
1

1

Objective constitutive relations from DEM

Stefan Luding

Abstract: Powders in a split-bottom ring shear cell geometry show wide shear bands under
slow, quasi-static deformation. From discrete element simulations (DEM), several conti-
nuum fields like the density, velocity, deformation gradient and stress are computed and
evaluated with the goal to formulate objective constitutive relations for the powder flow
behavior.

From a single simulation, by applying time- and local space-averaging, a nonlinear
yield surface is obtained with a peculiar stress dependence. Stress and strain are observed
to be not perfectly co-linear, and the difference in orientation seems to be decaying with
shear-rate.

The anisotropy is always smaller than the macroscopic friction coefficient. However,
the lower bound of anisotropy increases with the shear rate,approaching the maximum
according to a stretched exponential with a specific rate that is consistent with a shear path
of about one particle diameter.

1 Introduction

Powders or sand consist of many independent particles with peculiar collective flow behavior.
Knowing the interaction laws and inserting those into a discrete element model (DEM), one can
follow the particles by integrating Newtons equations of motion (Herrmann, Hovi, and Luding
1998; Kishino 2001; Luding, Lätzel, and Herrmann 2001; Luding 2004b; Luding 2008b).

The goal can be to derive continuum constitutive relations –as needed for industrial application.
Methods and tools for a so-called micro-macro transition are applied (Vermeer, Diebels, Ehlers,
Herrmann, Luding, and Ramm 2001; Lätzel, Luding, and Herrmann 2000; Luding 2004a; Lu-
ding 2005b; Luding 2005a) on small so-called representative volume elements (RVE). In the
ring-shear cell, both local space averaging (on toroidal sub-volumes at fixed radial and verti-
cal position) as well as time-averaging in the (presumed) steady state can be applied and one
obtains already from a single simulation some of the constitutive relation aimed for.

In this study, the micro-macro averaging is applied to a three-dimensional split-bottom shear cell
as recently presented (Fenistein and van Hecke 2003; Fenistein, van de Meent, and van Hecke
2004). The special property of a split-bottom ring shear cell is the fact that the shear band
is initiated at the bottom slit and its velocity field is well approximated by an error-function
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(Fenistein, van de Meent, and van Hecke 2004; Luding 2004b; Luding 2006b) with a width
considerably increasing from bottom to top (free surface).In this study, the frictionless data
are examined and the stress- and strain-tensors are examined in their eigensystems and eigen-
directions.

2 The Soft Particle Molecular Dynamics Method

The behavior of granular media can be simulated with the discrete element method (DEM) (Al-
len and Tildesley 1987; Lätzel, Luding, Herrmann, Howell, and Behringer 2003; Luding 2008a).
The most basic ingredient is a force-displacement relationthat governs the interaction between
pairs of particles. Particle positions, velocities and interaction forces are then sufficient to inte-
grate (explicitly) Newtons equations of motion and follow all particles during their evolution in
time.

Since the realistic modeling of the deformations of the particles is much too complicated, we
relate the normal interaction force to the overlap asf = kδ, with a stiffnessk, if δ > 0. In order
to account for energy dissipation, the normal degrees of freedom, i.e. the relative motion of two
particles in contact, is subject to a viscous, velocity dependent damping, for more details see
(Luding 1998; Luding 2006a; Luding 2008a).

3 Ring shear cell in 3D

In order to save computing time, only a quarter of the ring-shaped geometry is simulated. The
walls are cylindrical, and are roughened due to some (about 3per-cent of the total number)
attached particles (Luding 2004b; Luding 2006b; Luding 2008b). The outer cylinder wall with
radiusRo = 0.110 m, and part of the bottomr > Rs = 0.085 m are rotating around the
symmetry axis, while the inner wall with radiusRi = 0.0147 m, and the attached bottom-disk
r < Rs remain at rest. For small filling height, the shearband is visible from the top, whereas
for larger filling height, the shearband does not reach the top and other modes of flow can be
observed, see Ref. (Luding 2008b).

