
Advanced Programming in Engineering

lecture notes

P.J. Visser, S. Luding, S. Srivastava

March 13, 2011

Changes

13/3/2011

� Added Section 7.4 to 7.7.

� Added Section 4.4

7/3/2011

� Added chapter Chapter 7

23/2/2011

� Corrected the equation for the average temperature in terms of micro-
scopic quantities, Eq. 3.14.

� Corrected the equation for the speed distribution in 2D, Eq. 3.19.

� Added links to sources of ‘true’ random numbers available through the
web as footnotes in Section 5.1.

� Added examples of choices for parameters of the LCG and LFG in
Section 5.1.1 and 5.1.2, respectively.

� Added the chi-square test and correlation functions as ways for testing
random numbers in Section 5.1.4.

� Improved the derivation of the average squared distance of particles
in a random walk being linear with time, in Section 5.2.1.

� Added a discussion of the meaning of the terms in the master equation,
in Section 5.2.5.

� Small changes.

19/2/2011

� Corrected the Maxwell-Boltzmann distribution for the speed, Eq. 3.19.

14/2/2011

1

2

� Added Chapter 6.

6/2/2011

� Verified Eq. 3.15 and added footnote discussing its meaning in case of
periodic boundary conditions.

� Added formula for the radial distribution function in Section 3.4.2,
Eq. 3.21.

31/1/2011

� Added Chapter 5.

9/1/2010

� Corrected labels on the axes in Fig. 3.10, changed U · ε and r · σ to
U/ε and r/σ, respectively.

� Added truncated version of the Lennard-Jones potential in Section 3.3.1.

� Corrected speed distribution, Eq. 3.19 to be valid in 2D.

� Small changes.

3/12/2010

� Added section on simulating fluids, Section 3.3.

� Added section on statistical mechanics, Section 3.4.

13/12/2010 (2)

� Corrected that spring equilibrium lengths for Np particles in 2D are
fully determined by a particle pair rather than a particle. I.e. the
equiblibrium lengths of Section 3.2.2 are req,ij , i = 1..Np, j = 1..Np,
rather than req,i, i = 1..Np.

� Corrected that the outer loop of the force calculation, Algorithm 4,
can run from 1 to Np − 1 rather than from 1 to Np.

� Added section on the potential and kinetic energy in 2D, Section 3.2.3.

� Added exercise asking to add the computation of the potential and
kinetic energy to the algorithm.

� Small changes.

13/12/2010

3

� Changed algorithms. Loop variables are now updated at the start of
an integration step rather than the end. Positions at the current time
step is stored rather than the position at the next time step. Loop
runs from n = 0 to n = Nt rather than n = 1 to n = Nt. It makes
more sense this way.

� Corrected ~ri =
[
xi yi

]
, i = 1..Np to ~ri =

[
xi yi

]T
, i = 1..Np in Sec-

tion 3.2.3.

� Corrected force calculation for particles connected with springs in 2D,
Section 3.2; introduced spring compression δ and corrected that ~nij is
the vector to particle i from particle j, not from particle i to particle
j.

� Expanded section on solids, Section 3.2.4 a bit.

� Other small changes.

Preface

The present script attempts to describe into sufficient detail the material
treated during the lectures. It is based mainly on handwritten notes made
by the author during the 09/10 lectures. It therefore attempts to largely
reflect the material as lectured by professor Luding (the topics of differential
equations, numerical integration of ordinary differential equations, molecular
dynamics, random numbers and fractals), Katia Bertoldi (the topic of finite
element method) and Anthony Thornton (the topics of finite volume method
and SPH method).

It is a work in progress, and as of yet only material covering the first few
lectures has been written. The material that has been written will become
available in parallel to the lectures covering it. The latest version will be
available through Blackboard.

For certain topics, hyperlinks that point to further reading and other
helpful places have been added to this document. Of course these will only
be available when reading the digital version in a PDF reader supporting
hyperlinks, such as Adobe Reader 1.

Throughout this document exercises are described. They are intended
for self study purposes and are not mandatory.

Many thanks to all who have helped out in making this document, in
particular to professor Luding, Saurabh Srivastava, Thomas Weinhart and
Martin Robinson for their feedback on drafts of the document.

I hope you find this document a helpful addition to the lectures. I am
sure that you will encounter many mistakes, be it in spelling or content.
Any corrections and other comments would be greatly appreciated. Please
send them to pieterjanv@gmail.com.

1available on http://get.adobe.com/reader/

4

http://www2.msm.ctw.utwente.nl/sluding/
http://www.bertoldi.seas.harvard.edu/people-1
http://wwwhome.math.utwente.nl/~thorntona/
https://blackboard.utwente.nl/
mailto:pieterjanv@gmail.com
http://get.adobe.com/reader/

Contents

1 Numeral systems 8
1.1 Representation of positive integers and real numbers 8
1.2 Representation of negative numbers 9

2 Ordinary differential equations 11
2.1 The harmonic oscillator . 11

2.1.1 Analytic solution . 12
2.2 Nondimensionalization . 13
2.3 Numerical integration of ODE’s 14

2.3.1 Euler integration . 15
2.3.2 Euler-Cromer integration 16
2.3.3 Verlet integration . 16
2.3.4 Runge-Kutta integration 17
2.3.5 MATLAB ode45 . 19
2.3.6 Other integration schemes 21

3 Molecular Dynamics 23
3.1 Particles in one dimension connected with springs 23

3.1.1 Two particles connected with a spring 23
3.1.2 Np particles connected with a spring 24
3.1.3 Debugging using laws of physics 26

3.2 Particles in two dimensions connected with springs 28
3.2.1 Two particles in two dimensions connected with a spring 29
3.2.2 Np particles in two dimensions connected with springs 30
3.2.3 An algorithm for 2D molecular dynamics 31
3.2.4 Modeling a solid . 36

3.3 Simulating fluids using molecular dynamics 38
3.3.1 Potentials . 39
3.3.2 Efficiently simulating fluids 41

3.4 Statistical mechanics, connecting microscopic and macroscopic
properties . 44
3.4.1 Obtaining familiar macroscopic quantities from simu-

lations . 45

5

CONTENTS 6

3.4.2 Other important concepts in statistical mechanics . . 47
3.4.3 Local instantaneous quantities 49
3.4.4 Finding new microstates 49

4 The Finite Element Method 50
4.1 The finite element method in the quasistatic limit 51

4.1.1 The quasistatic limit 51
4.1.2 The bar element . 52
4.1.3 An example of solving a problem with FEM 53
4.1.4 Elements in arbitrary orientation 56

4.2 Formal procedure of deriving the stiffness matrix in FEM . . 57
4.2.1 Derivation of the strong formulation 58
4.2.2 Derivation of the weak formulation 59
4.2.3 Discretization . 61

4.3 Dynamic formulation for FEM 63
4.3.1 Discretization of the dynamic formulation; the mass

matrix . 64
4.3.2 Modal analysis . 68
4.3.3 Transient analysis; the Newmark-β method 69

4.4 Finite Element Method for Nonlinear Systems 70
4.4.1 A primer on nonlinearities 70
4.4.2 Conjugate Gradient Method 71
4.4.3 Newton-Raphson Method 71
4.4.4 Nonlinear bar . 72
4.4.5 Newton’s method for nonlinear finite elements 73

5 Random numbers 75
5.1 Random number generators 75

5.1.1 The linear congruential generator 76
5.1.2 The lagged Fibonacci generator 76
5.1.3 Other random number generators 77
5.1.4 Testing randomness 77

5.2 Random walks . 78
5.2.1 The one dimensional random walk 79
5.2.2 Random walks in 3D 81
5.2.3 Continuous time random walks 81
5.2.4 The probability distribution for the position of a par-

ticle in a random walk 81
5.2.5 The random walk and diffusion 82

6 Smoothed Particle Hydrodynamics 84
6.1 Introduction . 84
6.2 Interpolation . 85

6.2.1 Integral and summation interpolants 85

CONTENTS 7

6.2.2 First derivatives . 86
6.3 Simple Equations of Motion 86

6.3.1 SPH equations of motion satisfying the conservation
laws . 86

6.3.2 Integration of the equations of motion 87
6.4 Viscosity . 87

7 Finite Volume Method 88
7.1 The FVM integral equation 88
7.2 Total variation diminishing schemes 91
7.3 The CFL condition . 92
7.4 The Lax-Friedrichs method 92
7.5 Flux limiters . 93
7.6 TVD Lax-Friedrichs . 94
7.7 Initial and boundary conditions 95

7.7.1 Initial conditions . 95
7.7.2 Boundary conditions 95

Chapter 1

Numeral systems

Numeral systems are writing systems for expressing numbers. The most
commonly used numeral system is the positional system. Here a numeral is
written as a series of digits ak in a base B, where ak = 0, 1, ..., B − 1. The
number N represented by the numeral is given by

N =
∑
k

akB
k (1.1)

The digits used to denote numbers are those of the arabic numerals for bases
smaller or equal to ten. Thus the symbols are 0, 1, 2, 3, 4, 5, 6, 7, 8 and
9. For larger bases letters are used in addition to arabic numerals. For
example, the digits used in hexedecimal notation (B = 16) are the arabic
digits together with the symbols A, B, C, D, E and F .

In case when it is unclear from context in what base a numeral is written
a subscript with the base number is usually added. For example, the numeral
3 in decimal base (B = 10) is written as 310.

1.1 Representation of positive integers and real
numbers

To represent an integer NZ using the positional system the index k ranges
from zero to n, such that Bn ≤ NZ < Bn+1, which leads to a sum with n+1
terms:

NZ =

n∑
k=0

akB
k. (1.2)

As an example, the number represented by the numeral 11 in decimal
(B = 1010), binary (B = 210) and hexadecimal (B = 1610) base are given.
From the numeral we have a0 = 1, a1 = 1, and substituting this in Eq. (1.2)
the number 11B is thus 1 ·B0 + 1 ·B1.

In decimal base the number is 110 + 1010 = 1110.

8

http://en.wikipedia.org/wiki/Numeral_system
http://en.wikipedia.org/wiki/Positional_notation

CHAPTER 1. NUMERAL SYSTEMS 9

In binary base the number is 110 + 210 = 310.
In hexadecimal base the number is 110 + 1610 = 1710.
To represent a real number requires representing the part smaller than

unity. This is provided for by letting k take on values smaller than zero. For
irrational numbers the representation of the part smaller than unity requires
an infinite number of digits. A real number NR can therefore be written as

NR =
n∑

k=−∞
akB

k, (1.3)

where n is such that Bn ≤ NR < Bn+1.
As an example, the number represented by the numeral 3.14 in decimal

(B = 1010), binary (B = 210) and hexadecimal (B = 1610) base are given.
From the numeral we have a−2 = 4, a−1 = 1, a0 = 3, and substituting this
in Eq. (1.2) the number 3.14B is thus 410 ·B−2 + 110 ·B−1 + 310 ·B0.

In decimal base the number is 410 · 10−2
10 + 110 · 10−1

10 + 310 · 100
10 = 3.1410.

In binary the number is undefined, since the numeral contains digits that
aren’t present in the binary numeral system.

In hexadecimal base the number is 410 · 16−2
10 + 110 · 16−1

10 + 310 · 160
10 =

3.07812510.

1.2 Representation of negative numbers

To represent negative numbers in binary using digits only, the most com-
monly used method is the so-called two’s complement. The method works
by making the leftmost digit represent a negative number instead of a posi-
tive one. Suppose we want to denote a number N using m fractional digits
and n+ 1 integer digits of base B. The number is then given by

N = an · −Bn +
n−1∑
−m

akB
k. (1.4)

So if the digit an is nonzero the number is negative, otherwise it is
positive.

Example: (un)signed binary numerals

To clarify with an example, Tab. 1.1 gives all unsigned (only positive) and
signed (both positive and negative) integers representable by three binary
digits (B = 2). The second column is obtained from substiuting the numeral
in Eq. (1.2), the third column is obtained from Eq. (1.4).

An unsigned integer binary numeral of n + 1 bits can represent values
on the interval

[
0, 2n+1 − 1

]
and a signed one on the interval [−2n, 2n − 1].

Ex. 1 — What are the smallest and largest values representable by the
MATLAB datatypes uint32 and int32?

http://en.wikipedia.org/wiki/Two's_complement

CHAPTER 1. NUMERAL SYSTEMS 10

Numeral Unsigned value Signed value

000 0 · 4 + 0 · 2 + 0 · 1 = 0 0 · −4 + 0 · 2 + 0 · 1 = 0
001 1 1
010 2 2
011 3 3

100 1 · 4 + 0 · 2 + 0 · 1 = 4 1 · −4 + 0 · 2 + 0 · 1 = −4
101 5 -3
110 6 -2
111 7 -1

Table 1.1: Signed and unsigned integers using three bits (n = 2, B = 2),
thevalue of the leftmost digit is marked in boldface

Chapter 2

Ordinary differential
equations

In molecular dynamics the motion of particles in time is computed. Since
the motion of particles in time is described by ordinary differential equations
(ODE’s), the content of this chapter is preliminary for the next chapter on
molecular dynamics.

In general ODE’s do not allow an exact solution. Simulating this motion
in time therefore requires integrating ODE’s numerically. This chapter dis-
cusses some ordinary differential equations and methods used to numerically
integrate them.

In learning to solve ODE’s with numerical integration it is helpful to
start with an ODE that allows an analytic solution, so that results obtained
with numerical integration can be compared to the analytic results. To
this end the harmonic oscillator and its analytic solution are discussed in
Section 2.1.

Secondly, Section 2.2 discusses nondimensionalization, as it is a process
which can get more out of a computer simulation.

Finally, Section 2.3 discusses several methods of numerically integrating
ODE’s. It covers to some detail the Euler, Euler-Cromer, Verlet and Runge-
Kutta integration schemes.

2.1 The harmonic oscillator

In introducing the numerical methods that solve odinary differential equa-
tions in this course, the methods are applied to solving the differential equa-
tion of the harmonic oscillator. The reason is that we can obtain an analytic
solution to this equation, allowing us to compare and judge the quality of
the numerical solutions.

In this section the analytic solution of the equation of motion of the
harmonic oscillator is derived.

11

http://en.wikipedia.org/wiki/Ordinary_differential_equation
http://en.wikipedia.org/wiki/Harmonic_oscillator

CHAPTER 2. ORDINARY DIFFERENTIAL EQUATIONS 12

The differential equation of the harmonic oscillator represented in Fig. 2.1
is given by

mẍ(t) = −k(xm − xe),

where m is the mass the spring acts on, k is the stiffness of the spring, xm

is the position of the mass and xe is the equilibrium position of the mass.

Figure 2.1: Schematic representation of the harmonic oscillator

Letting x = xm − xe we can rewrite this to

ẍ(t) = − k
m
x, (2.1)

which can be interpreted as a spring with an equilibrium length of zero.

2.1.1 Analytic solution

The solution to Eq. (2.1) is given by

x(t) = A sin(ωt+ δ), (2.2)

where ω is the angular frequency of oscillation given by ω = 2π/T =
√
k/m,

where T is the period of oscillation.
In order to validate the numerical solutions the velocity is also required.

The analytic solution for the velocity is given by the derivative of Eq. (2.2),
equal to

ẋ(t) = ωA cos(ωt+ δ). (2.3)

The amplitude A and phase δ are determined by the intial conditions
x(0) = x0 and v(0) = ẋ(0) = v0. Substituting these in Eqs. (2.2) and (2.3),
respectively, and rewriting gives

sin δ =
x0

A
, (2.4)

cos δ =
v0

Aω
. (2.5)

We can solve for the phase δ by dividing Eq. (2.4) by Eq. (2.5):

tan δ = ω
x0

v0
⇒ δ = arctan

(
ω
x0

v0

)
. (2.6)

CHAPTER 2. ORDINARY DIFFERENTIAL EQUATIONS 13

We can solve for the amplitude A by squaring and adding Eqs. (2.4) and
(2.5):

sin2 δ + cos2 δ = 1 =
1

A2
(x2

0 + (v0/ω)2)

⇒ A =
√
x2

0 + (v0/ω)2 (2.7)

Ex. 2 — Write a small program that generates the analytical solution
as time series and plot x vs. t.

2.2 Nondimensionalization

Using dimensions in our computations makes them easy to understand. As-
signing dimensional units such as kilometers, kilograms and meters to the
numbers we compute with provides an easy check for consistency. But it is
not so that dimensions are necessary, and this is clear when one considers
the computations performed by a computer. A computer just uses what we
regard as pure numbers to perform its computations.

We can also perform our computations without the use of dimensions.
The process of rewriting equations to a form that makes no use of dimensions
is called ‘nondimensionalization’. There are advantages to doing so.

One advantage of nondimensionalization is that the solution to the re-
sulting nondimensional equation can be converted to the solution to a range
of real world problems. I.e. one simulation provides the results that can be
converted to multiple real world problems. Another advantage has to do
with the limitations on the precision of numbers the computer can repre-
sent. When the numbers that appear in a problem range between orders
of magnitude too far apart for a computer to represent simultaneously with
the required accuracy, nondimensionalization might allow one to represent
the problem on a scale that a computer can represent properly. Another
advantage is that in some cases nondimensionalization reduces the number
of parameters in the equation.

Any dimensional quantity Q can be thought of as being a product of a
dimensionless quantity (a numerical value) {Q} and a dimensional unit [Q].
The nondimensional number {Q} is said to be measured in units of [Q]. To
nondimensionalize an equation, the dimensional quantities in the equation
can therefore be multiplied with an inverse dimensional unit 1/U , such that
[U] = [Q] and therefore Q/U = {Q}/{U}, a dimensionless number. An
interesting choice of U would be a unit that only depends on characteristics
of the system under consideration. For example, given a characteristic length
σ, we define a nondimensional variable x′ to nondimensionalize the variable
length x according to x′ := x/σ.

In the following, the differential equation of the harmonic oscillator,
Eq. (2.1), is nondimensionalized.

http://en.wikipedia.org/wiki/Physical_quantity#Base_quantities.2C_derived_quantities_and_dimensions
http://en.wikipedia.org/wiki/Units_of_measurement

CHAPTER 2. ORDINARY DIFFERENTIAL EQUATIONS 14

First we have to find enough characteristic quantities. For each unit
in the equation we define a unit that is just a multiple of the SI unit, but
depends on the characteristics of a harmonic oscillator. So we could define
a unit of length σ representing the equilibrium length, a unit of mass m0

representing the oscillating mass, and a unit of time τ representing the
period of oscillation.

