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How good is the equipartition assumption for the transport

properties of a granular mixture?

Meheboob Alam(), Stefan Luding(:?) *

Abstract Kinetic-theory, with the assumption of equipar-
tition of granular energy, suggests that the pressure and
viscosity of a granular mixture vary monotonicelly with
the mass-ratio. Our simulation results show a non-monoto-
nic behaviour that can be explained qualitatively by a
simple model allowing for non-equipartition of granular
energy between the species with different mass.
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1
Introduction

The balance laws and the constitutive relations for the
transport properties of bidisperse granular mixtures have
been proposed by Jenkins & Mancini [1,2], using the anal-
ogy with dense-gas kinetic theory of mixtures [3,4]. Some
important modifications in these models were recently in-
corporated by Willits & Arnarson [5,6]. All the above
mentioned models are first-order in inelasticity, meaning
that they are valid for nearly elastic particles. A further
important assumption is that the fluctuation kinetic en-
ergy is equally partitioned between the two species. Re-
cent theoretical studies [7-10] show that the equiparti-
tion principle does not hold for an inelastic system, and
some provide more general results. Also the earliest con-
stitutive model of Jenkins & Mancini [1] took energy non-
equipartition into account (in the dense limit), by incorpo-
rating first-order corrections in the fluctuation energy dif-
ference. The theoretical studies have been complemented
by both computer simulations [11-14] and laboratory ex-
periments [15,16], which verifed the breakdown of the
equipartition principle for granular mixtures. All these
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works collectively showed that even though the inelastic-
ity is responsible for the onset of energy non-equipartition,
it is the mass-disparity which strongly amplifies its mag-
nitude.

It is important to know the range of validity of any con-
stitutive model in terms of all the control parameters as
well as the validity of some of its underlying assumptions
if one wishes to use it for predictive purposes. For exam-
ple, if the effect of the non-equipartion of energy on the
transport coefficients (pressure, viscosity, thermal conduc-
tivity, etc.) is minimal, one could still rely on the effective
mixture models with equipartition assumption.

Here we show, using the event-driven simulation of a
sheared binary granular mixture, that the breakdown of
the equipartition principle leads to certain interesting be-
haviour of its transport coefficients (pressure and shear
viscosity). However, the effective mizture-theory, with the
equipartition assumption, fails to predict the qualitative
behaviour of pressure and viscosity in such situations.

2
Simulation details

We consider a collection of smooth inelastic hard-disks
in a square box of size L under uniform shear flow —
let Z and ¢ be the streamwise and transverse directions,
respectively, with the origin of the coordinate-frame be-
ing positioned at the centre of the box. (Note that the
dimensional quantities are denoted by tildes, while their
nondimensional counterparts lack it.) Let the diameter
and the mass of the particle i be d; and m; (i = 1,s),
respectively, with the suffix [ or s denoting the species of
larger/smaller mass, respectively. That the particles are
dissipative is taken into account through the following re-
lation for the pre- and post-collisional velocities:
k-&); = —e(k-€50), (1)
with e;; being the coefficient of normal restitution for col-
lisions between particles ¢ and j. Here €;; = €; — ¢&; is
the relative velocity, and k;; = k the unit vector directed
from the center of the particle j to that of particle i. We
used the familiar Lees-Edwards boundary condition [17]
to attain the state of uniform shear flow (USF). Overall,
this represents an extended doubly-periodic system where
the periodicity in the transverse direction is in the local
Lagrangian frame.

The disks are initially placed randomly in the box, and
the initial velocity field is composed of the uniform shear



and a small Gaussian random part. Given the initial po-
sition and velocities of the particles, an event-driven algo-
rithm is used to simulate instantaneous binary collisions.
At the statistical steady-state of the uniform shear flow,
the fluctuation kinetic energy saturates to a constant value
after the initial transients, a consequence of the balance
between the shear work and the collisional dissipation.
After reaching such a steady-state, the simulation is then
allowed to run for another 20000 collisions per particle to
gather data to calculate the pressure, shear viscosity and
granular energy.