3.1 Material and system parameters

First, the simulation runs for more than 50 s with a rotation ratefo = 0.01 s−1 of the outer
cylinder, with angular velocityΩo = 2πfo. For the average only larger times are taken into
account, thus disregarding the transient behavior at the onset of shear. A snapshot in steady
state (top and front view) is displayed in Fig. 1.
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Figure 1: Snapshots from a simulation withN = 34518 particles, without frictionµ = 0. The
colors blue, green, orange and red denote particles with displacements in tangential direction
per secondr dφ ≤ 0.5 mm,r dφ ≤ 2 mm,r dφ ≤ 4 mm, andr dφ > 4 mm.

3.2 Averaging and micro-macro procedure

Since we assume translational invariance in the tangentialφ-direction, averaging is performed
over toroidal volumina and over many snapshots in time (typically 40-60), leading to fields
Q(r,z) as function of the radial and vertical positions. Here, averaging is performed with spa-
cings of∆r ≈ 0.0025 and∆z ≈ 0.0028 in radial and vertical direction.

From the simulations, one observes that the density, the coordination number and the isotropic
fabric decrease with height and are systematically lower inthe shear band due to dilatancy.
From a set of simulations with different filling heights (data not shown, see (Luding 2004b)),
just examined from the top (like in the original experiments), it becomes clear that the shearband
moves inwards with increasing filling height and also becomes wider. From the front-view, the
same information can be evidenced, see Fig. 1, as well as the shape and width of the shear band
inside the bulk. The shear band moves rapidly inwards deep inthe bulk – close to the slit in the
bottom – while its position does not change much more furtherup.

From the velocity field gradient, the strain rate
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can be obtained, as discussed in Ref. (Depken, van Saarloos,and van Hecke 2006), see Eq. (7)
therein (the geometrical term,vφ/r in Eq. (1), comes from the cylindrical coordinate system
used here). From the eigenvalue analysis of the velocity gradient, one finds that shear planes are
well described by the normal unit vectorγ̂ = (cos θ, 0, sin θ), with θ = θ(r,z) = arccos(d1/γ̇),
as predicted in Ref. (Depken, van Saarloos, and van Hecke 2006). This unit-vector,̂γ, is the
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eigen-vector of the vanishing eigenvalue of the velocity gradient tensor, while the other two are
opposite-equal, with their eigen-vectors in the plane perpendicular tôγ.
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Figure 2: Graphic representation of the strain rateγ̇, as given in the inset, plotted as function of
radial and vertical positions – larger symbols correspond also to largerγ̇. The lines indicate the
centerRc and the half-widthW of the shear band. (Luding 2008)

From the simulation, one can determine the components of thestress tensor

σαβ =
1

V

∑

c∈V

fαlβ , (2)

with the components of the contact normal forcesfα and branch vectorslβ. The sum extends
over all contacts within or close to the averaging volume,V , weighted according to their vicini-
ty.

Since theσrz ≈ 0 component is small, as compared to the other averaged non-diagonal stresses,
the shear stress can be defined in analogy to the velocity gradient, as proposed in (Depken, van
Saarloos, and van Hecke 2006):

|τ | =
√

σ2

rφ + σ2

zφ . (3)

A more detailed study of the stress- and strain eigenvalues and eigensystems leads to the three
eigenvaluesσmax, σ0, andσmin corresponding to the maximum, intermediate and minimum
stress, respectively, with corresponding eigen-directionsσ̂max, σ̂0, andσ̂min. In Fig. 4, the shear
stress|τ | and the deviator stressσD =

√

(σmax − σmin)2 + (σmax − σ0)2 + (σ0 − σmin)2/
√

6
are plotted against the pressurep = (σmax + σ0 + σmin)/3. Note that the definition ofσD is
equivalent toq = (σmax − σmin)/2 in the case of a stress tensor withσ0 = (σmax − σmin)/2.

Shear stress,τ , and deviatorσD quantify the stress anisotropy and are almost identical, see
Figs. 3 and 4, onlyσD appears systematically somewhat larger than|τ |. The ratioσD/τ > 1
is a decaying function of the shear rate (data not shown here –but note their big scatter) and
indicates how good the stress tensor conforms with the assumptions that lead to Eq. (3). The
closer the ratio is to unity, the closer the presumed stress is to the objective stress.
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Figure 3: Shear stress|τ | and deviator stressσD, plotted against pressurep for different strain
rates, limits are given in the inset. All points with higher shear rate are found close to the yield
surfaceµp, as represented by the solid line, with constantµ = 0.15.