In order to nondimensionalize Eq. (2.1) we replace the dimensional quan-
tities x, t, k and m with nondimensional quantities x′, t′, k′ and m′ by mul-
tiplying the dimensional quantities with an appropriate combination of the
inverse of units σ, m0 and τ . This can be achieved by choosing x′ = x/σ,
t′ = t/τ , k′ = kτ2/m0 and m′ = m/m0. Note that for this equation we have
now defined enough units to nondimensionalize any dimensional quantity.
For example, we could define a unit of density as ρ0 = m0/σ

3.
Instead of solving Eq. (2.1) we can now solve the nondimensional differ-

ential equation
d2x′

dt′2
= − k

′

m′
x′. (2.8)

To obtain a solution we set k′ and m′ to whatever we find appropriate. We
also provide dimensionless initial conditions x′0 = (1/σ)x0 and v′0 = (τ/σ)v0,
which are determined by the particular problem to be solved. This results
in the solution x′ as a function of t′.

We can now obtain the solution to a real world dimensional problem by
computing x = x′σ and t = t′τ . Here σ and τ can be varied to describe
different real world problems.

The choice of reference units is somewhat arbitrary. One can use any
combination of units that together provide all the physical dimensions that
occur in the equation. Another set of reference units could be the position
σ0, the mass density ρ0 and the system energy ε0.

The number of quantities to keep in mind can grow quite large. One
may find it convenient to give an overview of all the quantities in a table.
An example of such an overview is given in Tab. 2.1. It lists all dimen-
sional quantities we have in mind and their relation to the nondimensional
quantities in the simulation.

Ex. 3 — Nondimensionalize Eq. (2.1) using the reference units σ0, ρ0

and ε0 and fill in the table using these units.

2.3 Numerical integration of ODE’s

Many odinary differential equations do not allow for an analytic solution. To
obtain a solution therefore requires an approximate approach, as provided
by numerical integration.

The solution to Eq. (2.1) can be approached by integrating it numerically.
To approach the exact solution, we estimate the value of x at discrete times

http://en.wikipedia.org/wiki/SI_unit
http://en.wikipedia.org/wiki/Numerical_ordinary_differential_equations

CHAPTER 2. ORDINARY DIFFERENTIAL EQUATIONS 15

Dimensional quantity Quantity in simulation

reference units
position σ σ′ = 1

time τ τ ′ = 1
mass m0 m′0 = 1

measurable quantities

position x x′ = x/σ
time t t′ = t/τ

mass m m′ = m/m0

stiffness k k′ = kτ2/m0

angular frequency ω ω′ = ωτ
period T T ′ = T/τ
density ρ ρ′ = ρσ3/m0

energy ε ε′ = ετ2/(m0σ
2)

Table 2.1: An overview of a nondimensionalization of the harmonic oscillator

ti = i∆t, where ∆t is the size of some arbitrary time interval. Four numerical
integration schemes are introduced: the Euler, Euler-Cromer, Verlet and
Runge-Kutta integration schemes.

2.3.1 Euler integration

For the Euler method the estimation goes as follows. Suppose we know
the position and velocity at some time ti, which we denote by xi and vi,
i.e. we know xi = x(ti) and vi = v(ti). We can then estimate the position
at the next time step ti+1 = ti + ∆t by assuming the velocity stays constant
during the time interval ∆t. We thus estimate xi+1 ≈ xi + ∆tvi. Now,
using this to compute the position at the next time step xi+2 would require
the velocity vi+1. Analogous to computing xi+1 this can be estimated by
vi+1 = vi + ai∆t. Here ai is the acceleration at time step ti, which we can
compute from Eq. (2.1): ai = ẍi = −ω2xi, where ω =

√
k/m.

Thus, given an intial position x0 and intial velocity v0, we can now
estimate the solution x(t) at times ti, i = 0, 1, ...,M, M = tmax/∆t by
computing

xi+1 = xi + ∆t vi, (2.9)

vi+1 = vi + ∆t ai, (2.10)

where ai = −ω2xi.
A single integration step using the Euler method is visualized in Fig. 2.2.

Given the exact the solution xi = x(ti) the approximation of the solution at
the next time step xi+1 = x(ti+1) is visualized.

There are two great disadvantages of the Euler integration scheme. One
is that it ‘overshoots’ the analytic solution at every step, making the error
grow relatively quick with time. The other is that it is only first order

http://en.wikipedia.org/wiki/Euler_method
http://en.wikipedia.org/wiki/Numerical_ordinary_differential_equations#Consistency_and_order

CHAPTER 2. ORDINARY DIFFERENTIAL EQUATIONS 16

x

Euler method integration step

t
i

t
i+1

x
i

x
i+1

Figure 2.2: Visualization of an Euler method integration step

accurate. This means that decreasing the time step ∆t by a factor h makes
the error only a factor h smaller. Thus making your time step smaller is
not that effective. Higher order schemes exist, for which the error would
decrease by a factor hn, n > 1.

2.3.2 Euler-Cromer integration

The Euler scheme has the disadvantage of constantly overshooting the exact
solution. The Euler-Cromer scheme avoids this by not estimating the posi-
tion xi+1 using the velocity at the current time vi but the estimated velocity
at the next time vi+1. It is as if it anticipates where to go next, avoiding the
constant overshooting. Of course this requires that we estimate vi+1 first.

Using the Euler-Cromer scheme, given the intial position and velocity
x0 and v0, we can estimate the solution x(t) at time ti, i = 0, 1, ...,M by
computing

vi+1 = vi + ∆tai, (2.11)

xi+1 = xi + ∆tvi+1, (2.12)

where for the harmonic oscillator ai = −ω2xi, where ω =
√
k/m.

A single integration step using the Euler-Cromer method is visualized
in Fig. 2.3. Given the exact solution xi = x(ti) the approximation of the
solution at the next time step xi+1 = x(ti+1) is visualized.

Even though the Euler-Cromer scheme performs better than the Euler
scheme, the disadvantage of the scheme is that it is, just as the Euler scheme,
only first order accurate.

2.3.3 Verlet integration

A higher order scheme is the Verlet integration scheme. It is derived by
considering the Taylor series expansion of the position x(t). The Taylor

http://en.wikipedia.org/wiki/Numerical_ordinary_differential_equations#Consistency_and_order
http://en.wikipedia.org/wiki/Numerical_ordinary_differential_equations#Consistency_and_order
http://en.wikipedia.org/wiki/Semi-implicit_Euler
http://en.wikipedia.org/wiki/Verlet_integration
http://en.wikipedia.org/wiki/Taylor_series_expansion

CHAPTER 2. ORDINARY DIFFERENTIAL EQUATIONS 17

x

Euler−Cromer method integration step

t
i

t
i+1

x
i

x
i+1

Figure 2.3: Visualization of an Euler-Cromer method integration step

series expansion of xi+1 truncated to second order is

xi+1 ≈ xi + ∆tẋi +
∆t2

2
ẍi. (2.13)

Doing the same for xi−1 gives

xi−1 ≈ xi −∆tẋi +
∆t2

2
ẍi. (2.14)

Adding Eqs. (2.13) and (2.14) we get an approximation for xi+1 in terms
of ẍi, xi and xi−1:

xi+1 ≈ 2xi − xi−1 + ∆t2ẍi. (2.15)

Given initial conditions x(0) = x0 and ẋ(0) = v0 we still need x−1 to
obtain x1. When this information is not available this can be done by using
an Euler approximation; x−1 = x(−∆t) ≈ x0 − v0∆t.

The advantages of the Verlet integration scheme are that it is rather
simple and compact yet has an accuracy of order ∆t2. This means that
reducing the step size by a factor h makes the error in the numerical solution
h2 times as small. This in contrast to the Euler and Euler-Cromer schemes,
which are only first order accurate. Also, it is a symplectic integrator,
meaning that the total energy only oscillates around the initial value. This is
contrast to for example the Euler method and Runge-Kutta (treated below)
methods.

The disadvantage of Verlet integration is that it only applies to differen-
tial equations of the form ẍ = f(x).

2.3.4 Runge-Kutta integration

The last integration scheme we discuss is the second order accurate Runge-
Kutta scheme, also called the midpoint method. It is thus, as Verlet inte-
gration, second order accurate, but in contrast to the Verlet scheme it can
be applied to differential equations of the form ẍ = f(x, ẋ).

http://en.wikipedia.org/wiki/Symplectic_integration
http://en.wikipedia.org/wiki/Midpoint_method

CHAPTER 2. ORDINARY DIFFERENTIAL EQUATIONS 18

The Runge-Kutta scheme works by using the velocity and accelerations
at intermediate times ti+1/2 in estimating ti+1, so

xi+1 = xi + ∆tv̄i (2.16)

vi+1 = vi + ∆tāi, (2.17)

where v̄i = vi+1/2 and āi = ai+1/2. To compute v̄i and āi we use the
Euler scheme. For the harmonic oscillator the velocity at the intermediate
timestep can be computed by

v̄i = vi +
∆t

2
ai,

where ai = −ω2xi, ω =
√
k/m by Eq. (2.1). The intermediate acceleration

can be computed by substituting the intermediate position in Eq. (2.1);

āi = − k
m
x̄i,

where x̄i = xi+1/2, approximated with the Euler method by

x̄i = xi +
∆t

2
vi.

A single integration step using the midpoint method is visualized in
Fig. 2.4. Given the exact solution xi = x(ti) the approximation of the
solution at the next time step xi+1 = x(ti+1) is visualized.

x

Midpoint method integration step

t
i

t
i+1/2

t
i+1

x
i

x
i+1

Figure 2.4: Visualization of a Midpoint method integration step

For a differential equation of the general form ẋ = f(t,x) where x de-
notes a vector, the Runge-Kutta scheme results in

xi+1 = xi + ∆tf

(
ti+1/2,xi +

∆t

2
f(ti,xi)

)
. (2.18)

CHAPTER 2. ORDINARY DIFFERENTIAL EQUATIONS 19

It is now shown how Eq. (2.1) can be solved using the general form of
the midpoint method, Eq. (2.18).

In order to get Eq. (2.1) into the form ẋ = f(t,x) we must introduce the
extra equation

ẋ = v.

From Eq. (2.1) we can now write

v̇ = − k
m
x.

To rewrite these coupled differential equations in a suitable form, we use the
vector x = [x, v]T. Now, the equation

ẋ = f(t,x),

with

f(t,x) =

[
v

− k
mx

]
, (2.19)

is equivalent to Eq. (2.1).
Now suppose we have the initial conditions x(0) = x0 and v(0) = v0, or

x0 = [x0, v0]T ,

stiffness k and mass m, then we can compute x1 by substituting this into
Eq. (2.18) with i = 0 and f(t,x) given by Eq. (2.19), and so on to compute
x2,x3,

2.3.5 MATLAB ode45

In order to numerically solve a differential equation the above schemes can
be implemented by hand. MATLAB comes with a family of implemented
numerical solvers, however. The MATLAB function ode45 implements a
different member of the Runge-Kutta family of ODE solvers, namely the
Dormand-Prince method.

In the simplest case the function call is

[t, y] = ode45(odefun, tspan, y0);

We will now first discuss the input arguments and output arguments.
The argument odefun is a function handle to a function m-file imple-

menting the function f(t,x), which is Eq. (2.19) for the harmonic oscillator.
Suppose this function is implemented in MATLAB as in Listing 2.1, then
odefun should be assigned with

odefun = @harmonic oscillator rhs;

The second argument tspan is a vector specifying the time interval the
simulation should cover. It could be assigned with

http://www.mathworks.com/help/techdoc/ref/ode113.html
http://en.wikipedia.org/wiki/Runge-kutta
http://en.wikipedia.org/wiki/Dormand-Prince
http://www.mathworks.com/help/techdoc/ref/function_handle.html

CHAPTER 2. ORDINARY DIFFERENTIAL EQUATIONS 20

function dxdt = harmonic oscillator rhs(t, x)

k = 1;
m = 1;

dxdt = [x(2);
−k / m * x(1)];

Listing 2.1: content of harmonic oscillator rhs.m

tspan = [t0, tf];

where t0 and tf are the start and end times, respectively.
The third argument y0 is a vector specifying the initial conditions, which

in this case could be defined with

y0 = [x0; v0];

Here x0 and v0 are the initial position and velocity, respectively.
The call to ode45 returns a column vector t with all the time points the

solution was computed at and a matrix y whose rows correspond to the solu-
tion at a time point. The y is thus what x is in Eq. (2.19). We can now plot
the position and velocity vs. time with the commands plot(t, x(:, 1))
and plot(t, x(:, 2)), respectively. Figure 2.5 shows the plot resulting
from the commands in Listing 2.2.

% Simulation parameters
t0 = 0; % start time
tf = 4 * pi; % end time
x0 = 0; % initial position
v0 = 1; % initial velocity

% Use ode45 to simulate
odefun = @harmonic oscillator rhs; % function handle to f(t, x)
tspan = [t0, tf]; % simulation time span
y0 = [x0; v0]; % initial conditions
[t, x] = ode45(odefun, tspan, y0); % call to ode45

% Plot result
plot(t, x(:, 1));
xlabel('time t'); ylabel('position x'); axis tight;

Listing 2.2: solving harmonic oscillator using ode45 and plotting the result

CHAPTER 2. ORDINARY DIFFERENTIAL EQUATIONS 21

0 5 10
−1

−0.5

0

0.5

1

time t

po
si

tio
n

x

Figure 2.5: Position as a function of time of the harmonic oscillator as
simulated with ode45

2.3.6 Other integration schemes

A lot more methods have been developed to numerically integrate ordinary
differential equations. Important characteristics are of what order such a
numerical integration scheme is, how stable it is and which type of equation
it can solve.

Higher order schemes converge faster, and thus are cheaper to use when
the problem is sufficiently complicated. Using a lower order scheme might
take longer because although the computation per timestep is cheaper, the
number of timesteps required to obtain the solution can be so much greater
than it is for a method of higher order that the total amount of computation
required is greater.

Higher order schemes are given by e.g. Runge-Kutta schemes, the most
famous being the RK4 method, multistep methods and predictor-corrector
methods. Both Runge-Kutta and multi-step methods use more and more
information to determine the next time step, leading to a higher order of ac-
curacy. The difference is that Runge-Kutta schemes discard the information
used to compute the next time step for each time step, whereas multi-step
methods reuse the same information for the computation of several time
steps. Predictor-corrector methods are a class of methods in which first
a prediction of the solution at the next time step is made, and next this
prediction is used to compute a better approximation to the same solution.
Many more methods exist and an overview can be found on Wikipedia by
searching for ‘template:numerical integrators’ 1.

Stability is an issue when the size of the time step required by a method
is determined by stability reasons instead of accuracy reasons. For many

1the ‘template:’ part is necessary because the page is in the template namespace on
Wikipedia, not the default main namespace

http://en.wikipedia.org/wiki/Numerical_ordinary_differential_equations#Consistency_and_order
http://en.wikipedia.org/wiki/Runge-Kutta_methods
http://en.wikipedia.org/wiki/Linear_multistep_method
http://en.wikipedia.org/wiki/Predictor_corrector
http://en.wikipedia.org/wiki/Predictor_corrector
http://en.wikipedia.org/wiki/Template:Numerical_integrators
http://en.wikipedia.org/wiki/Numerical_ordinary_differential_equations#Stability_and_stiffness
http://en.wikipedia.org/wiki/Wikipedia:Namespace

CHAPTER 2. ORDINARY DIFFERENTIAL EQUATIONS 22

algorithms a timestep that should lead to an accurate enough solution is
not sufficient because it causes the solution to ‘explode’. Equations whose
numerical integration by certain methods causes this behaviour are called
stiff. A stable algorithm allows the size of the timestep to be determined by
accuracy reasons only and therefore leads to a smaller number of timesteps
required for obtaining a solution. In general, implicit methods are more
stable and computationally less expensive in solving stiff problems. For
implicit methods the solution for the next time step can not be expressed
explicitly in solutions at previous time steps, requiring extra computation
to solve for the next time step.

In general, integration schemes are restricted to a specific class of equa-
tions. For example, the midpoint method discussed before can only integrate
equations of the form y′(t) = f(t, y(t)), y(t0) = y0. Also, numerically inte-
grating partial differential equations generally requires very different meth-
ods from the ones just discussed. Examples of methods to numerically in-
tegrate partial differential equations are finite difference methods, the finite
element method and the finite volume method. The last two are discussed
later in this course.

http://en.wikipedia.org/wiki/Stiff_equation
http://en.wikipedia.org/wiki/Explicit_and_implicit_methods
http://en.wikipedia.org/wiki/Partial_differential_equations#Numerical_methods_to_solve_PDEs
http://en.wikipedia.org/wiki/Partial_differential_equations#Numerical_methods_to_solve_PDEs

Chapter 3

Molecular Dynamics

Molecular dynamics (MD) attempts to model reality as a collection of par-
ticles obeying Newton’s laws. It is therefore assumed that the motion of
particles satisfies

mi~̈ri = ~fi, (3.1)

where mi is the mass of the ith particle with position ~ri subject to force ~fi.
This chapter describes molecular dynamics for the case of point sized

particles in one- and twodimensional space. Section 3.1 discusses particles
connected with springs that are free to move in one dimension. Section
3.2 discusses particles connected with springs that are free to move in two
dimensions. Section 3.3 discusses particles that interact like the molecules
in fluids do. Finally, Section 3.4 discusses statistical mechanics, the theory
that connects the microscopic scale with the macroscopic scale.

Given the initial positions, initial velocities and the masses of the parti-
cles of such a system we can compute everything there is to know about the
system if we specify how to compute the forces on the particles.

3.1 Particles in one dimension connected with springs

We introduce MD with point particles restricted to 1D motion that are
subject to the forces produced by linear springs connecting them. Section
3.1.1 discusses the simulation of the motion of two particles connected with
a spring. Section 3.1.2 generalizes this to the motion of Np particles con-
neceted with springs.

3.1.1 Two particles connected with a spring

Figure 3.1 displays two particles that can move in one dimension and are
connected with a spring. The positions of the particles are x1 and x2, they
both have mass m and the spring has stiffness k and equilibrium length xe.

23

http://en.wikipedia.org/wiki/Molecular_dynamics

CHAPTER 3. MOLECULAR DYNAMICS 24

Figure 3.1: Two particles connected by a spring

We can write down Eq. (3.1) for each particle;

mẍi = fi, i = 1..2,

where

f1 = k [(x2 − x1)− xe] ,

f2 = −k [(x2 − x1)− xe] .

Given initial positions x
(0)
i and velocities v

(0)
i , i = 1, 2, we can use an

integration scheme such as Verlet to obtain the positions and velocities of the
two particles at discrete times t(n), t(n) = n∆t. Algorithm 1 is a description
of the solution process in pseudocode.