To obtain pressure and shear viscosity from simula-
tions, we have to calculate the macroscopic stress which
is composed of two different parts, kinetic stress and colli-
sional stress, each being a byproduct of a separate mode of
momemtum transport at the microscopic level. While the
transport of momentum as a particle moves through the
system, carrying the momentum of its motion, is responsi-
ble for the ‘kinetic’ mode of stress, the direct interparticle
collisions generate its ‘collisional’ component. The total
stress tensor is thus calculated from
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where p; and v; are the material density and the volume
fraction of species i, C; = ¢; — @ is the peculiar velocity
and I;; is the collisional impulse. Note that for the colli-
sional stress, 13,9, the sum is taken over all collisions during
the averaging time window 74. For the uniform shear flow,
all these quantities (except the streamwise velocity which
varies linearly with the transverse coordinate) are uniform
in the computational box, which in turn allows us to take
averages over the whole computational box, as made ex-
plicit in Eq. (2).

The pressure, p, is then calculated from the isotropic
part of the stress P. From the off-diagonal components of
the pressure deviator, IT = P — p1, we can calculate shear
viscosity which relates the shear stress to the shear rate:
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Both pressure and viscosity are nondimensionalized by
pid?4? and pyd?7, respectively, with 4 being the imposed
shear rate. Granular energy, which is a measure of the
random motion of the particles, may be obtained from
the trace of the kinetic part of the stress tensor, and the
species granular energy is calculated from the following
expression:
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The mizture granular energy is T = -, - &Ti, where
& = N;/N is the number fraction of species 4.

As mentioned before, we consider the equal-size (d; =

ds) bidisperse mixture, characterized only by density or

mass-disparity. The total number of particles and the im-
posed shear rate v were fixed at 1024 and 1, respectively,

i=1,N;

(4)

and we have checked that the reported results do not de-
pend on the system-size and the shear rate [13]. Thus,
there are four dimensionless control parameters: the to-
tal solids volume fraction (v), the relative volume fraction
of heavier particles (x = v;/v), the mass ratio (R,, =
my/ms), and the coefficient of normal restitution (e). The
detailed results will be presented elsewhere. Below, a set of
numerical results is presented to probe the validity of the
kinetic theory constitutive model with the equipartition
assumption and a simple extension based on the species
energy ratio is proposed.

3

Results and discussion

First we recall the standard form of the Newtonian stress
tensor

P =pl — 248, (5)

where S is the deviatoric part of the shear-rate tensor.
The effective mixture theory [4,2] with the equipartition
assumption, postulates the following expressions for pres-
sure and shear viscosity:

p = Tprz‘ and p

i=l

= VT fui (6)
i=l
where T'= 3, - &T; is called the mixture temperature.

Similarly, following Jenkins & Mancini [1,2], the constitu-
tive expression for the collisional dissipation rate can be
written as:

D= T3/228:fm.

i=l

(7)

The functions, fp;, fu: and fp; depend on the density ra-
tio, size-ratio, mass ratio, inelasticity, and the radial dis-
tribution function, the explicit forms of which may be ob-
tained from the Enskog theory of binary mixtures [2,6].
For the steady (2 (.) = 0), fully developed (%() =0)
plane shear flow of a binary granular mixture, it is easy to
verify that a linear streamwise velocity profile along with
constant density and constant granular energy satisfies the
balance equations [13]. Thus, the mean fields are given by

¢ = ZZ:! ¢; = const.
T=3%,,6T; = const.
"= (y,0"

u = (u,v)" =

An explicit expression for T' can be obtained from the en-
ergy balance equation, by equating the production term
due to shear-work (—P:Vu) with the collisional dissipa-
tion rate (D):

S
T = izt fui 9)
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Figure 1 shows the variation of the ratio between the
two species granular energies, T; /T, with the mass ratio,
R,, = my/m,. The parameter values are set to v = 0.1,
x = 0.5 and e = e;; = 0.9. The symbols represent our
simulation data— clearly, the granular energy is unequally
partitioned between the two species, and the degree of
this non-equipartition increases with the mass-ratio. The

(8)
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Fig. 1. Variation of the ratio of the species granular energies,
T;/Ts, with the mass ratio for v = 0.1, x = 0.5 and e = 0.9.
The solid line is the prediction of Barrat & Trizac (2002). The
inset shows the comparison of mixture granular energy between
simulation and theory: solid line is the model prediction, T™¢,
with nonequipartion of energy, and the dashed line, T, with
equipartition assumption.

