to

F∗

ik =
〈l2e〉e

3
δik . (32)

Therefore, Eq. (22) becomes

ǭij = 3
〈∆ue

jl
e
i 〉e

〈l2e〉e
. (33)
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On the other hand, after substituting Eqs. (29) and (31) intothe expression for the Bagi strain,
Eq. (7), one has

ǭij =
E

V
〈∆ue

id
e
j〉e (34)

= α
E

V
〈∆uc

i l
e
j〉e (35)

= 3
〈∆ue

i l
e
j〉e

〈l2e〉e
, (36)

which is identical to Eq. (33).
Hence, it has been shown that the edge-based best-fit strain is an approximation of the Bagi

strain, under some additional assumptions.
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