The results of a simulation are shown in Fig. 3.2. In this simulation
the particles started at a distance equal to the equilibrium length from each
other, and the rightmost particle was given an initial velocity to the right.

0 x
e

t x
1

x
2

Figure 3.2: Positions of two particles connected by a spring as a function of

time with x
(0)
1 = 0, x

(0)
2 = xe, v

(0)
1 = 0 and v

(0)
2 = 0.1

3.1.2 Np particles connected with a spring

We now generalize the system to contain Np particles. Consider the sys-
tem displayed in Fig. 3.3 consisting of Np particles that can move in one
dimension and are connected with springs. The positions of the particles

http://en.wikipedia.org/wiki/Pseudo_code

CHAPTER 3. MOLECULAR DYNAMICS 25

Algorithm 1 Simulate trajectory of the structure in Fig. 3.1 using Verlet

1: Set system parameters k, m and xe.
2: Set initial conditions,

~x(0) ←
[
x

(0)
1 x

(0)
2

]T
and ~v(0) ←

[
v

(0)
1 v

(0)
2

]T
.

3: Set simulation parameters tf and ∆t
4: Compute number of time increments (here, the notation dxe means to

round x upwards to the closest integer),

Nt ← dtf/∆te

5: Allocate time vector t, position solution matrix x and velocity matrix
v. t is of length Nt + 1 and x and v are of size (Nt + 1)× 2 (since there
are 2 particles).

6: Initialize the loop variables; the positions at the current timestep ~xn and
the positions at the next time step ~xn+1,

~x(n) ← ~x(0) −∆t~v(0) and ~x(n+1) ← ~x(0), respectively.

7: for n = 0 to Nt do
8: Update loop variables,

x(n−1) ← x(n), x(n) ← x(n+1).

9: Compute forces at current time step,

~f (n) ← k(x
(n)
2 − x(n)

1 − xe) ·
[
1 −1

]
.

10: Compute accelerations at current time step,

~a(n) ← ~f (n)/m.

11: Compute positions at next time step,

~x(n+1) ← 2~x(n) − ~x(n−1) + ∆t2~a(n).

12: Compute velocities at current time step (derivation similar to that of
Verlet, i.e. use Taylor series),

~v(n) ← (~x(n+1) − ~x(n−1))/2∆t.

13: Store positions and velocities at current time step.
14: end for
15: Write results to plot.

CHAPTER 3. MOLECULAR DYNAMICS 26

Figure 3.3: Np particles connected by Np − 1 springs

are xi, i = 1..Np, all particles have mass m and the springs have stiffness k
and equilibrium length xe.

Writing down the equations of motion for the particles gives

mẍi = fi, i = 1..Np,

where

f1 = k [(x2 − x1)− xe] ,

f2 = −k [(x2 − x1)− xe] + k [(x3 − x2)− xe] ,

f3 = −k [(x3 − x2)− xe] + k [(x4 − x3)− xe] ,

...

fNp = −k
[
(xNp − xNp−1)− xe

]
.

We can write the expressions for the forces more concisely as

fi =


k [(xi+1 − xi)− xe] , i = 1

k [xi+1 − 2xi + xi−1] , 1 < i < Np

−k [(xi − xi−1)− xe] , i = Np

, i = 1..Np.

A result of a simulation with 5 particles is shown in Fig. 3.4. In this
simulation all particles started at a distance equal to the equilibrium length
from each other except the rightmost particle, whose distance from its left
neighbour is larger than the equilibrium length. The initial velocity of all
particles was zero.

3.1.3 Debugging using laws of physics

An MD simulation should always satisfy the laws of physics. This therefore
provides a basic check for the correctness of your implementation; if a law
isn’t satisfied in your program, there is definitely something wrong.

Conservation of energy

In conservative systems such as the ones considered so far the law of conser-
vation of energy should hold. The total energy present initially is preserved
in time and changes form between potential and kinetic energy. For particles

CHAPTER 3. MOLECULAR DYNAMICS 27

t x
1

x
2

x
3

x
4

x
5

0 x
e

2 x
e

3 x
e

4 x
e

Figure 3.4: Positions of 5 particles connected by a spring as a function of
time

connected with springs the potential energy is found by summing the poten-
tial energy stored in each spring. In the last case of Np particles connected
with springs this can be expressed as

U =

Np−1∑
i=1

1

2
k [(xi+1 − xi)− xe]

2 .

The kinetic energy can be computed by summing the kinetic energy of all
particles, which for the case of 1D motion is expressed as

Ek =

Np∑
i=1

1

2
mv2

i .

The total energy Etot is the sum of the kinetic and potential energy;

Etot = Ek + U.

To check whether conservation of energy is satisfied one can compute
the potential and kinetic energy at each time step, and after termination of
the simulation plot the total energy as a function of time.

The lines to add are in pseudocode;

1: Allocate kinetic and potential energy solution vectors Ek and U, each
of length Nt + 1, the total number of time increments plus.

2: Compute kinetic energy at current time step

E
(n)
k ←

Np∑
i=1

1

2
m
(
v

(n)
i

)2
.

CHAPTER 3. MOLECULAR DYNAMICS 28

3: Compute potential energy at current time step

U (n) ←
Np−1∑
i=1

1

2
k
[(
x

(n)
i+1 − x

(n)
i

)
− xe

]2
.

4: Store kinetic and potential energy at current time step at n+1th position
in solution vectors Ek and U.

A good place to add line 1 is between lines 5 and 6 in Algorithm 1. Lines
2..4 in the above code could be added between lines 12 and 13.

Figure 3.5 shows a plot of the kinetic, potential and total energy as a
function time as computed in the simulation with Np particles. As can be
seen, the total energy remains constant.

t

E

k

U
E

tot

Figure 3.5: Kinetic, potential and total energy as a function of time

Newton’s third law

Another helpful check is provided by Newton’s third law; the action-reaction
law. The forces from particle i on particle j should always be equal and
opposite to that of particle j on particle i, i 6= j.

Ex. 4 — Implement steps to check if Newton’s third law is satisfied.

3.2 Particles in two dimensions connected with
springs

This section considers the motion of particles connected to each other with
linear springs and free to move in two dimensions. It is discussed how to
simulate this motion using molecular dynamics.

We start by showing how the forces on two particles connected with a
spring and free to move in two dimensions can be calculated in Section 3.2.1.

CHAPTER 3. MOLECULAR DYNAMICS 29

This is generalized to the calculation of the forces on an arbitrary number of
particles in Section 3.2.2. An algorithm for simulating the motion of an ar-
bitrary number of particles is outlined in Section 3.2.3. Finally, Section 3.2.4
introduces the modeling of solids using molecular dynamics.

3.2.1 Two particles in two dimensions connected with a spring

Figure 3.6 displays two particles arbitrarily located in 2D space connected
with a linear spring. It is shown how to compute the forces on particles i
and j given their positions and the stiffness and equilibrium length of the
spring.

Figure 3.6: Two particles connected by spring in 2D

The magnitude of the force exerted by the spring on the particles, fij ,
can be computed by multiplying the spring stiffness, k, with the spring
compression, δ. The compression is given by substracting the equilibrium
length of the spring between particles i and j, re,ij , from the length of the
vector pointing from particle i to particle j, |~ri − ~rj | and multiplying this
with -1. This is stated as

fij = kδ, with δ = − (|~ri − ~rj | − re,ij) , (3.2)

where |~x| =
√

(~x)T · ~x for a column vector ~x. Note that a positive fij means
the spring is in compression whereas a negative magnitude of the force means
the spring is in tension.

The force exerted on particle i by the spring between particles i and j,
~fij , can be calculated by multiplying the magnitude of the spring force, fij ,
with the unit vector pointing to particle i from particle j, ~nij , or

~fij = fij~nij , (3.3)

where the unit vector pointing to particle i from particle j is given by the
vector pointing from particle i to particle j, divided by its length, or

~nij =
~ri − ~rj
|~ri − ~rj |

. (3.4)

CHAPTER 3. MOLECULAR DYNAMICS 30

The force exerted on particle j by the spring between particles i and j, ~fji
is equal in magnitude and opposite in direction to ~fij , or

~fji = −~fij
.

3.2.2 Np particles in two dimensions connected with springs

Figure 3.7 shows four out of Np particles with masses m and positions ~ri, i =
1..Np, arbitrarily located in 2D space, connected with linear springs with
stiffnesses k and equilibrium lengths req.

Figure 3.7: Np particles connected by springs in 2D

In computing the total force on each particle, the difference with the
case with 2 particles is that each particle can now be connected with more
than one spring. To compute the total force on a particle, we must sum the
forces exerted by each spring connected to the particle. We can express the
force on particle i, ~fi, as

~fi =

Np∑
j=1

Cij ~fij , (3.5)

where ~fij is the force exerted by the spring connecting particle i and j on
particle i, given by Eq. (3.3), and Cij is given by

Cij =

{
1 if particles i and j are connected,

0 if particles i and j are not connected or i = j.
(3.6)

Both the equilibrium lengths, req,ij and the connectivity coefficients, Cij ,
i = 1..Np, j = 1..Np, are matrices. In the ‘equilibrium length matrix’ the
cell in the ith row and the jth column contains the equilibrium length of the
spring between particles i and j. In the ‘connectivity matrix’ the cell in the
ith row and the jth column contains a 1 if particles i and j are connected
and a 0 if they are not. Note that therefore req,ij = req,ji and Cij = Cji,
i.e. the equilibrium length matrix and connectivity matrix are symmetric.

CHAPTER 3. MOLECULAR DYNAMICS 31

3.2.3 An algorithm for 2D molecular dynamics

This section describes an algorithm for simulating the trajectories of Np

particles in 2D connected with linear springs. It starts by presenting the
algorithm in pseudocode on a high level. This is preceded by some remarks
on the notation of vectors describing positions, velocities, forces, etc. for all
particles at once. Then a subsection follows describing the importance of
the force calculation part in the algorithm, and a way to improve its effi-
ciency. This section ends with a subsection containing remarks on satisfying
constraints in an MD simulation.

In simulating the trajectories we solve Eq. (3.1) for the case of motion
of Np particles connected with linear springs in 2D. This can be stated as
solving the system of differential equations

m~̈ri = ~fi, i = 1..Np, (3.7)

where
~ri =

[
xi yi

]T
and ~fi is given by Eq. (3.5).

These equations can be numerically integrated using e.g. the Verlet
method discussed in Section 2.3.3, given the initial positions and velocities
of the particles. Note that in order to compute the forces on the particles,
~fi, i = 1..Np, we also need to specify the spring stiffnesses, the equilibrium
lengths and which particles are connected to each other.

In 1D we chose to collect all quantities such as positions xi, velocities
vi and forces fi, i = 1..Np in single position, velocity and force vectors ~x,

~v and ~f , respectively. This was straightforward, since in the 1D case the
positions and velocities are scalars. In 2D the positions, velocities and forces
etc. are vectors ~ri, ~̇ri and ~fi, i = 1..Np, instead of scalars, which makes it
less obvious to think of a vector describing the positions and velocities of
all particles. In the following, two such vectors are discussed. One way of
denoting the position vector is as

~r =
[
x1 y1 x2 y2 · · · yNp

]T
.

Here x and y components of position follow each other in order of the particle
numbering. An equivalent notation, emphasizing it can be viewed as a
collection of vectors, is[

(~r1)T (~r2)T · · ·
(
~rNp

)T]T
,

where
~ri =

[
xi yi

]T
, i = i..Np.

CHAPTER 3. MOLECULAR DYNAMICS 32

The second way of writing such a vector would be to write

~r =
[
x1 x2 · · · xNp y1 y2 · · · yNp

]T
.

Here, first all the x positions are written in order of particle numbering,
followed by all the y positions in order of particle numbering.

In this script we define the position, velocity and force vector in the first
way.

An algorithm of simulating the trajectories of particles in 2D connected
with linear springs is given in Algorithm 2 in pseudocode. Note that the
integration loop is described in a separate part due to space limitations.

Efficient computation of forces

In an algorithm for molecular dynamics most of the computation is spent
on computing the forces working on the particles. Making the force calcu-
lation efficient is therefore important. This section outlines a way of saving
computation.

About half of the computations in the force calculation can be saved by
making use of Newton’s third law, the action-reaction law; we only have to
evaluate the force for each unique particle pair, not each particle.

The force calculation described in Algorithm 4 describes a way of com-
puting the forces on all particles by evaluating the force only for each unique
particle pair. It works by looping over all particles but the last one, where for
each particle only the interactions between it and the particles with higher
particle numbers are considered. Now, not only is the interaction between

particles i and j at the current time step, ~f
(n)
ij , added to the total force on

particle i, also the interaction with equal magnitude but opposite direction,

−~f (n)
ij , which is the interaction between particles j and i at the current time

step, ~f
(n)
ji , is added to the total force on particle j.

Computation of potential and kinetic energy

The potential energy is a sum over all unique particle pairs. It is given by

U =

Np−1∑
i=1

Np∑
j=i+1

Cij
1

2
k (|~ri − ~rj | − req,ij)

2 ,

where Cij is 1 if particles i and j are connected and 0 otherwise. The kinetic
energy is given by

Ek =

Np∑
i=1

1

2
m |~vi|2 .

CHAPTER 3. MOLECULAR DYNAMICS 33

Algorithm 2 Simulating the 2D motion of Np particles connected with
linear springs using Verlet

1: Define structure;

� Initial positions,

~r(0) =

[(
~r

(0)
1

)T (
~r

(0)
2

)T
· · ·

(
~r

(0)
Np

)T
]T

and initial velocities

~̇r(0) =

[(
~̇r

(0)
1

)T (
~̇r

(0)
2

)T
· · ·

(
~̇r

(0)
Np

)T
]T

,

with

~r
(0)
i =

[
x

(0)
i y

(0)
i

]T
and ~̇r

(0)
i =

[
u

(0)
i v

(0)
i

]T
, i = 1..Np.

� Particle connectivity, e.g. connectivity matrix by stating Eq. (3.6)
for i = 1..Np, j = 1..Np.

� Spring properties; stiffness k and equilbrium lengths re,ij , i =
1..Np, j = 1..Np.

2: Set simulation parameters, the end time tf and the size of the timestep
∆t.

3: Compute number of timesteps,

Nt ← dtf/∆te.

4: Allocate time vector t, position solution matrix r and velocity matrix ṙ.
5: Initialize the loop variables; the positions at the current timestep ~rn and

the positions at the next time step ~rn+1,

~r(n) ← ~r(0) −∆t~̇r(0) and ~r(n+1) ← ~r(0).

6: Integrate, see Algorithm 3.
7: Write results to plot.

CHAPTER 3. MOLECULAR DYNAMICS 34

Algorithm 3 The integration loop for simulating particles in on a 2D
domain connected with linear springs

1: for n = 0 to Nt do
2: Update loop variables,

r(n−1) ← r(n), r(n) ← r(n+1).

3: Compute forces at current time step,

~f (n) ←
[(
~f

(n)
1

)T (
~f

(n)
2

)T
· · ·

(
~f

(n)
Np

)T
]T

,

with

~f
(n)
i ←

Np∑
j=1

Cij ~fij , i = 1..Np, ~fij given by Eq. (3.3).

For a detailed description, see Algorithm 4.
4: Compute accelerations at current time step,

~̈r(n) ← ~f (n)/m.

5: Compute positions at next time step,

~r(n+1) ← 2~r(n) − ~r(n−1) + ∆t2~̈r(n)

6: Compute velocities at current time step,

~̇r(n) ←
(
~r(n+1) − ~r(n−1)

)
/2∆t.

7: Store positions and velocities at current time step.
8: end for

CHAPTER 3. MOLECULAR DYNAMICS 35

Algorithm 4 Force calculation such that each particle pair is considered
only once

1: Initialize particle forces at current time step,

~f
(n)
i ← 0, i = 1..Np.

2: for i = 1 to Np − 1 do
3: for j = i+ 1 to Np do
4: if particles i and j are connected, or Cij = 1, then
5: Compute distance between particles,

dij ← |~ri − ~rj |.

6: Compute magnitude of force in spring between particles i and j,

fij ← kδ, with δ = − (dij − re,ij) .

7: Compute unit vector pointing to particle i from particle j,

~nij ←
~ri − ~rj
dij

.

8: Compute force exerted on particle i by particle j,

~fij ← fij~nij .

9: Add this force to the total force on particle i,

~f
(n)
i ← ~f

(n)
i + ~fij .

10: Add this force to the total force on particle j,

~f
(n)
j ← ~f

(n)
j − ~fij .

11: end if
12: end for
13: end for

CHAPTER 3. MOLECULAR DYNAMICS 36

In the 2D case the position and velocity vectors ~ri and ~vi are given by

~ri =
[
xi yi

]T
, and ~̇ri =

[
ui vi

]T
, respectively, where ui and vi are the ve-

locities in x and y direction, respectively. Note that the forms are, however,
equally valid for the case of particles moving in one- or threedimensional
space (or even higher, if that makes sense).

Ex. 5 — Add the computation of the potential and kinetic energy to
the algorithm outlined in this section. Tip: since the force calculation is also
a sum over all unique particle pairs, add the computation of the potential
energy to the loops for the force calculation.

Satisfying constraints

The algorithm described in the previous section considers a structure with-
out any constraints; i.e. the motion of the particles is determined fully by
their interactions with each other. However, usually one or more particles
are subject to constraints. For example, the motion in a certain direction
could be suppressed, the particles could be subject to an external force, or
their motion could be constrained to follow a certain trajectory.

In this course it is probably best to satisfy these constraints by adding
lines to the algorithm described, but more general methods for satisfying
constraints have been developed, e.g. Lagrange multipliers 1.

3.2.4 Modeling a solid

Thinking of solids as atoms in a regular pattern, subject to each others
attraction and repulsion, provides accurate descriptions of the large scale
properties we are familiar with.

Figure 3.8 depicts a configuration of particles and springs that leads to
the well known behaviour of solids.

Figure 3.8: Particle configuration giving solid-like behaviour, the solid lines
represent springs

The lattice consists of particles arranged in a rectangular pattern, each
particle connected horizontally, vertically and diagonally with linear springs

1See http://en.wikipedia.org/wiki/Constraint algorithm

http://en.wikipedia.org/wiki/Solid-state_physics
http://en.wikipedia.org/wiki/Constraint_algorithm

CHAPTER 3. MOLECULAR DYNAMICS 37

to other particles.
In analyzing the solid-like behaviour of this material, one could observe

the forces appearing in the springs as one displaces an edge of the material
quasistatically, i.e. sufficiently slow. In the following, definitions of normal
stress and strain and shear stress and strain are given that lead to the well
known relations between them.