solid line in this Fig. is due to Barrat & Trizac [9] who
obtained an implicit nonlinear expression for the granular
energy ratio, Ry = T;/Ts, for a driven granular gas:
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Here g;; is the radial distribution function at contact, d is
the dimensionality of the problem, M;; = m;/(m; + m;)
and R;; = d; / d; = 1. Overall, there is a good agreement
between simulation and theory. (Strictly speaking, the ex-
pression for T;/Ts for the uniform shear flow should be
obtained by equating the shear-work and the dissipation
rate for the individual species. Since we do not have an ex-
act expression for the shear viscosity of a binary mixture,
with T} # T, we have chosen the expression of Barrat &
Trizac.) The inset in Fig. 1 shows the corresponding varia-
tion of the mizture granular energy T with the mass ratio.
While our simulation data shows an interesting nonmono-
tonic behaviour for T', the predictions of Eq. (9), given by
the dashed line, shows that T' = T'¢ decays monotonically.

Figure 2 shows the variations of pressure and viscos-
ity and their partial components with the mass ratio. The
overall behaviour looks similar to that of the granular en-
ergy. It is noteworthy that at large mass-disparities the
major contribution to both pressure and viscosity comes
from the heavier particles only. The theoretical predictions
from Eq. (6) (not shown on the graph) suggest a monoton-
ically decreasing behaviour for p and p and their partial
components, quite contrary to our simulations.

Now let us postulate the constitutive relations for p, p
and D allowing energy non-equipartition in a simple way:

b= Z fpi(ﬂ/Tw ---)Ti>
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(To understand the above functional forms, we consider
the kinetic-part of the pressure, p*. Assuming that the
singlet distribution function of species i is a Maxwellian
at its own temperature, it can be verified [1] that p¥ =
i1, viTi. Similarly, we can obtain an expression for the
collisional part of the pressure, p°. The details of these
functional forms will appear in a forthcoming publication.)
Note that the functions, fp;, fu: and fp; now depend addi-
tionally on T;/Ts. The expression for fp;(T;/Ts,...) can be
obtained by assuming Maxwellian distribution functions
for each species. Since we do not have exact expression
for fui(T;/Ts,...), we have taken it simply from Willits &
Arnarson [6]. (This choice does not influence the predic-
tions at low densities.) The granular energy can again be
calculated from Eq. (9), by knowing the energy ratio from
Barrat & Trizac [9].

The predictions of this simplified model for 7', p and p
are shown in figures 1 and 2. This model is able to capture
the trend of our data and the overall agreement is good.

Lastly, the reason for such nonmonotonic behaviour
of pressure and viscosity can be understood by recalling
their variation with density for a sheared momnodisperse
granular system. Typically, the variations of both p and
p with density follow U-shaped curves, with minimums
occuring at a density of v = 0.3. Since the lighter parti-
cles do not contribute to transport properties due to their
low-mobilities at large mass-ratios, the system would be-
have as if it were composed of only heavier particles with
an effective lower density, depending on the relative vol-
ume fraction x. Hence both pressure and viscosity would
eventually increase in the same limit.

4
Conclusions

The interesting finding from our simulation data on pres-
sure and viscosity is their non-monotonic behaviour with
the mass-ratio, whereas the theoretical predictions with
the equipartition assumption suggest a monotonic behavi-
our. This is directly related to the violation of the equipar-
tition principle at large mass-ratios for which the mix-
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Fig. 2. Variations of (a) pressure, (b) viscosity and their partial components, with the mass-ratio R,, = m;/ms; parameter
values as in figure 1. Symbols denote simulation data and the lines the model predictions.

ture effectively behaves like a lower-density system. Even
though the example we have chosen is very simple-minded,

it

demonstrates that a proper constitutive model for a

granular mixture must incorporate the effect of non-equip-
artition of granular energy. An interesting practical appli-
cation is the tuning of flow properties by adding equal-size
lighter particles to the system. More interesting results can
be expected when both mass- and size-ratios are tuned
[13].
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