From the (almost) constant shear stress intensity in the shear zone, one can determine the Mohr-
Coulomb-type friction angle of the equivalent macroscopicconstitutive law, asψ ≈ arcsinµ.
Interestingly, without frictionψ is rather large, i.e., much larger than expected from a frictionless
material, whereas it is astonishingly small with friction (data not shown, see (Luding 2008b)).
From Fig. 4, one observes that the anisotropy is stress dependent, increasing up to moderate
stress levels and then remaining more or less constant, within the fluctuations.

Plotting the shear stress intensity|τ |/p and the anisotropyσD/p against the shear rateγ̇, or the
non-dimensional shear rate

I = γ̇d0

√

̺/p , (4)

with the mean particle diameterd0, and the bulk density,̺, as proposed in Ref. (MiDi 2004),
neither leads to a better trend nor a better data collapse foreither of the two possibilites. There-
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Figure 4: (Left) Shear stress ratio|τ |/p and (Right) anisotropyσD/p, plotted against pressurep
for different strain rates as given in the inset.

fore, we define the dimensionless shear path

ld =
∆t∆r

d0

γ̇ , (5)

with the simulation averaging time interval∆t = 25.4 s, and the radial bin-width,∆r =
2.45 10−3 m, used to compute the velocity gradient. The shear-path,ld, indicates about how
many particle diamters the shear planes have been sheared relative to each other.

When plotting|τ |/p andσD/p, in Fig. 5, against the shear path,ld, the former appears (again)
somewhat smaller than the latter. The question whether the very small systematic discrepancy
between shear stress and deviator stress have a physical meaning or are only a consequence of
statistical fluctuations can only be answered by a more careful analysis of the stress, the fabric,
and the velocity gradient, which is far from the scope of thispaper.

Besides considerable scatter, the data in Fig. 5 (Right) fall between the maximum anisotropy,
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Figure 5: (Left) Shear stress intensity|τ |/p, and (Right) anisotropyσD/p, plotted against the
shear pathld. The data for small pressuresp < 100 are disregarded here. The solid and the
dashed lines correspond to Eq. (6), withα = 0.5 andα = 1, respectively.

µ = 0.15, and the lower bound:

σD

p
> µ [1 − exp (−l αd )] , (6)

where the exponentα = 0.5 seems to be a better choice thanα = 1. Note, however, that this
is only an empirical fit-function without a theoretical basis. The stretched exponential lower
bound indicates slow relaxation processes, which require that the granular material shear planes
move relative to each other by much more than one particle diameter, before the steady state
shear regime with anisotropyσD/p ≈ µ is reached.

Thus anisotropy requires a certain shear path before its established and fully developed. This mi-
nimal displacement is consistent with the particle diameter, but a much more detailed parameter
study is required to confirm this.

A local anisotropy,sD := σD/p, starting from random initial situations,0 ≤ sD ≤ µ, and
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evolving according to
∂sD

∂lD
= (µ− sD) , (7)

would be consistent withα = 1, see the two-dimensional results (Luding 2004a). A quantitative
confirmation of the above evolution law for the stress anisotropy with shear deformation is
subject to further study of both steady and transient states.

4 Conclusion

Simulations of a slit-bottom Couette ring shear cell show perfect qualitative and good quantitati-
ve agreement with experiments. Frictionless simulations are already in 80% percent agreement
with the experiments - and the simulation with friction comes even close to 90%. This is remar-
kable, since besides the geometry of the shear cell no special attention was payed to the choice
of material parameters, particle-size and particle size distribution.

From the simulations, we learn that the shear-planes are tilted from the horizontal as proposed
in Ref. (Depken, van Saarloos, and van Hecke 2006). The shearstress intensity is computed –
under the assumption that the stress eigen-system is co-linear with the velocity gradient eigen-
system – and compared to the objective stress anisotropy. The latter is always larger than the
former, decreasing with shear rate to values close to unity.

The objective stress anisotropy is limited by the macroscopic friction coefficientµ ≈ 0.15.
Shear planes with small shear rate occur with all values,µ ≥ sD ≥ 0, while the anisotropy is
limited by a lower bound that approachesµ with increasing shear path. The major conclusion is
that shear planes have to move relative to each other by more than one particle diameter before
the maximum anisotropy can be established.

The functional behavior of the evolution of anisotropy withshear path has to be studied further
for different parameters, system sizes, simulation duration, and also for transient states.
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