Normal stress and strain

Imagine displacing all particles on one side, i.e. an edge, in the direction
perpendicular to it. This is a normal deformation. See the left part of
Fig. 3.9, where the right edge of the structure is displaced in x direction,
creating tensile force F .

The normal stress in the x direction, denoted σxx, is defined as fol-
lows. Imagine a straight line s perpendicular to the direction of deforma-
tion, across the structure, cutting away the part of the structure on the side
of the line corresponding to the chosen direction. We now define the normal
stress, σxx, by the total force, F , required on the cut-away side to make
equilbrium in this direction 2, divided by the length of the line L1,y, or

σxx =
F

L1,y
.

The normal strain in a the x direction, denoted εxx, is defined as the
total displacement of a particle in that direction, L1,x −L0,x, divided by its
initial distance, L0,x, or

εxx =
L1,x − L0,x

L0,x
.

The shear stress and strain

Now imagine displacing an edge in the direction along it, a shear deforma-
tion. See the right part of Fig. 3.9, where the right edge of the structure is
displaced in the y direction, creating a shear force, F .

The shear stress in the x direction, denoted σxy, is defined as the to-
tal force, F , required to satisfy equilibrium in the direction along the line,
divided by the length of the line, L0,y, or

σxy =
F

L0,y
.

The shear strain in the x direction, denoted εxy, is defined as the total
displacement of a particle in the direction L1,y − L0,y, divided by its initial

2Actually, the force F equal in magnitude and opposite in direction to the sum of the
forces in the cut springs merely approximates the force required to make equilibrium, for
the structure is moving during a quasi-static displacement

CHAPTER 3. MOLECULAR DYNAMICS 38

distance perpendicular to that direction L0,x, or

εxy =
L1,y − L0,y

L0,x
.

Stress-strain relations and Poisson’s ratio

One can plot the normal stress in the direction of displacement versus the
normal strain in that direction, and the line would be straight. The slope
corresponds to Young’s modulus.

One can plot the shear stress in the direction of displacement versus
twice the shear strain in that direction, and the line would be straight. The
slope corresponds to the shear modulus.

One can plot the normal strain in the direction of displacement versus
the normal strain in the direction perpendicular to that, and the line would
be straight. The slope multiplied with −1 corresponds to Poisson’s ratio.

Furthermore, one can verify that the coefficient relating Young’s modulus
E and the shear modulus G satisfies

E = 2(1 + ν)G

where ν is Poisson’s ratio.

Figure 3.9: A particle lattice in pure normal (left) and pure shear (right)
deformation

3.3 Simulating fluids using molecular dynamics

This section first introduces potentials, an alternative to forces in directly
specifying the equations of motion 3. In the second subsection some mathe-
matical and algorithmic differences compared to the previous simulations of
solids are discussed, making fluids simulations more accurate and efficient.

3Note that although we introduced simulation of solids without potentials, potentials
can equally well be used as a starting point for solids simulations.

CHAPTER 3. MOLECULAR DYNAMICS 39

3.3.1 Potentials

Often, rather than stating equations of motion in terms of forces, they are
stated in terms of a potential. The reason is that energy conservation is
more easily expressed in terms of potentials. In molecular dynamics, stating
equations of motion in terms of potentials is common practice.

For a conservative system, meaning that the total energy of the system
does not change over time, the relation between forces, ~f , and potential, U ,
is given by

~f = −∇U. (3.8)

The force is thus given by the negative gradient of a scalar potential.
In MD, the scalar potential represents the total potential energy of the

system under consideration. It is therefore a function of the positions of all
particles, ~ri, i = 1..Np.

The force vector on the ith particle is found by taking the partial deriva-
tive of the potential with respect to the position of that particle, or

~fi = − ∂

∂~ri
U. (3.9)

The force vector from Eq. 3.8 is thus a vector containing the force compo-
nents of all particles, or, as in the notation introduced in Section 3.2.3,

~f =

[(
~f1

)T (
~f2

)T
· · ·

(
~fNp

)T
]T

,

where
~fi =

[
fx,i fy,i

]T
, i = 1..Np.

Often, the total potential energy of a system can be expressed as a sum
of potentials between pairs of particles, so-called ‘pair potentials’, but this
is not true in general 4.

The interaction of particles in conservative systems is thus modeled using
potentials. Next two pair potentials are discussed, namely the linear spring
and Lennard-Jones potentials.

The linear spring potential

In Section 3.1 and 3.2 we have modeled the interaction between particles as
particles being interconnected with linear springs. In the most general case
considered, for particles free to move in two dimensions, in Section 3.2.3, the

4The accurate modeling of potential energy in conservative systems may need to include
interactions between three particles or more.

http://en.wikipedia.org/wiki/Molecular_dynamics#Potentials_in_MD_simulations
http://en.wikipedia.org/wiki/Conservative_force
http://en.wikipedia.org/wiki/Scalar_potential
http://en.wikipedia.org/wiki/Molecular_dynamics#Pair_potentials_vs._many-body_potentials

CHAPTER 3. MOLECULAR DYNAMICS 40

total potential energy is stated as the sum of the potentials between each
unique particle pair, or

U =

Np−1∑
i=1

Np∑
j=i+1

Cij
1

2
k (|~ri − ~rj | − req,ij)

2,

where Np is the total number of particles, Cij is 1 of particles i and j are
connected and 0 if they are not, k is the spring stiffness which is the same
for all particle pairs, ~ri is the position of the ith particles and req,ij is the
equilibrium distance for the spring between particles i and j.

Ex. 6 — Verify (by using Eq. 3.9) that the force on particle i equals
the sum of the forces exerted by the springs connected to particle i.

The Lennard-Jones potential

A potential widely used to model the interaction between pairs of neutral
atoms and molecules is the Lennard-Jones potential, given by

U = 4ε

[(σ
r

)12
−
(σ
r

)6
]
.

Here ε and σ are parameters that can be varied to fit the potential between
pairs of specific kinds of atoms and molecules 5, i.e. they can be different for
each pair. The parameter r is the distance between a pair of particles, or
r = |~ri − ~rj |. Even though more accurate models of the interactions between
atoms and molecules exist, the Lennard-Jones potential is used extensively
because computationally it is very simple. A plot of the Lennard-Jones
potential is shown in Fig. 3.10.

Except when at the equilibrium position, when r = σ, the Lennard-Jones
potential is nonzero no matter how small or large the distance between a pair
of particles, r, is. This implies that all particles interact with each other. In
MD this has the implication that at each time step the interaction between
all particle pairs must be computed. However, since the force between two
particles whose interaction is modeled using the Lennard-Jones potential is
very small at large distances (the slope tends to zero as r tends to infinity,
see Fig. 3.10), in practice only the interaction of particles whose distance is
smaller than some ‘cutoff distance’, rc, is computed during simulations.

Since the potentials like the Lennard-Jones potential are not exactly zero
at such a cutoff distance, an energy jump occurs each time a particle crosses
this distance. To prevent the effects on conservation of energy that would

5In the Lennard-Jones potential, ε is the magnitude of the minimum potential energy
between a pair of particles, and σ is the is the distance between these particles at which
the potential energy is zero. Note that which part of the curve is defined as having a value
of zero is arbitrary. I.e. if a specific potential is valid, then so are all the potentials that
differ from this potential by an arbitrary constant.

http://en.wikipedia.org/wiki/Lennard_jones_potential
http://en.wikipedia.org/wiki/Lennard_jones_potential#Truncated_Lennard-Jones_potential

CHAPTER 3. MOLECULAR DYNAMICS 41

result, usually a shifted version of the Lennard-Jones potential is used such
that it is zero at the cutoff distance 6. I.e. the truncated Lennard-Jones
potential, Utrunc, satisfies

Utrunc(r) =

{
U(r)− U(rc) for r ≤ rc,

0 for r > rc.

1 1.5 2 2.5
−1

0

1

2

3

4

5

U
/ε

r/σ

Figure 3.10: Plot of the Lennard-Jones potential

Ex. 7 — Find the expression for the total potential energy of a sys-
tem of Np particles whose interactions are modeled with the Lennard-Jones
potential.

Ex. 8 — Find the expression for the force between a pair of particles
whose interaction is modeled with the Lennard-Jones potential.

3.3.2 Efficiently simulating fluids

Compared to the simulations of solids previously performed, the algorithms
for simulating fluids can be made more efficient by changing a few things.
In order to save memory, particle interaction is not stored in a connectivity
matrix. This is discussed in the first subsection. In the second subsection
ways of keeping the atoms from flying into infinity are discussed.

Particle interaction

In many solids, e.g. metals, atoms or molecules sit in a regular pattern which
doesn’t change as the material is deformed. In molecular dynamics this is
reflected by interacting pairs that keep interacting, independent of time.

6There is still a discontinuity in the force, since the truncated potential energy function
is not smooth. This causes extra instability. One way to lessen these effects is by shifting
the force function in the same manner as the potential energy function. This does have
the effect that the force function is no longer the negative of the derivative of the potential
energy function.

CHAPTER 3. MOLECULAR DYNAMICS 42

In fluids, however, the atoms (for monatomic gases) or molecules move
away from their initial configuration. Therefore, during a fluids simulation
there is a need to update which particles interact.

For the simulation of solids, 3.2.4, we used a connectivity matrix, 3.2.2,
allowing us to look up which particles interact. A possibility for keeping
track of particle interaction for fluids is then to update this connectivity
matrix, or perhaps better called ‘interaction matrix’.

The big disadvantage of using an interaction matrix, however, is that
it is neither memory nor computationally efficient. When simulating many
particles, you need a lot of memory to store all the interactions simulta-
neously in addition to having to make the extra computations to read and
write the data 7. A more memory efficient solution is to determine whether
particles interact only when their interaction is needed, which is during the
force calculation.

In general the condition for interaction between a pair particles in MD
simulations is that they are within a certain ‘cutoff radius’, rc, of each other.
Within this distance the potential of the pair is computed, beyond it, it is
not.

Ex. 9 — Modify Algorithm 4 to check for particle interaction by cutoff
radius rather than connectivity.

Walls and periodic boundary conditions

The particles in a fluid simulation are, unlike in a solid simulation, not
constrained by anything other than their interactions. Particles are therefore
free to flow wherever they are pulled or pushed by other particles, and
there is nothing stopping them from ending up at ever increasing distances
from each other. This is not a realistic situation. In order to create a
realistic situation, somehow the particles must stay together. This can be
accomplished in three ways. One way is by simulating walls to contain the
particles. A second way is by using so-called ‘periodic boundary conditions’.
A third way is simply by nature of the physics simulated, as in astrophysics.
The first two ways are discussed next.

In MD for fluids, walls are usually simulated in two ways.
One is to make a wall out of fluid particles, by fixing particles at a certain

distance such that a rigid boundary is created. When the total energy of
the system is sufficiently low, no particles will escape the box by passing
between two fixed particles.

The other is to implement continuous and smooth walls by adding forces
exerted by these walls to the total force on particles. The potential between

7The effort to check/update the connectivity matrix is proportional to N2
p , which is

impractical for large Np. Some techiques for reducing the computational effort are Verlet
lists and cell lists.

http://en.wikipedia.org/wiki/Verlet_list
http://en.wikipedia.org/wiki/Verlet_list
http://en.wikipedia.org/wiki/Cell_lists

CHAPTER 3. MOLECULAR DYNAMICS 43

a particle and a wall is the same as the potential between two particles. In
2D MD this can be implemented by adding the force terms of each of the
four walls to the total force on the particle active in the outer loop of the
force calculation, and having the outer loop loop over particles 1..Np, rather
than loop over particles 1..Np − 1 as described in previous algorithms.

The disadvantage of implementing walls is that it creates an unrealistic
situation near the walls, where the physics are different than they are away
from the walls. The reason the situation is unrealistic is that the ratio of the
number of particles close to a wall and the number of all simulated particles
is, in any practically possible MD simulation, much larger than it would be
in a realistic container 8.

The second option of having particles confined is by applying periodic
boundary conditions (PBCs). Instead of simulating a container, this simu-
lates a volume inside an ‘infinite’ medium. A periodically infinite medium is
achieved by creating a box with particles, and adding conditions such that
it has the effect of tiling space with the box such that an infinite domain
is obtained. Each particle in our original box now has the effect of deter-
mining the position of infinitely many other particles, located in the copies
of the original box. These copies are called ‘images’. Whenever a particle
leaves one box, it enters another. In our original box this has the effect of a
particle leaving the box at one end appearing at the opposite end with the
same velocity. Each particle now not only interacts with the particles in its
own box, but also with the particles in the images. Although this way the
relative motion of particles inside each of these boxes is identical, the lack
of walls has the effect that their motion resembles very well the motion in
the inside of a real fluid.

An extra simplification can be made if the lengths in any of the cartesian
directions of this box is sufficiently large, compared to the cutoff radius of
the potential. It has to be large enough to make sure that each particle can
only interact with one copy of each of the other particles at once (it must
also not interact with itself). This is achieved if the length, width and height
each are larger than the cutoff radius, or

rc < min(Lx, Ly, Lz),

where Li is the length in the i-direction, i = x, y, z. A typical choice for
these lengths is twice the cutoff radius.

The implementation of periodic boundary conditions is quite simple.
Just as in simulating solids or fluids in a container, one keeps track of the
positions of the ‘original’ particles. Only during the force calculation, for

8In 3D, for Np = 1000, about 6× 10× 10 = 600 particles, or 60%, are close to the wall.
For Np = 106, about 6 × 100 × 100 = 6 · 104, or 6%, are close to the wall. A volume of
hydrogen where the mass of all particles is 1 gram contains a number of particles with an
order of magnitude of about 1023, giving only a miniscule fraction of all particles that is
close to the wall.

http://en.wikipedia.org/wiki/Periodic_boundary_conditions
http://en.wikipedia.org/wiki/Periodic_boundary_conditions

CHAPTER 3. MOLECULAR DYNAMICS 44

each particle one computes the distance to the closest image of each of the
other particles, rather than the distance to the original particles. This is
called the ‘minimum image convention’.

3.4 Statistical mechanics, connecting microscopic
and macroscopic properties

At the macroscopic scale we understand the behaviour of materials in terms
of macroscopic quantities such as kinetic energy, potential energy, tempera-
ture, density and pressure. There are conditions under which the magnitude
of these macroscopic quantities are essentially constant. In these conditions
we say the material is in thermodynamic equilibrium.

Yet, when we look at the microscopic level, we see that materials consist
of atoms that are in constant motion, bumping into each other. It is not
straightforward to understand how macroscopic quantities like temperature
and pressure derive from this microscopic behaviour. And while macroscopic
quantities like kinetic energy, potential energy and density can be quite easily
defined on the microscopic level, it appears they fluctuate at an enormous
rate, while on the macroscopic they are measured to be essentially constant
9.

Statistical mechanics is a theory that derives the macroscopic view from
the microscopic view. It is based on the assumption that for an isolated
system in thermodynamic equilibrium, each microstate, which is a particular
configuration of positions and velocities of the particles in the microscopic
system, has an equal probability of happening. The constant macroscopic
quantities are found as the average of their fluctuating instantaneous values
over all microstates. An instantaneous value of a quantity is a number
that is found from the positions, velocities and masses of the particles in a
microstate.

Since in molecular dynamics each timestep represents a microstate of
a system, the macroscopic quantities of such a microscopic system can be
approximated from a simulation by generating a lot of microstates and aver-
aging the instantaneous values over all these microstates. Such a collection
of microstates is called a statistical ensemble.

Important conditions for these values to be realistic are that the system
has to approximate thermodynamic equilibrium, meaning the microscopic
quantities fluctuate around a fixed value, and that one averages over enough
microstates to approach the value one would get if one would average over
all microstates.

In the next subsection, macroscopic quantities are defined in terms of
the microscopic quantities. In the subsection following that, other impor-

9The microscopic fluctuations do have a macroscopic meaning, see
http://en.wikipedia.org/wiki/Thermal fluctuations.

http://en.wikipedia.org/wiki/Thermodynamic_equilibrium
http://en.wikipedia.org/wiki/Thermal_fluctuations
http://en.wikipedia.org/wiki/Statistical_mechanics
http://en.wikipedia.org/wiki/Isolated_system
http://en.wikipedia.org/wiki/Isolated_system
http://en.wikipedia.org/wiki/Microstate_(statistical_mechanics)
http://en.wikipedia.org/wiki/Statistical_mechanics#Statistical_ensembles
http://en.wikipedia.org/wiki/Thermal_fluctuations

CHAPTER 3. MOLECULAR DYNAMICS 45

tant concepts in statistical mechanics are discussed, including how to obtain
them from simulations. The last two subsections discuss notes on local in-
stantaneous quantities and on how to simulate in order to keep finding new
microstates from the same initial state, respectively.

3.4.1 Obtaining familiar macroscopic quantities from simu-
lations

In this section the definitions of the macroscopic quantities potential energy,
kinetic energy, density, temperature and pressure are given in terms of the
microscopic quantities; the number of particles, the masses, positions and
velocities of the particles, and the forces on those particles.

A macroscopic quantity A is denoted 〈A〉, which means that it is the
average of the computed instantaneous values, A(n), n = 1..Nt, where Nt

is the number of instantaneous values considered. In molecular dynamics,
the number of instantaneous values considered is the number of timesteps
computed. We can state this time average as

〈A〉 =
1

Nt

Nt∑
n=1

A(n). (3.10)

Many instantaneous values are expressed as a sum over particles. In case
of a simulation using walls these should be the particles contained within
the center region of the container, in order to take particles behaving most
like those in the center of a bulk of fluid would behave. A properly sized
region considers only the area far away from the wall, e.g. at distances larger
than several σ (parameter of Lennard-Jones potential) or λ (the mean free
path 10 of the atoms). In case of periodic boundary conditions, the sum of
particles can cover all the particles contained initially in the original box.

Potential energy

Given the pairwise potential U(r), where r is the distance between a pair
of particles, the average potential energy, 〈U〉, is found by averaging the
instantaneous values

U (n) =

Np−1∑
i=1

Np∑
j=i+1

U(|~ri − ~rj |), n = 1..Nt. (3.11)

10The mean free path is the distance an atom travels on average between collisions with
other atoms.

http://en.wikipedia.org/wiki/Mean_free_path
http://en.wikipedia.org/wiki/Mean_free_path

CHAPTER 3. MOLECULAR DYNAMICS 46

Kinetic energy

The average kinetic energy, 〈Ek〉, is found by averaging the instantaneous
values

E
(n)
k =

Np∑
i=1

1

2
mi|~̇r|2, n = 1..Nt. (3.12)

Density

The average density, 〈ρ〉, is found by averaging the sum of the masses of
the particles in some sufficiently large region divided by the volume of that
region. It is thus found by averaging the instantaneous density

ρ(n) =
1

V

Np∑
i=1

mi, n = 1..Nt, (3.13)

where V is the volume (or area in 2D), of the region.

Temperature

The average temperature 〈T 〉 can be found directly from the average kinetic
energy 〈Ek〉 11 with

〈Ek〉 =
D

2
Npk〈T 〉, (3.14)

where D is the dimensionality of the system (2 or 3) and k is the Boltzmann
constant. The instantaneous value of the temperature can be found by
substituting the instantaneous kinetic energy for the average kinetic energy.

Note that since the average kinetic energy is defined in terms of mi-
croscopic quantities, indirectly, so is the average temperature. This is not
immediately obvious from the previous equation.

Pressure

The average pressure, 〈P 〉, for pairwise interacting particles is found from
the virial model of a real gas,

〈P 〉V = Npk〈T 〉+
1

D

〈 Np∑
i=1

~ri · ~fi

〉
, (3.15)

where V is the volume, D is the dimensionality, ~ri is the position of the ith
particle and ~fi is the total internal force (so excluding the boundary forces

11This is based on the equipartition theorem, see
http://en.wikipedia.org/wiki/Equipartition theorem .

http://en.wikipedia.org/wiki/Boltzmann_constant
http://en.wikipedia.org/wiki/Boltzmann_constant
http://en.wikipedia.org/wiki/Real_gas#Virial_Model
http://en.wikipedia.org/wiki/Equipartition_theorem

CHAPTER 3. MOLECULAR DYNAMICS 47

12) on the ith particle. In terms of the pairwise potential U(r) this results
in

〈P 〉V = Npk〈T 〉 −
1

D

〈Np−1∑
i=1

Np∑
j=i+1

rij
dU

dr

∣∣∣∣
r=rij

〉
, (3.16)

where rij is the distance between particles i and j.
Note that just as the average temperature, the average pressure is defined

indirectly in terms of microscopic quantities.

Ex. 10 — In case of a simulated container, the pressure can also be
found by dividing the total force on a wall by its surface. Check that calcu-
lating the pressure in this way gives the same result as Eq. 3.15 / 3.16.

3.4.2 Other important concepts in statistical mechanics

There are many other meaningful things to compute from an MD simulation.
Three of such concepts are velocity distributions, the diffusion coefficient and
the radial distribution function.

Velocity distributions

The velocities and speeds of the particles in an ideal gas that is in thermo-
dynamic equilibrium are distributed according to the Maxwell-Boltzmann
distribution. Sampling the velocities and speeds and plotting their distri-
bution is therefore a way of checking whether the simulation has reached
thermodynamic equilibrium.

Each of the velocity components vi, i = x, y in 2D, is distributed ac-
cording to a normal distribution with a mean value of zero and a variance
of
√
kT/m, where k is the Boltzmann constant, T the temperature and m

the particle mass. Thus the velocity destribution in a certain direction of
an ideal gas in thermodynamic equilibrium, fv(vi), is given by

fv(vi) =

√
m

2πkT
exp

(
−mv2

i

2kT

)
, i = x, y. (3.17)

The velocity distribution of the velocity vector, fv(vx, vy), is given by
the product of the velocity distributions in each direction,

fv(vx, vy) = fv(vx)fv(vy). (3.18)

12In case of periodic boundary conditions there is no explicit boundary. Instead, one
takes an arbitrary region, e.g. the original box, and considers all particles outside that
region part of the boundary. Thus, forces due to interaction with particles outside the
chosen region are not included in the sum of Eq. 3.15

http://en.wikipedia.org/wiki/Ideal_gas
http://en.wikipedia.org/wiki/Maxwell%E2%80%93Boltzmann_distribution
http://en.wikipedia.org/wiki/Maxwell%E2%80%93Boltzmann_distribution
http://en.wikipedia.org/wiki/Normal_distribution

CHAPTER 3. MOLECULAR DYNAMICS 48

The distribution of the speed, f(v), where the speed, v, is given by the

magnitude of the velocity vector, or v =
√
v2
x + v2

y in 2D , is given by

fv =
m

kT
v exp

(
−mv

2

2kT

)
, (3.19)

The distribution can be found from a simulation in thermodynamic equi-
librium as follows. One samples particle velocities at timesteps separated by
certain time intervals. One divides the range of velocities and speeds found
into partitions, and counts how many samples fall in each partition. Divid-
ing each of these frequencies with the product of the total number of samples
and the size of their respective partitions one should find the corresponding
distribution.

The size of the time interval between samples should be large enough
to allow the velocities to change, typically more than about fifty times the
critical timestep, rc in the case of a dense fluid.

The diffusion coefficient

Another important concept in molecular dynamics is diffusion of mass. It
is what makes an odour spread through a room, or a die through a liquid.
What happens on the microscopic scale is that atoms spread out through
space.

The mean squared distance of a particle gives the average squared dis-
tance of a particle with respect to its initial position as a function of time,
or

〈r2
i 〉(t) =

〈
(ri(t)− ri(0))2

〉
, (3.20)

where ri(t) is the position of the ith particle at time t.
A lot of samples can be gathered very quickly by sampling the square

mean distance for each particle, in addition to considering each computed
microstate as a new set of initial positions. So in the first microstate the
particles are starting their first trajectory. At the second microstate the
first set of trajectories is at its second timestep, but the trajectories covered
by particles from then on are also considered new trajectories. At the third
timestep the first set of trajectories is at its third time step, the second
set of trajectories at its second, and again a new set of trajectories starts.
This way, after n timesteps one will have gathered (n − 1)Np samples for
the distance travelled after one timestep and in general (n −m)Np,m < n
samples for the distance travelled after m timesteps.

The radial distribution function

The radial distribution function (RDF) is a function that allows one to
compute the value of macroscopic quantities from one microstate.

http://en.wikipedia.org/wiki/Fick's_laws_of_diffusion
http://en.wikipedia.org/wiki/Radial_distribution_function

CHAPTER 3. MOLECULAR DYNAMICS 49

The function describes how, on average, the number density varies as a
function of the distance from an arbitrary particle.

The radial distribution function g(r) obtained by computing it for all
particles in a single microstate and averaging is stated as

g(r) =
2V

N(N − 1)

1

Vr

N∑
i=1

i−1∑
j=1

θ(rij − r)θ(r + ∆r − rij), (3.21)

where rij is the distance between particles i and j, N(N−1)/2 is the weight
such that g(r) tends to 1 as r becomes sufficiently large, Vr = π(2r+∆r)∆r
is the area of the ring with inner radius r and width ∆r and the function
θ(x) is given by

θ(x) =

{
1, if x > 0

0, if x ≤ 0
,

such that the product θ(rij − r)θ(r + ∆r − rij) is 1 if particles i and j are
within a distance between r and r + ∆r of each other and 0 otherwise.

This g(r) would be the result from considering a single microstate. A
more accurate result can be obtained by averaging the g(r) obtained from
several microstates.

3.4.3 Local instantaneous quantities

It can be interesting to plot the evolution of quantities like density in space.
This is possible by dividing the box used for simulation into ‘bins’, and
computing local values of the density as the total number of particles in
each bin divided by the total area of that bin 13.

3.4.4 Finding new microstates

Since molecular dynamics is a deterministic procedure, given the same ini-
tial conditions a simulation will always go through the same microstates.
To obtain accurate measurements one would have to wait each time for the
simulation to reach thermodynamic equilibrium, and after that the mea-
surements will be identical to ones obtained before. To avoid this, one can
save the final microstate of a simulation run to disk, and use this microstate
as the initial state of a new run. This way, one can resume from thermo-
dynamic equilibrium and immediately reach new microstates, creating new
measurements. Other methods exist, but are not discussed here for the sake
of brevity.

13This is not discussed further. For more information, see the website and publications
of S. Luding at http://www2.msm.ctw.utwente.nl/sluding/.

http://en.wikipedia.org/wiki/Number_density
http://www2.msm.ctw.utwente.nl/sluding/

Chapter 4

The Finite Element Method

The Finite Element Method (FEM) is a numerical method for obtaining
approximate solutions to a system of partial differential equations (PDE’s)
over an arbitrary domain. PDE’s arise as a result of mathematical modeling
(application of conservation laws) of various physical phenomena, viz. heat
conduction, fluid flow, elastic deformation under applied load, electromag-
netism etc. The PDE solution can yield insight into the physical phenomena,
e.g. stress distribution inside a machine component or the body of a car. The
PDE’s are often difficult to solve using an analytical approach and therefore
one needs to resort to numerical (approximate) solution techniques. Many
numerical techniques exist including Finite Difference, Finite volume, Spec-
tral Methods, Discrete Element etc.1. The Finite Element Method is simply
one amongst many such contenders. Arguably though, many salient mathe-
matical features make FEM an attractive and expedient solution technique
for many physical problems, e.g. from structural dynamics. In the following
section, we will introduce FEM for very simple systems. To begin with, we
will consider a discrete structural system, an example of which are trusses,
this system is not only discrete but also algebraic (i.e. involves no PDE)
and therefore applying FEM is straightforward (and in this case exact!).
However, for more general systems we will see that the approach involves
more than a few steps all of which can be easily programmed. In the past
few decades this has lead to the emergence of many specialized commercial
FEM codes, viz. Abaqus, Ansys, Comsol, Cosmos, LS-Dyna and DiekA 2,
to name a few.

PDE’s are solved with FEM by assuming the solution varies in a very
simple way, e.g. linearly, between a finite number of points on the original
domain. The simple way in which the solution varies between these points
is described by ‘elements’. These elements are joined to form a structure

1An overview of numerical techniques for solving partial differential equations can be
found on http://en.wikipedia.org/wiki/Numerical partial differential equations

2DiekA is a finite element code developed by Han Huétink at the University of Twente
to solve non-linear plasticity problems, see http://www.dieka.org/

50

http://en.wikipedia.org/wiki/Finite_element_method
http://en.wikipedia.org/wiki/Numerical_partial_differential_equations
http://www.dieka.org/

CHAPTER 4. THE FINITE ELEMENT METHOD 51

that approximates the actual structure.
This chapter is divided in four sections.
Section 4.1 discusses the quasistatic limit and introduces what is perhaps

the simplest element in the finite element method, the bar element. It
is discussed how to apply the finite element method in order to obtain a
solution to problems that can be approximated with the static loading of
connected bars.

Section 4.2 is on the derivation of the finite element method using the
Galerkin method. The Galerkin method is a way of transforming a problem
posed as a differential equation with boundary conditions to a problem posed
as a system of linear equations. The finite element method can be considered
a special case.

Section 4.3 discusses the finite element equations in the dynamic case,
where the solution changes with time.

Finally, Section 4.4 discusses applying the finite element method to solve
nonlinear equations.

4.1 The finite element method in the quasistatic
limit

This section discusses the finite element method when assuming the problem
can be approximated by taking the quasisatic limit; the problem solved is
assumed to be in static equilibrium.

Section 4.1.1 describes the quasistatic limit, Section 4.1.2 introduces one
of the simplest elements used in FEM, the bar element on a one dimensional
domain, Section 4.1.3 describes how a simple loading problem is solved using
this bar element and Section 4.1.4 describes a generalized bar element that
is usable when arbitrarily rotated on a two dimensional domain.

This chapter uses the same notation as Cook[1]; terms representing ma-
trices are surrounded by square brackets, e.g. [x], terms representing column
vectors are surrounded by curly brackets, e.g. {x}, and terms representing
row vectors are surrounded by left and right floor brackets, e.g. bxc.

4.1.1 The quasistatic limit

In the chapter on molecular dynamics, Chapter 3, where the atoms / parti-
cles / masses move, obtaining exact solutions required solving the differential
equations of motion,

mi~̈ri = ~fi, (4.1)

where mi is the mass of the ith particle with position ~ri subject to force ~fi.
In many cases, however, the motion of the structure is so subtle that it does
not significantly effect the final state. In the equations of motion the inertia

CHAPTER 4. THE FINITE ELEMENT METHOD 52

terms are negligibly small;

mi~̈ri = ~fi � 1.

This limit, in which the loading conditions approach a static loading, is
called the quasistatic limit. In these cases solving the equations of motion
for the case of static equilibrium,

~fi = 0,

approximates the fully dynamic solution very closely.

4.1.2 The bar element

Consider the elastic bar in Fig. 4.1. It has stiffness k and is attached to the
points 1 and 2 at initial positions x1 and x2, loaded with external forces F1

and F2 and displaced by displacements u1 and u2. For a linearly elastic bar
the internal forces on node 1 and 2 are given by

f1 = −f2 = k∆L,

where ∆L = u2 − u1. The displacement varies linearly between the displace-
ments of its endpoints. Also, in contrast to the mass-spring system in Sec-
tion 3.1.1, the mass is not concentrated in the endpoints of the bar.

Figure 4.1: The bar element

In case of equilibium we can write down the relations between the exter-
nal forces and displacements by combining F1 = −f1 = −k∆L = k (u1 − u2)
and F2 = −f2 = k∆L = −k (u1 − u2) into

k

[
1 −1
−1 1

]{
u1

u2

}
=

{
F1

F2

}
,

or
[k]{u} = {f}, (4.2)

where

[k] = k

[
1 −1
−1 1

]
, (4.3)

{u} =
⌊
u1 u2

⌋T
and {f} =

⌊
F1 F2

⌋T
.

The matrix [k] is called the stiffness matrix, the vector {u} the displace-
ment vector and the vector {f} the external force vector.

http://en.wikipedia.org/wiki/Mechanical_equilibrium

CHAPTER 4. THE FINITE ELEMENT METHOD 53

Suppose we have a cylindrical bar with Young’s modulus E, cross-sectional
area A and length L, then Eq. (4.2) with k = EA/L represents the equations
for static equilibrium of the bar, hence the name bar element 3.

4.1.3 An example of solving a problem with FEM

Figure 4.2 shows a structure with five bars iO with stiffness ki, i = 1..5,
cross-sectional areas Ai and lengths Li attached to four nodes j with dis-
placements uj , j = 1..4. The structure is clamped at its left end (u1 = 0)
andloaded at the right with a force P .

Figure 4.2: Schematic representation of a FEM problem

This structure can be modelled exactly with the finite element method
using only bar elements. Combining the bar elements results in a set of
four coupled linear equations with four unknowns uj , j = 1..4. These can
be solved easily to obtain the displacements, stresses, strains and internal
forces of the structure. We do this in five steps.

Step 1: write down equations for each element

The first step is to write down Eq. (4.2) for each element, which gives

k1

[
1 −1
−1 1

]{
u1

u4

}
=

{
F1,1

F4,1

}
for element 1O,

k2

[
1 −1
−1 1

]{
u1

u2

}
=

{
F1,2

F2,2

}
for element 2O,

k3

[
1 −1
−1 1

]{
u2

u3

}
=

{
F2,3

F3,3

}
for element 3O,

k4

[
1 −1
−1 1

]{
u3

u4

}
=

{
F3,4

F4,4

}
for element 4O,

k5

[
1 −1
−1 1

]{
u1

u4

}
=

{
F1,5

F4,5

}
for element 5O.

where Fi,j is the force at node i on element j.

3The bar element is also commonly referred to as the ‘truss element’.

CHAPTER 4. THE FINITE ELEMENT METHOD 54

Step 2: assemble the structure stiffness equations

The second step is to write these equations into a system of linear equations
[K]{U} = {F}, called the ‘structure stiffness equations’, where {U} = bu1, u2, u3, u4cT
is a column vector containing all the displacements and {F} = bF1, F2, F3, F4cT
is a column vector containing the total forces on nodes 1..4, respectively.

An easy way to see how to obtain the structural stiffness equations is
to write each of the element equations in a form containing the vector {U}
instead of only the two displacements corresponding to the nodes attached
to the particular element. For example, the equation for element 1O is
rewritten as 

k1 0 0 −k1

0 0 0 0
0 0 0 0
−k1 0 0 k1



u1

u2

u3

u4

 =


F1,1

0
0
F4,1

 .

Doing so for each element and adding the resulting equations gives the
assembled equations
k1 + k2 + k5 −k2 0 −k1 − k5

−k2 k2 + k3 −k3 0
0 −k3 k3 + k4 −k4

−k1 − k5 0 −k4 k1 + k4 + k5



u1

u2

u3

u4

 =


F1,1 + F1,2 + F1,5

F2,2 + F2,3

F3,3 + F3,4

F4,1 + F4,4 + F4,5

 .

Note that the matrix [K] is symmetric. This is generally the case, and
provides a way to check for mistakes in the assembly process of a FEM
program.

Since the force vector on the right hand side contains the total forces
on the nodes, and we know from our assumption of static equilibrium that
internal forces are zero we can rewrite it to {F} = bR, 0, 0, P cT, where R is
the reaction force of the structure at the left boundary, node 1.

Step 3: apply boundary conditions

The third step is to apply the boundary conditions. In this case the only
boundary condition is that the left boundary does not displace, so u1 =
0. This implies that the first column of [K] can be ignored, leaving four
equations in four unknowns (including the reaction force R). Instead of
solving the reaction force and the unknown displacements simultaneously, it
is easier to first compute the unknown displacements and obtain the reaction
force later by substituting the now known displacements in the equation for
the reaction force. To solve for the unknown displacements we can discard
the first equation, resulting in three equations in three unknowns. This
leaves us the following system of equations to be solved.k2 + k3 −k3 0

−k3 k3 + k4 −k4

0 −k4 k1 + k4 + k5


u2

u3

u4

 =


0
0
P

 .

CHAPTER 4. THE FINITE ELEMENT METHOD 55

Step 4: solve system of linear equations

The fourth step is to compute the solution to this system of linear equations.
There are several ways to do this. An elegant way would be to make use of

{U} = [K]−1[K]{U} = [K]−1{F}.

So we could compute the inverse of the remainder of the stiffness matrix
and postmultiply it with the force vector to obtain {U}. However, since
computing the inverse of a matrix is computationally relatively very expen-
sive, it is better to use other methods. The solution methods in use are
divided in direct methods and iterative methods. A familiar example of a
direct method is Gaussian elimination. A widely used iterative method is
the conjugate gradient method.

In MATLAB the easiest way to solve this system of linear equations
would be to use the function mldivide, which is called when using the \
operator in MATLAB. This function knows of several solution methods and
tries to find the most appropriate for the values it receives as input. Given
a matrix K and force vector F we can compute the solution in MATLAB by
executing

U = K\F

To now compute the reaction force we substitute the solution in the
equation we discarded, in the case of this example the first equation, when
applying the boundary conditions in step 3. We can now check for errors by
verifying the assumption of static equibibium holds. I.e. we verify that the
sum of forces external to the structure is zero.

Ex. 11 — Choose some values for ki, i = 1..5 and P and verify static
equilibrium by computing R+P with MATLAB.

Step 5: compute element strains and stresses

Strain in 1D is defined by

ε =
∂u

∂x
, (4.4)

where u is the displacement of the point intially at position x.
Having obtained the displacements {U} it is straightforward to compute

the element strains εi and stresses σi, i = 1..5.
As mentioned in Section 4.1.2, the displacement of a bar element varies

linearly with x, and so we can compute the element strain by only consid-
ering its ends, as expressed in

εi =
∆Li
Li

=
u2,i − u1,i

Li
, i = 1..5,

http://en.wikipedia.org/wiki/System_of_linear_equations#Solving_a_linear_system
http://en.wikipedia.org/wiki/Iterative_method
http://en.wikipedia.org/wiki/Gaussian_elimination
http://en.wikipedia.org/wiki/Conjugate_gradient_method
http://www.mathworks.com/help/techdoc/ref/mldivide.html

CHAPTER 4. THE FINITE ELEMENT METHOD 56

where εi is the strain in bar element i, u1,i and u2,i are the displacements of
the first and second node of that bar element, ∆Li = u2,i−u1,i is its change
in length and Li is its initial length.

The element stress can be found by Hooke’s law,

σi = Eiεi, i = 1..5,

where σi is the stress in element i and Ei is its Young’s modulus.

4.1.4 Elements in arbitrary orientation

Consider in Fig. 4.3, a bar element on a two dimensional domain. A way to
write down the relation between the element forces and the displacements in
the global coordinate system with coordinates x, y is by introducing a local
coordinate system with coordinate x′.

(a) (b)

Figure 4.3: Bar element in 2D domain; (a) local and global displacements
and (b) local and global forces

From the figure it can be easily verified that

u1 = cos(θ)u′1, (4.5)

v1 = sin(θ)u′1, (4.6)

u2 = cos(θ)u′2, (4.7)

v2 = sin(θ)u′2. (4.8)

Multiplying Eq. (4.5) with cos θ, Eq. (4.6) with sin θ and adding we
obtain u′1 expressed in u1 and v1. Doing the same with Eqs. (4.7) and (4.8)
we obtain u′2 expressed in u2 and v2. We can write these two equations in
the form

{u′} = [T]{u}, (4.9)

where
{u′} =

⌊
u′1 u′2

⌋T
, {u} =

⌊
u1 v1 u2 v2

⌋T

CHAPTER 4. THE FINITE ELEMENT METHOD 57

and [T] is a so-called transformation matrix, given by

[T] =

[
cos θ sin θ 0 0

0 0 cos θ sin θ

]
. (4.10)

Note that [T]T[T] = [I] and also {u} = [T]T{u′}.
Similarly we have as a relation between the nodal forces in global coor-

dinates Fx1, Fy1, Fx2 and Fy2 and the nodal forces in local coordinates F1

and F2,
{f} = [T]T{f ′}, (4.11)

where {f ′} = bF1, F2cT and {f} = bFx1, Fy1, Fx2, Fy2cT.
Now a relation between the forces and displacements in the global co-

ordinate system, {f} and {u}, is obtained. From Eq. (4.2) the relation
between the forces and displacements in local coordinates is {f ′} = [k′]{u′},
where [k′] is the local stiffness matrix for the bar on a 1D domain, the right
hand side of Eq. (4.3). Substituting this expression for {f ′} in Eq. (4.11)
and then substituting Eq. (4.9) we have

{f} = [T]T{f ′} = [T]T[k′]{u′} = [T]T[k′][T]{u},

or in the notation of Eq. (4.2), [k]{u} = {f}, where [k] now is the stiffness
matrix for bar elements in arbitrary orientation on a 2D domain given by

[k] = [T]T[k′][T] = k


c2 cs −c2 −cs
cs s2 −cs −s2

−c2 −cs c2 cs
−cs −s2 cs s2

 , c = cos θ, s = sin θ

(4.12)
and {u} and {f} are the displacements and forces in the global coordinate
system.

4.2 Formal procedure of deriving the stiffness ma-
trix in FEM

The finite element method started out in a way like described in the previous
section. Its application to stress analysis was straightforward enough to be
able to use physical insight to understand why it is valid.

To get more out of the finite element method ways were found of putting
it on more rigorous foundations. This allowed the derivation of much more of
what is and isn’t possible using the method. Several approaches to deriving
the finite element method have been thought of, making it more and more
general so it could be used to solve more and more problems.

This section discusses the Galerkin method, a method capable of con-
verting the problem of solving a continuous description of a problem, a

http://en.wikipedia.org/wiki/Galerkin_method

CHAPTER 4. THE FINITE ELEMENT METHOD 58

differential equation with boundary conditions, to solving a discretized de-
scription of the problem, a system of linear equations. It is used to derive
the system of linear equations equivalent to using a single bar element for
approximating the solution to a load on a one dimensional domain.

The derivation can be seen as consisting out of three parts. First, in
Section 4.2.1, the problem is stated as a differential equation with boundary
conditions. This is referred to as the ‘strong formulation’ of the problem.
Next, in Section 4.2.2, the problem is restated as an integral equation called
the ‘weak formulation’ that is equivalent to the strong formulation. In the
last step, Section 4.2.3, the discretization takes place. This is the step
where the continuous weak formulation is approximated by a system of linear
equations.

In the following we denote the first and second derivatives of a function
with respect to x as fx and fxx, respectively, or

fx ≡
df

dx
and fxx ≡

d2f

dx2
.

4.2.1 Derivation of the strong formulation

In this section the problem of a one dimensional load that varies along the
length of a homogeneous bar with constant circular cross-sectional area is
stated as a differential equation with boundary conditions. The problem is
represented in Fig. 4.4.

(a) (b)

Figure 4.4: (a) the bar element and (b) slice of bar element

The constitutive equation is given by

σ = Eε, (4.13)

where σ is the stress, E the modulus of elasticity and ε is the strain.
Consider the slice of the bar in Fig. 4.4b. Since we are assuming static

equilibrium the sum of the forces acting on it should be zero;

x+∆x∫
x

f(s)A ds− σ(x)A+ σ(x+ ∆x)A = 0, (4.14)

CHAPTER 4. THE FINITE ELEMENT METHOD 59

where f is the force density, i.e. the force per unit volume, A is the cross-
sectional area and ∆x is the length of the element. Let F (x) be the an-
tiderivative of f(x) in this problem, so

Fx = f. (4.15)

Using Eq. (4.15) we can rewrite Eq. (4.14) to

[F (x+ ∆x)− F (x) + σ(x+ ∆x)− σ(x)]A = 0. (4.16)

Dividing by A∆x and taking the limit of ∆x→ 0, we obtain

lim
∆x→0

[
F (x+ ∆x)− F (x)

∆x
+
σ(x+ ∆x)− σ(x)

∆x

]
= Fx + σx = 0. (4.17)

Substituting Eq. (4.15) we obtain

f + σx = 0. (4.18)

Substituting Eq. (4.13) with the strain expressed as ε = ux, where u is
the displacement, gives the strong formulation for the problem depicted in
Fig. 4.4;

f + Euxx = 0. (4.19)

4.2.2 Derivation of the weak formulation

The next step in the derivation is to rewrite the strong formulation to the
so-called ‘weak formulation’, which is an integral equation equivalent to the
strong formulation.

First, we multiply the strong formulation with an arbitrary function v,
giving

v [f + Euxx] = 0.

The function v is also called ‘virtual displacement’4. As long as v 6= 0, this
is equivalent to Eq. (4.19).

Next we integrate this equation over the entire volume. To make this
form equivalent to the strong formulation, it is required that the integral
is zero because Eq. (4.19) holds, not just because the integrand integrated
over the particular domain happens to be zero. We therefore require the
integral to be zero for any function v, giving

L∫
0

v [f + Euxx]Adx = 0 ∀ v, (4.20)

4The concept of virtual displacement is in the derivation of the finite element method
from the concept of virtual work what the arbitrary function v is in the derivation of the
finite element method with the Galerkin method.

http://en.wikipedia.org/wiki/Virtual_work

CHAPTER 4. THE FINITE ELEMENT METHOD 60

where L is the length of the bar.
The product rule states

(f · g)x = fx · g + f · gx, (4.21)

for any differentiable functions f(x) and g(x). By making use of the product
rule (or equivalently, integration by parts) a term representing ‘natural’
boundary conditions appears, and also the order of the highest occuring
derivative reduces to one. Both are desirable properties of a problem to be
solved with the finite element method.

With f = v and g = ux the product rule implies (vux)x = vxux + vuxx
or, solving for vuxx,

vuxx = (vux)x − vxux. (4.22)

We can now rewrite Eq. (4.20) to an integral with first derivatives only.
First we split the integral on its left hand side;

L∫
0

v [f + Euxx]Adx =

L∫
0

vfAdx+

L∫
0

vEuxxAdx. (4.23)

Note that even though in this case we could take out E and A out of the
integral, given they are constants, in general this is not so. They are kept
inside the integrals in order to keep the notation of the derivation closer to
that as found in more general derivations.

Next we substitute Eq. (4.22) into the second integral on the right hand
side of the last equation. The integral is rewritten to a sum of integrals
containing only first order derivatives, as stated in

L∫
0

vEuxxAdx =

L∫
0

E(vux)xAdx−
L∫

0

EvxuxAdx. (4.24)

The first integral on the right hand side can be integrated;

L∫
0

E(vux)xAdx = [vuxEA]L0 . (4.25)

Substituting Eqs. (4.24) and (4.25) into Eq. (4.23) and reordering terms
we obtain a modified weak formulation that only contains first order deriva-
tives,

L∫
0

vxEuxAdx = [vuxEA]L0 +

L∫
0

vfAdx ∀ v, (4.26)

Note that the terms on the right hand side are all known if ux is known at
the boundaries x = 0 and x = L and f is known.

CHAPTER 4. THE FINITE ELEMENT METHOD 61

In summary. In order to have an integral form equivalent to the strong
formulation we multiplied the integrand with an arbitrary function v, and
required the integral equation to hold for all v. We applied integration by
parts to obtain terms corresponding to natural boundary conditions and to
make the highest order derivative occuring in the equations a first order
one. Finally we reordered terms to obtain the unknowns on the left and the
known terms on the right.

4.2.3 Discretization

We have now rewritten the strong formulation, the differential equation
describing the motion of the bar element Eq. (4.19), to its weak formulation,
an equivalent form consisting of integrals over the volume of the bar element
of Eq. (4.26). Next we discretize the equation leading to a form solvable by
a computer.

Figure 4.5: Interpolation of displacement for a 1D bar element

In discretizing Eq. (4.26) we assume that the displacement u(x) along
the bar varies linearly between its endpoints at x = 0 and x = L, see Fig. 4.5.
The displacement thus satisfies

u = ax+ b, with u(0) = u1, u(L) = u2,

where u1 is the displacement at x = 0, u2 is the displacement at x = L, and
L is the length of the element.

This implies that a = (u2 − u1)/L and b = u1, which can be rewritten
in the form

u(x) = [N]{u}, (4.27)

where [N] are the so-called ‘basis functions’5,6, given by

[N] =
[
1− x

L
x
L

]
, (4.28)

5Just as any vector in a vector space can be represented as a linear combination of the
vectors in a basis of that vector space, any function in a function space can be represented
as a linear combination of the functions in a basis of that function space. Functions in a
basis are called ‘basis functions’.

6Piecewise linear functions are very well suited as basis functions because they are so
simple, but in principle more complicated functions can be (and in practice are) used.

http://en.wikipedia.org/wiki/Basis_function

CHAPTER 4. THE FINITE ELEMENT METHOD 62

and {u} = bu1, u2cT is the displacement vector.
The element strain can be computed by taking the derivative of Eq. (4.27)

with respect to x;
ε = ux = [B]{u}, (4.29)

where [B] contains the derivatives of the shape functions, thus equal to

[B] ≡ [N]x =
[
− 1
L

1
L

]
. (4.30)

In order to end up with a system of linear equations, the form suited for
processing with a computer, we no longer require the virtual displacements
to be any function, but instead choose them to be of the same form as the
displacements. So we choose

v(x) = [N]{v} (4.31)

and also
vx(x) = [B]{v}, (4.32)

where {v} = bv1, v2cT.
Substituting Eqs. (4.29) and (4.32) in Eq. (4.26) results in

L∫
0

([B]{v})TE[B]{u}Adx =
[
([N]{v})TσA

]L
0

+

L∫
0

([N]{v})TfAdx.

On the right hand side we replaced Eux with σ in order to emphasize it
is only evaluated at the boundaries and therefore doesn’t depend on the
displacements {u}.

Since ([A]{b})T = {b}T[A]T for any matrix [A] and row vector {b} and
{v} and {u} are independent of the domain of integration we can rewrite
this to

{v}T
L∫

0

[B]TE[B]Adx {u} = {v}T
[
[N]TσA

]L
0

+ {v}T
L∫

0

[N]TfAdx. (4.33)

Since we require this last equation to hold for any {v} we may divide
both sides by it to obtain

[K]{u} = {F}, (4.34)

where [K] is given by

[K] =

L∫
0

[B]TE[B]Adx, (4.35)

and the force vector {F} is given by

{F} = {F}b + {F}f, {F}b =
[
[N]TσA

]L
0
, {F}f =

L∫
0

[N]TfAdx, (4.36)

CHAPTER 4. THE FINITE ELEMENT METHOD 63

where {F}b is the boundary force vector and {F}f is the volume force vector.
Evaluating the expression for the stiffness matrix Eq. (4.35) we find the

same expression we did when introducing the bar element;

[K] =

L∫
0

[B]TE[B]Adx

= EA

L∫
0

[
− 1
L

1
L

] [
− 1
L

1
L

]
dx

= EA

L∫
0

[
1
L2 − 1

L2

− 1
L2

1
L2

]
dx

= EA

[
x
L2 − x

L2

− x
L2

x
L2

]L
0

=
EA

L

[
1 −1
−1 1

]
.

Summary

This section discussed a method allowing the derivation of the finite element
method, called the ‘Galerkin method’.

The method was applied to derive the finite element equations for the
case where a loaded bar is modelled with a single bar element.

The Galerkin method works by transforming a problem stated in the
form of a differential equation with boundary conditions, called the ‘strong
formulation’, to an integral equation form, called the ‘weak formulation’.
This weak formulation is then discretized to obtain the finite element equa-
tions.

4.3 Dynamic formulation for FEM

This section discusses the application of the finite element method to prob-
lems where the solution changes with time.

It starts by deriving the finite element equations of a single bar in the
dynamic case (Section 4.3.1). Next modal analysis, where the frequencies
and modes of vibration of a structure are determined, using the finite el-
ement method is discussed (Section 4.3.2). Finally, the integration of the
discretized problem in time by using the Newmark-β method is discussed
(Section 4.3.3)

CHAPTER 4. THE FINITE ELEMENT METHOD 64

4.3.1 Discretization of the dynamic formulation; the mass
matrix

In this section the system of linear equations approximating the solution
to the problem depicted in Fig. 4.4 is derived using the Galerkin method.
The method can be thought of as consisting out of three steps; stating the
strong formulation, restating the strong formulation as the weak formulation
and discretizing the weak formulation. This was discussed in more detail in
Section 4.2.

In the derivation of the strong formulation in the quasistatic case, Sec-
tion 4.2.1, the sum forces was assumed to be zero. In this case it is assumed
to equal the mass of the bar times its acceleration ρA∆x ü, where ρ is the
density, A the cross-sectional area, ∆x the width of a slice of the bar and ü
its acceleration. Following the rest of the derivation it is easy to obtain the
strong formulation for the dynamic case:

f + Euxx = ρü. (4.37)

The weak formulation is obtained by taking the right hand side of this
equation to the left, and following the derivation of obtaining the weak for-
mulation from the strong formulation in the quasistatic case, Section (4.20).
The weak formulation is

L∫
0

vρüA dx+

L∫
0

(v)xEuxA dx = EA(vux)L0 +

L∫
0

vfA dx. (4.38)

To be able to solve this equation using a computer we discretize the
weak formulation, Eq. (4.38). Since we are considering the dynamic case we
now have an extra dimension, time, which will be discretized as well. The
discretization of time is discussed in Section 4.3.3. First we discretize the
spatial dimension.

In discretizing the quasistatic case, Section 4.2.3, we assumed that both
the displacement and the virtual displacements vary linearly between the
displacements and virtual displacements of the end points of the bar, as
expressed in Eqs. (4.27) and (4.31). For the dynamic case we assume that the
same holds for the acceleration; it varies linearly between the accelerations
of the end points, or

ü(x) = [N]{ü}, (4.39)

where [N] is a matrix containing the shape functions, given by Eq. (4.28),
and {ü} = bü1, ü2cT is the vector with accelerations of the end points ü1

and ü2.
Substiuting the expressions for the strain, virtual displacement, virtual

strain and the acceleration, Eqs. (4.29), (4.31), (4.32) and (4.39), respec-

CHAPTER 4. THE FINITE ELEMENT METHOD 65

tively, in the right hand side of Eq. (4.38) we obtain its discretized form,

L∫
0

([N]{v})T ρ[N]{ü}A dx+

L∫
0

([B]{v})TE[B]{u}A dx

=
[
([N]{v})TσA

]L
0

+

L∫
0

([N]{v})TfA dx.

On the right hand side we replaced Eux with σ in order to emphasize it
is only evaluated at the boundaries and therefore doesn’t depend on the
displacements {u}.

Since ([A]{b})T = {b}T[A]T for any matrix [A] and row vector {b} and
{v}, {u} and {ü} are independent of the domain of integration we can rewrite
this to

{v}T
L∫

0

[N]Tρ[N]A dx{ü}+ {v}T
L∫

0

[B]TE[B]A dx{u}

= {v}T
[
[N]TσA

]L
0

+ {v}T
L∫

0

[N]TfA dx. (4.40)

Since we require this last equation to hold for any {v} we may divide
both sides by it to obtain

[M]{ü}+ [K]{u} = {F}, (4.41)

where [K] and {F} are given by Eqs. (4.35) and (4.36) from the quasistatic
case and [M] is the so-called mass matrix, given by

[M] =

L∫
0

ρ[N]T[N]A dx. (4.42)

Here the shape functions [N] are given by Eq. (4.28), or equivalently,
[N] = [N1 N2], where N1 = 1 − x/L and N2 = x/L. With this we can
rewrite the mass matrix to

[M] =

[
M11 M12

M21 M22

]
, (4.43)

CHAPTER 4. THE FINITE ELEMENT METHOD 66

where

M11 =

L∫
0

ρN2
1A dx,

M12 =

L∫
0

ρN1N2A dx,

M21 =

L∫
0

ρN2N1A dx = M12,

M22 =

L∫
0

ρN2
2A dx,

where

N2
1 =

(
1− x

L

)2
= 1− 2

x

L
+
x2

L2
,

N1N2 =
(

1− x

L

) x
L

=
x

L
− x2

L2
,

N2
2 =

x2

L2
.

The expression for the mass matrix contains the density ρ inside the
integral. In order to compute the integral we have to decide how the density
varies over the volume of the bar. There are two common ways of assum-
ing the distribution of the density leading to the so-called ‘consistent mass
matrix’ and ‘lumped mass matrix’.

The consistent mass matrix

The consistent mass matrix [MC] follows from assuming the mass is constant
along the bar. The coefficients of the matrix become

MC
11 = ρA

L∫
0

N2
1 dx =

ρAL

3
=
m

3
,

MC
12 = MC

21 = ρA

L∫
0

N1N2 dx =
ρAL

6
=
m

6
,

MC
22 = ρA

L∫
0

N2
2 dx =

ρAL

3
=
m

3
,

CHAPTER 4. THE FINITE ELEMENT METHOD 67

where m = ρAL is the mass of the bar element. Substituting the coefficients
we obtain the consistent matrix for the bar element in 1D,

[MC] =
m

6

[
2 1
1 2

]
. (4.44)

The lumped mass matrix

Another way of assuming the mass is distributed is dividing it in point
masses, or lumps, located at the end points of the beam. Mathematically
this can be expressed by making the density of the form

ρ(x) =
1

A

(m
2

(δ(x) + δ(x− L))
)
, (4.45)

where δ(x) is the Dirac delta function, defined by

δ(x) =

{
∞, x = 0

0, x 6= 0
,

∞∫
−∞

δ(x)dx = 1.

It has the property

b∫
a

δ(x− c)f(x)dx = f(c), a ≤ c ≤ b.

Since ρ(x) is zero everywhere except at the end points of the bar the
lumped mass matrix [ML] is given by Eq. (4.42) evaluated only at x = 0
and x = L. Substituting the expression for ρ, Eq. (4.45), the coefficient ML

11

becomes

ML
11 =

L∫
0

ρN2
1Adx

=

L∫
0

m

2
(δ(x) + δ(x− L))N2

1dx

=
m

2

 L∫
0

δ(x)N2
1dx+

L∫
0

δ(x− L)N2
1dx


=
m

2

(
N2

1

∣∣
x=0

+ N2
1

∣∣
x=L

)
=
m

2

Similarly, the other coefficients become

ML
12 = ML

21 = 0 and ML
22 =

m

2
.

http://en.wikipedia.org/wiki/Dirac_delta

CHAPTER 4. THE FINITE ELEMENT METHOD 68

Substituting the coefficients we obtain the lumped mass matrix for a bar
element in 1D,

[ML] =
m

2

[
1 0
0 1

]
. (4.46)

Mass matrices of a bar arbitrarily rotated on a 2D plane

In 2D the consistent mass and lumped matrices are given by

[MC] =


2 0 1 0
0 2 0 1
1 0 2 0
0 1 0 2

 and [ML] =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , (4.47)

respectively. Note that in contrast to the stiffness matrix the mass matrices
do not depend on the orientation of the bar.

4.3.2 Modal analysis

The modes of vibration and the frequencies at which they vibrate, called the
natural frequencies, of a structure are those motions a structure can make
without being excited by an external force. In modal analysis the modes of
vibration and the natural frequencies are derived.

By assuming all nodes move sinusoidally and in phase without there
being an external force the eigenfrequencies and modes of vibration can be
calculated. Consider the FEM equations, Eq. (4.41). We assume

{u} = {u0} cosωt and {F} = 0.

Substituting these in the FEM equations we obtain(
−ω2[M] + [K]

)
{u0} cosωt = 0.

Since we are looking for the solution where this is true independent of time
we divide left and right by cosωt and obtain

([K]− λ[M]) {u0} = 0, (4.48)

where λ = ω2. This is a generalized eigenvalue problem and there are many
methods for solving it.

In MATLAB the easiest way is to use the function eig. Given matrices
A and B the command

[V, D] = eig(A, B);

returns a matrix V whose columns are eigenvectors and a matrix D whose
diagonal elements contain the eigenfrequencies.

In practice the generalized eigenvalue problem is solved with iterative
methods such as inverse iteration, Jacobi iteration and the Lanczos algo-
rithm. An overview can be found on Wikipedia by searching for ‘List of
numerical analysis topics’.

http://en.wikipedia.org/wiki/Generalized_eigenvalue_problem#Generalized_eigenvalue_problem
http://www.mathworks.com/help/techdoc/ref/eig.html
http://en.wikipedia.org/wiki/Inverse_iteration
http://en.wikipedia.org/wiki/Jacobi_eigenvalue_algorithm
http://en.wikipedia.org/wiki/Lanczos_algorithm
http://en.wikipedia.org/wiki/Lanczos_algorithm
http://en.wikipedia.org/wiki/List_of_numerical_analysis_topics#Eigenvalue_algorithms
http://en.wikipedia.org/wiki/List_of_numerical_analysis_topics#Eigenvalue_algorithms

CHAPTER 4. THE FINITE ELEMENT METHOD 69

4.3.3 Transient analysis; the Newmark-β method

In a transient analysis the response of a system to an arbitrary excitation is
computed. For the finite element method this is often achieved by integrat-
ing a system of linear differential equations in time. A numerical integration
scheme widely used for numerically integrating finite element equations is
the Newmark-β method.

Only the case of a linear FE problem is considered, but the method can
be applied to material or geometrical nonlinearity.

In order to solve the problem we need to know the initial conditions
{u}(t0) = {u}0 and {u̇}(t0) = {u̇}0 and the boundary conditions describing
the value of the displacements and velocities of the structure that are on the
boundary for all time steps.

Let n be the current time step. The finite element equations must hold;

[M]{ü}n + [K]{u}n = {F}n, (4.49)

where {ü}n, {un} and {F}n are the nodal accelerations, nodal positions and
nodal forces at time step n, respectively.

To compute the solution at the next time step n + 1 the Newmark-β
method is used.

With this method the nodal velocities and nodal positions at the next
time step, {u̇}n+1 and {u}, respectively, are computed with

{u̇}n+1 = {u̇}n + ∆t{ü}γ , (4.50)

{u}n+1 = {u}n + ∆t{u̇}n +
1

2
∆t2{ü}β, (4.51)

where
{ü}γ = (1− γ){ü}n + γ{ü}n+1, 0 ≤ γ ≤ 1

and
{ü}β = (1− 2β){ü}n + 2β{ü}n+1, 0 ≤ β ≤ 1

where γ and β are two parameters for which different choices lead to inte-
gration schemes having different properties. This is discussed in more detail
shortly.

These equations can be evaluated after determining the nodal acceler-
ation at the next time step, {ü}n+1. They follow from substituting the
expression for {u}n+1 in the finite element equations at the (n + 1)th time
step. Doing so yields

[M]{ü}n+1 + [K]

(
{un}+ ∆t{u̇}n +

1

2
∆t2 ((1− 2β){ü}n + 2β{ü}n+1)

)
= {F}n+1.

http://en.wikipedia.org/wiki/Newmark-beta_method

CHAPTER 4. THE FINITE ELEMENT METHOD 70

Collecting the terms with {ü}n+1 on the left hand side and moving the
rest to the right yields

[A]{ü}n+1 = {F}n+1 + [K]{û}n,

where

[A] = [M] + ∆t2β[K] and {û}n = {u}n + ∆t{u̇}n +
1

2
∆t2(1− 2β){ü}n.

The nodal accelerations result from premultiplying with the inverse of [A],

{ü}n+1 = [A]−1 ({F}n+1 + [K]{û}n) . (4.52)

To obtain a solution one must choose the value of the parameters γ and
β. There are several choices with interesting properties. Choosing γ = 1/2
and β = 1/4 results in the so-called ‘constant average acceleration method’.
The advantage of this method is that the algorithm is unconditionally sta-
ble, i.e. the time step can be chosen based on accuracy considerations only.
Choosing γ = 1/2 and β = 1/6 results in the so-called ‘linear accelera-
tion method’. In contrast to the constant average acceleration method this
method is conditionally stable. Choosing γ = 1/2 and β = 0 results in
the so-called ‘central difference scheme’. The advantage is that [A] = [M],
which makes the inversion required for computing the nodal accelerations
{ü}n+1 very cheap in case of a lumped mass matrix. A disadvantage is that
as the linear acceleration method this method is conditionally stable.

4.4 Finite Element Method for Nonlinear Systems

4.4.1 A primer on nonlinearities

A nonlinear system is one where the solution of the system does not linearly
depend on the applied load. As such a nonlinear system does not obey the
principle of superposition7. Output of a nonlinear system is not directly
proportional to its input. Nonlinear systems are of paramount interest in
science and engineering as most naturally occuring physical phenomena are
inherently nonlinear. As an example, an equation of the form

y = ax

is said to be linear while
y = ax2

represents a nonlinear equation.

7A linear system obeys the principle of superposition which states that if U1 and U2

are solutions to a linear system (PDE) then for any a and b, aU1 + bU2 is also a solution
of the system

CHAPTER 4. THE FINITE ELEMENT METHOD 71

In structural analysis, using FEM, the nonlinearity can manifest itself in
two ways, viz. geometric and material nonlinearity. Geometrically nonlinear
problems are those involving large deformation (large strains), e.g. a fishing
rod, which deforms under the applied load to the extent that it changes the
original configuration (small strain theories ignore change in configuration!).
On the other hand, material nonlinearity refers to the case where the conti-
tutive relations are not linear. E.g. a nonlinear stress-strain relationship in
nonlinear elastic, elasto-plastic and visco-plastic materials. Thus, an impor-
tant departure in nonlinear FEM from linear FEM is that the underlying
global stiffness matrix [K] constantly changes with the solution ({u}) itself.
A nonlinear system therefore is solved in an incremental (iterative) fashion
by taking small (linear) steps. We accomplish this by using iterative schemes
like the Newton-Raphson method to solve the resulting system of nonlinear
equations. One must remember that while a well defined linear system has
only one solution, a nonlinear system can potentially have multiple solutions
(Shocks / bifurcation / chaos are all a result of nonlinearity in the system)
making it harder (and more interesting!) to solve.

4.4.2 Conjugate Gradient Method

The system of linear equations

K{u} = f (4.53)

can be solved directly by matrix inversion or Gaussian elimination. For
very large systems, however, most direct approaches are computationally
complex and have a very large memory footprint. To solve the system of
equations efficiently (and approximately) one therefore resorts to iterative
solvers. There are a large number of iterative solvers for solving linear sys-
tems of equations. They are collectively categorized as Krylov space solvers
due to certain characteristics of the solutionspace generated by these solvers.
An example of such a solver is the Conjugate Gradient (CG) method which
is based on decomposing the solution of the system into a conjugate or-
thonormal basis pi. This basis is generated using the Gram-Schmidt or-
thogonalization process. The CG method is only applicable to symmetric
matrices, but other iterative solvers are available for unsymmetric sytems.
The CG algorithm can be written as in Algorithm 5.

In general the CG method will converge in at most n iterations, however,
the convergence of the method will depend on the condition number of the
matrix and somewhat on your initial guess.

4.4.3 Newton-Raphson Method

Newton-Raphson (NR) or simply Newton’s method is a numerical method
for solving nonlinear equations written in the form of F (u) = 0, where F is

CHAPTER 4. THE FINITE ELEMENT METHOD 72

Algorithm 5 The CG algorithm

r0 := f −Ku0

p0 := r0

i := 0
DONE := 0
while DONE 6= 1 do

αi :=
rTi ri

pT
i Kpi

ui+1 := ui + αipi
ri+1 := ri − αiKpi
if ri+1 ≤ Tol then
DONE := 1

end if

βi :=
rTi+1ri+1

rTi ri

pi+1 := ri+1 + βipi
i := i+ 1

end while

an arbitrary function 8 (linear or nonlinear) of the variable u. Thus, NR is a
method to find the zeros (or root) of a nonlinear function F . NR starts the
solution process from an initial guess u0 (i.e. F (u0) ≈ 0) and successively
refines the guess based on the Jacobian (derivative w.r.t. solution) of the
function ∂F

∂u .
Suppose we have a current guess un, and let un+1 be the next guess such

that F (un+1) = 0 then by the definition of derivative we can write,

F ′(un) =
F (un)− 0

un − un+1
(4.54)

which implies

un+1 = un −
F (un)

F ′(u)
(4.55)

As n goes larger and larger the |un+1 − un| → 0 and the scheme is said
to converge to the correct solution.

Remark: As mentioned earlier the convergence of NR scheme will strongly
depend on your initial guess, however for physical systems which have a
unique solution a NR scheme uniformly converge with any starting guess.

4.4.4 Nonlinear bar

In the previous section you saw the finite element formulation of a linear
bar element. Let us now consider a bar with material nonlinearity. Recall

8In case of FEM one can think of F (u) = K(u){u} − {f}, which now defines a vector
function in terms of FEM unknowns. In this case solving F (u) = 0 =⇒ K(u){u} = f

CHAPTER 4. THE FINITE ELEMENT METHOD 73

that the bar under the stretching load can be modeled by the differential
equation

E
d2u

dx2
= f(x) (4.56)

Where E is the Young’s modulus of the bar and is generally taken to be a
constant. For nonlinear materials E is not a constant and the differential
equation in a more general form is written as

d

dx

(
E(u)

du

dx

)
= f(x), (4.57)

where the material stiffness E(u) now depends on the ‘stretch’ u and renders
this equation nonlinear. A possible form of E(u) can be written as

E(u) = E0

(
1− du

dx

)
(4.58)

As before, to obtain the finite element formulation (weak form) we mul-
tiply 4.57 by a test function v and perform integration by parts over the
length of the bar Ω. We obtain∫

Ω

E0

(
1− du

dx

)
du

dx

dv

dx
dx =

∫
Ω

f(x)vdx,

which can be written as∫
Ω

E0
du

dx

dv

dx
dx

︸ ︷︷ ︸
Linear term

−
∫
Ω

E0
du

dx

du

dx

dv

dx
dx

︸ ︷︷ ︸
Nonlinear term

=

∫
Ω

f(x) v dx

︸ ︷︷ ︸
RHS vector

(4.59)

4.4.5 Newton’s method for nonlinear finite elements

We now know that the stiffness matrix of the nonlinear finite element method
depends on the instantaneous solution u and can be written as

K(u)u = f. (4.60)

In order to write it in the form f(x) = 0, we define the residual

r(u) := K(u)u− f =⇒ r(u) = 0. (4.61)

Then, the Newton iteration formula becomes

ur+1 = ur −
r(ur)
dr(ur)
du

= ur − T−1(ur) r(ur)

(4.62)

CHAPTER 4. THE FINITE ELEMENT METHOD 74

The tangent stiffness matrix (a.k.a. Jacobian matrix), matrix T is

T (ur) :=
dr(ur)

du
=

d

du
[K(u)u− f]

= K(u) +
dK(u)

du
u

= K(ur) +
dK(ur)

du
ur

Therefore the “tangent stiffness” is,

T (ur) := K(ur) +
dK(ur)

du
ur. (4.63)

Since {ur} is a vector (of FEM coefficients) and [K] is a matrix, we can
write it more appropriately as

T := K(ur) +
dK(ur)

dur
ur,

or

Tij := Kij +
dKik

duj
uk (4.64)

Computing (4.64) is not always trivial and depends on the weak form,
often if the variation of K with u is smooth we approximate Tij ≈ Kij ,
which simplifies the computation. Also note that taking the inverse of T in
Eq. (4.62) requires solving a linear system of equations. Thus a nonlinear
solver consists of a bunch of iterative linear solvers (using CG or other linear
solvers).

Chapter 5

Random numbers

Some natural phenomena can be accurately approximated as stochastic pro-
cesses, meaning that they have a random element. Outcomes can only be
determined as having a certain probability.

This chapter discusses two topics that are very important in simulat-
ing stochastic processes. Section 5.1 discusses random number generators,
which take care of providing a sequence of random numbers to simulate
with. Section 5.2 discusses random walks, which give accurate descriptions
of phenomena such as Brownian motion, molecular chaos and diffusion.

5.1 Random number generators

To simulate a natural phenomenon as a stochastic process, a source of ran-
domness is required. Such sources are called ‘random number generators’
(RNGs). Random number generators can be divided in generators of ‘true’
randomness and generators of pseudo-randomness.

True randomness is obtained from measurements of natural phenomena,
such as radioactive decay 1, thermal noise or radio noise 2. While generators
of true randomness can provide the highest quality of randomness, for many
applications it is more desirable to have a source that is capable of generating
a sequence of random numbers repeatedly.

Pseudo-random number generators (PRNGs) are algorithms that gen-
erate a sequence of numbers that approximates the properties of random
numbers. Next, two such algorithms are highlighted. The first subsection,
Section 5.1.1, discusses the linear congruential generator. The subsection fol-
lowing, Section 5.1.2, discusses the lagged Fibonacci generator. The third
subsection, Section 5.1.3, mentions a few other generators that in general
produce higher quality random numbers. The last subsection, Section 5.1.4,
discusses ways of testing the randomness of a sequence of numbers.

1See http://www.fourmilab.ch/hotbits/.
2See http://www.random.org/

75

http://en.wikipedia.org/wiki/Stochastic_process
http://en.wikipedia.org/wiki/Stochastic_process
http://en.wikipedia.org/wiki/Random_number_generator
http://en.wikipedia.org/wiki/Pseudorandom_number_generator
http://www.fourmilab.ch/hotbits/
http://www.random.org/

CHAPTER 5. RANDOM NUMBERS 76

5.1.1 The linear congruential generator

A linear congruential generator (LCG) is one of the oldest and well-known
PRNGs. The advantages are that it’s simple and computationally cheap.

The generated numbers satisfy

Xn+1 = (aXn + c) mod m, (5.1)

where Xn is the nth generated number. To obtain a sequence of num-
bers, four integer constants need to be chosen. They are m, the ‘modulus’
satisfying m > 0, a, the ‘multiplier’ satisfying 0 < a < m, c, the ‘incre-
ment’ satisfying 0 ≤ c < m, and X0, the ‘seed’ or ‘start value’ satifying
0 ≤ X0 < m.

Choosing the same seed value will produce the same sequence of numbers,
allowing one to repeat a simulation exactly, which is helpful in e.g. debug-
ging.

The random numbers are periodic; they repeat in the sequence after
at most m numbers. To obtain a sequence of random numbers with the
maximum period the following conditions for c, m and a must be met.

� c and m must be relatively prime, meaning their only common divisor
is 1.

� a− 1 is divisable by all prime factors of m. 3

� a− 1 is a multiple of 4 if m is a multiple of 4.

The quality of the generated randomness is extremely sensitive to the
choice of these parameters. A common choice for parameters is m = 232, a =
1103515245 and c = 12345, where only bits 30 to 16 are used as representing
random numbers 4.

5.1.2 The lagged Fibonacci generator

The lagged Fibonacci generator (LFG) satisfies

Sn = Sn−j ? Sn−k mod m, 0 < j < k, (5.2)

where Sn is the nth generated number and ? is either the addition, subtrac-
tion, multiplication or bitwise arithmetic exclusive-or operator (XOR). The
modulus m is usually a power of 2.

The maximum period is (2k − 1)2m−1 for addition and subtraction and
(2k − 1)k for the XOR operator. The maximum period for multiplication is
(2k − 1)2m−3, i.e. a quarter of that for addition and subtraction.

3The prime factors of a number n are the prime numbers that, when multiplied, result
in n. Each integer has a unique set of prime factors.

4For more choices of parameters, see
http://en.wikipedia.org/wiki/Linear congruential generator#Parameters in common use

http://en.wikipedia.org/wiki/Linear_congruential_generator
http://en.wikipedia.org/wiki/Relatively_prime
http://en.wikipedia.org/wiki/Prime_factor
http://en.wikipedia.org/wiki/XOR
http://en.wikipedia.org/wiki/Linear_congruential_generator#Parameters_in_common_use

CHAPTER 5. RANDOM NUMBERS 77

Achieving this maximum period requires that j and k are chosen such
that 1 + xj + xk is primitive for all integers mod 2.

To start generating random numbers using an LFG requires a random
sequence. Such a seed can be obtained from an LCG.

The quality of the output is again very sensitive to the choice of con-
stants. An example is (24, 55) 5.

5.1.3 Other random number generators

Other random number generators producing better quality random numbers
are the Mersenne twister 6 and the multiply-with-carry 7 generators.

5.1.4 Testing randomness

There are many ways of testing the randomness of a sequence of numbers.
To mention a few:

� Squaretest ; the points (Xn, Xn+1) are plotted for all n. The more
homogeneous the resulting plot is, the higher quality the randomness.

� Cubetest ; the points (Xn, Xn+1, Xn+2) are plotted for all n. The more
homogeneous the resulting plot is, the higher the quality of random-
ness.

� Computing the mean value. For a large enough sequence of random
numbers the mean value, given by

X̄ =
1

N

N∑
n=1

Xn,

for a sequence of N numbers, should approximate the arithmetic mean
of the full sequence of random numbers the generator is capable of
generating.

� Spectral test ; the result of the Fast Fourier Transform of the sequence
of numbers should resemble that of white noise.

� Chi-square test . More specifically, Pearson’s chi-square test, tests the
hypothesis that sample data is distributed according to some theoret-
ical distribution. In the case of the RNGs of Section 5.1.1 to 5.1.3 the
hypothesized theoretical distribution is the uniform distribution. In
this case, and assuming a sequence containing N generated random
numbers, the test is performed according to the following steps.

5More pairs can be found on
http://en.wikipedia.org/wiki/Lagged fibonacci generator#Properties of lagged Fibonacci generators

6See http://en.wikipedia.org/wiki/Mersenne twister.
7See http://en.wikipedia.org/wiki/Multiply-with-carry.

http://en.wikipedia.org/wiki/Mersenne_twister
http://en.wikipedia.org/wiki/Multiply-with-carry
http://en.wikipedia.org/wiki/Fast_fourier_transform
http://en.wikipedia.org/wiki/Pearson's_chi-square_test
http://en.wikipedia.org/wiki/Uniform_distribution_(discrete)
http://en.wikipedia.org/wiki/Lagged_fibonacci_generator#Properties_of_lagged_Fibonacci_generators

CHAPTER 5. RANDOM NUMBERS 78

1. Divide the range of the generator in n bins (typically, n = 10),
such that at least 5 numbers are expected to fall into each bin.

2. Compute the expected frequencies for the bins, Ei, i = 1..n which
for the uniform distribution is given by N times the ratio of the
range of the bin and the total range.

3. Compute the test-statistic for the chi-square test,

X2 =
n∑
i=1

(Oi − Ei)2

Ei
,

where Oi is the observed frequency. The test-statistic has the
property that it grows as the observed frequencies Oi differ more
from the expected frequencies Ei, as well as following a chi-square
distribution if the assumed theoretical distribution is correct.

4. Compute the probability that the test statistic takes on the com-
puted value or higher assuming the theoretical distribution is the
true distribution, by evaluating 1 minus the cumulative distribu-
tion function of the chi-square distribution 8 for the value of the
test statistic.

5. The test fails if the found probability is lower than the chosen
criterium of statistical significance (typically 0.05).

Tip: use the MATLAB function chi2gof.

� Correlation functions; correlation functions are functions that result
in a measure of dependency between sequences of numbers. They
are suited for testing random numbers, because different sequences of
random numbers shouldn’t correlate. One way of using correlation to
check the randomness of a sequence of numbers is by computing the
autocorrelation for a sequence of random numbers, given by

Rxx(j) =
∑
n

xnxn−j ,

where x is the sequence of numbers and xn is the nth number from this
sequence. For a sequence of truly random numbers the autocorrelation
function becomes infinite at j = 0 and zero elsewhere, as the length of
the sequence tends to infinity.

5.2 Random walks

A random walk (RW) is the mathematical description of a trajectory consist-
ing of steps that are each in a random direction. The random walk turns out

8See
http://en.wikipedia.org/wiki/Chi-square distribution#Cumulative distribution function

http://en.wikipedia.org/wiki/Chi-square_distribution
http://en.wikipedia.org/wiki/Chi-square_distribution
http://www.mathworks.com/help/toolbox/stats/chi2gof.html
http://en.wikipedia.org/wiki/Correlation_function
http://en.wikipedia.org/wiki/Random_walk
http://en.wikipedia.org/wiki/Chi-square_distribution#Cumulative_distribution_function

CHAPTER 5. RANDOM NUMBERS 79

to model accurately the natural phenomena of Brownian motion, molecular
chaos and diffusion.

In the following sections the 1D random walk is discussed (Section 5.2.1),
there are some remarks on random walks in 3D (Section 5.2.2), as well as
some remarks on continuous time random walks (Section 5.2.3), the proba-
bility distribution for the position of a particle in a random walk is discussed
(Section 5.2.4) and the diffusion equation is derived from the random walk
(Section 5.2.5).

5.2.1 The one dimensional random walk

Consider a particle that can move in one dimension, x. For each timestep
∆t at time t, it has a probability of 0.5 of moving a step of ∆x to the left,
and a probability of 0.5 of moving a step of ∆x to the right, or

xt+1 = xt +

{
∆x with a probability of 0.5,

−∆x with a probability of 0.5.
(5.3)

For the rest of this section we will take the size of the timestep ∆x to be
equal to 1.

Now assume that one has simulated the N trajectories of N such parti-
cles.

The left plot in Fig. 5.1 shows two such trajectories. The average position
of the particles at time t, 〈xt〉, is given by

〈xt〉 =
1

N

N∑
i=1

x
(i)
t ,

where N is the number of trajectories considered and x
(i)
t is the position on

the ith trajctory at time t. As the number of trjactories N tends to infinity,
the average position of the particles at time t, 〈xt〉, tends to zero, or

lim
N→∞

〈xt〉 = 0.

The right plot in Fig. 5.1 shows the average squared distance over all N
trajectories as a function of time, or

〈x2
t 〉 =

1

N

N∑
i=1

(
x

(i)
t

)2
.

From the figure it is clear that in the limit of the number of trajectories N
being infinite, the average squared distance grows linearly with time, or

lim
N→∞

〈x2
t 〉 = Dt,

http://en.wikipedia.org/wiki/Brownian_motion
http://en.wikipedia.org/wiki/Molecular_chaos
http://en.wikipedia.org/wiki/Molecular_chaos
http://en.wikipedia.org/wiki/Diffusion

CHAPTER 5. RANDOM NUMBERS 80

-10

-5

0

5

10

0 20 40 60 80 100

x t

t

(a)

0

20

40

60

80

100

0 20 40 60 80 100

<
x2
>

t

sim.
Dt

(b)

Figure 5.1: Position xt for two different random walks (left) and the squared
distance averaged over all N trajectories, 〈x2〉

where D is the constant of diffusion.
The average squared distance of the particles being linear with time can

be derived as follows. Let γi be the ith step of a particle in a random walk,
so γi ∈ {−1, 1}. The position of a particle whose steps are γi at time t, xt,
is given by

xt =
t∑
i=1

γi.

The squared distance of this particle is therefore

x2
t =

(
t∑
i=1

γi

)2

=

t∑
i=1

t∑
j=1

γiγj .

We split this sum in the addition of a sum for which i = j and one for
which i 6= j, which we denote by

∑
i,j=1..t,i=j and

∑
i,j=1..t,i 6=j , respectively.

So the squared distance of the particle, x2
t , becomes

x2
t =

∑
i,j=1..t,i=j

γiγj +
∑

i,j=1..t,i 6=j
γiγj .

The first part of this sum is simply the sum of squares of all timesteps,∑t
i=1 γ

2
i = t, whereas the second part is the sum of all products of two

timesteps at different times. Since the probability of a timestep being posi-
tive or negative is 0.5, so is the probability of the product of two timesteps,
γiγj at different times. The second part is therefore a random walk.

Now consider the average squared distance of N particles at time t, 〈x2
t 〉.

It is given by the average over all particles of the first part, which is simply
t, in addition to the average over all particles of the second part, which is
the average of N random walks and therefore zero.

CHAPTER 5. RANDOM NUMBERS 81

It can be easily verified that in the more general case where γi ∈ {−a, a}
the average squared distance is given by 〈x2

t 〉 = a2t, which is proportional
with time.

5.2.2 Random walks in 3D

The random walk of a particle moving in three dimensions can be considered
as three independent random walks in one dimension. The squared distance
is given by

r2 = x2 + y2 + z2.

As in the one dimensional case, the distance is proportional with the square
root of time.

5.2.3 Continuous time random walks

Now consider a random walk where the step size varies continuously between
−a and a. The left plot of Fig. 5.2 shows two trajectories for a = 2, the right
plot shows the averaged squared distance as a function of time for a = 1 and
a = 2. It can be seen that the difference is merely the constant of diffusion.
The distance is still proportional with the square root of time.

-10

-5

0

5

10

0 20 40 60 80 100

<
x2
>

t

(a)

0

20

40

60

80

100

0 20 40 60 80 100

<
x2
>

t

a=1
a=2
Dt

(b)

Figure 5.2: Results of simulating random walks with continuously varying
step size

5.2.4 The probability distribution for the position of a par-
ticle in a random walk

Consider now the simulation of a lot of random walk trajectories and let
Nt(x) be the number of particles that end up at the position x at time
t. It turns out that the shape of Nt(x) is that of a normal distribution.

CHAPTER 5. RANDOM NUMBERS 82

The equation describing Nt(x) divided by the total number of trajectories
considerd, N , written nt(x), is given by the normal distribution

nt(x) =
Nt(x)

N
=

1√
πσ

e−
(x−µ)2

σ2 , (5.4)

with an expected value of µ = 0 and a variance of σ2 = 2Dt = 2〈x2
t 〉.

The standard deviation σ is a linear function of time. nt(x) is therefore
a bell curve that starts out as a peak of height 1 and, as time progresses,
‘flattens’ as the variance grows linearly, see Fig. 5.3.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

-40 -20 0 20 40

n t
(x
)

x

t=100
t=200

Figure 5.3: The probability of finding a particle at position x for different
times t

5.2.5 The random walk and diffusion

Fick’s second law of diffusion, analogous to the heat equation, can be derived
from a random walk by considering the master equation. The master equa-
tion describes the change in the probability of finding a particle at position
x from time t to time t+ ∆t, given the probabilities at time t of a particle
jumping to a different x. For the one dimensional random walk considered
in Section 5.2.1, it is given by

∆p(x, t+∆t) = p(x+∆x, t)W−+p(x−∆x, t)W+−p(x, t)(W−+W+), (5.5)

where p(x, t) is the probability of finding a particle at position x, W− is the
probability of a particle jumping to the left and W+ is the probability of
a particle jumping to the right. The first term represents the probability
at time t of a particle jumping from position x + ∆x to position x, the
second term represents the probability at time t of a particle jumping from
position x−∆x to position x, and the third term represents the probability
at time t of a particle at position x jumping to position x+ ∆x or x−∆x.
In the the case of the random walk considered in the previous paragraphs
W− = W+ = 0.5.

http://en.wikipedia.org/wiki/Fick's_law_of_diffusion#Fick.27s_Second_Law
http://en.wikipedia.org/wiki/Heat_equation
http://en.wikipedia.org/wiki/Master_equation

CHAPTER 5. RANDOM NUMBERS 83

By taking the limits ∆t→ 0 and ∆x→ 0 we obtain

∂p

∂t
= ∆p(x, t+ ∆t)/∆t,

and
∂2p

∂x2
= [p(x+ ∆x, t)− 2p(x+ ∆x, t) + p(x−∆x, t)]/∆x2.

which can be combined to give

∂p

∂t
= D ∂

2p

∂x2
,

where the constant of diffusion is given by

D =
∆x2

2∆t
.

The solution to this equation is

p(x, t) =
1√
2πσ

e−
(x−µ)2

2σ2 ,

where
σ =
√

2Dt.

The difference with Eq. 5.4 is in the definition of the constants of diffusion.
They satisfy D = 2D.

Chapter 6

Smoothed Particle
Hydrodynamics

6.1 Introduction

Smoothed-particle hydrodynamics (SPH) is a numerical method that ap-
proximates the continuous description of fluid motion, fluid dynamics, using
particles.

Like with the finite element method, see Section 4, the state of the fluid
modeled at points between the particles are interpolated from the values at
interpolation points. In contrast to the finite element method, the interpo-
lation points are not in a static configuration, but instead move as part of
the fluid modeled.

In grid based methods such as the finite difference method, derivatives
occuring in the partial differential equations describing the problem are ap-
proximated by an expression containing the value of the quantity at neigh-
bouring grid points. In contrast to such methods SPH computes derivatives
by differentiating a continuous function resulting from interpolating the val-
ues at the particles.

Like molecular dynamics, see Section 3, the simulation is performed by
determining the motions as resulting from the interactions with neighbouring
particles. In contrast to molecular dynamics the particles do not represent
physical objects.

The parts of the method this chapter describes follows largely the way
they were described by Monaghan in [2] and [3] 1. First, the way the quan-
tities are interpolated from their values at the particles is discussed in Sec-
tion 6.2. Next, a set of equations determining the motion of for the case
of inviscid flow is given in Section 6.3. Finally, a way of modeling viscosity
using SPH is outlined in Section 6.4.

1The papers can be found at http://adsabs.harvard.edu/full/1992ARA%26A..30..543M
and http://iopscience.iop.org/0034-4885/68/8/R01, respectively.

84

http://en.wikipedia.org/wiki/Smoothed_particle_hydrodynamics
http://en.wikipedia.org/wiki/Fluid_dynamics
http://en.wikipedia.org/wiki/Finite_difference_method
http://adsabs.harvard.edu/full/1992ARA%26A..30..543M
http://iopscience.iop.org/0034-4885/68/8/R01

CHAPTER 6. SMOOTHED PARTICLE HYDRODYNAMICS 85

6.2 Interpolation

6.2.1 Integral and summation interpolants

In SPH, the interpolation of a quantity A, A(r), is based on the integral
interpolant

AI(r) =

∫
A(r′)W (r− r′)dr′, (6.1)

where the function W is called the ‘kernel’ and dr is a differential volume
element. The parameter h controls the range which the kernel affects; as h
gets larger the kernel covers a larger part of the domain. When W is the
Dirac delta function A is reproduced exactly. The kernels used in practice
tend to the delta function as h tends to zero. The kernels are normalized
to 1, meaning that integrating them over their domain results in 1. The
Gaussian kernel, given by

W (x, h) =
1

h
√
π
e−x

2/h2 ,

was used originally.
Equation 6.1 can be rewritten to∫

A(r′)

ρ(r′)
W (r− r′, h)ρ(r′)dr′,

where ρ(r)dr′ is a differential element of mass. This integral can be approx-
imated by the summation interpolant

AS(r) =
∑
b

mb
Ab
ρb
W (r− r′, h), (6.2)

where the summation is over all particles, but in practice, due to the kernel
being zero outside the neighbourhood of a particle, only covers the nearest
particles.

The disadvantage of using a Gaussian kernel is that even particles that
are an infinite distance away contribute to a quantity at a point. A kernel
that does not have this disadvantage is a spline function. For the 1D case
it is given by

W (r, h) =
2

3h


1− 3

2q
2 + 3

4q
3 if 0 ≤ r

h ≤ 1,
1
4(2− q)3 if 1 ≤ r

h ≤ 2,

0 otherwise,

(6.3)

The kernel has compact support, meaning that it quickly tends to zero, the
second derivative is continuous and the dominant error term in the integral
interpolant is O(h2).

http://en.wikipedia.org/wiki/Interpolant
http://en.wikipedia.org/wiki/Convolution
http://en.wikipedia.org/wiki/Dirac_delta_function
http://en.wikipedia.org/wiki/Gaussian_function

CHAPTER 6. SMOOTHED PARTICLE HYDRODYNAMICS 86

6.2.2 First derivatives

Derivatives can be easily calculated in SPH. Given a kernel W that is dif-
ferentiable, the derivative of a quantity A is approximated by

∂As

∂x
=
∑
b

mb
Ab
ρb

∂W

∂x
.

In SPH, the derivative is thus found as an exact derivative of an approximate
function. The disadvantage of this form is that it doesn’t vanish if A is
constant. This is resolved by using the fact that

∂A

∂x
=

1

Φ

(
∂(ΦA)

∂x
−A∂Φ

∂x

)
.

where Φ is any differentiable function. The SPH form is

∂A

∂x
=

1

Φ

∑
b

mb
Φb

ρb
(Ab −Aa)

∂Wab

∂xa
.

Choosing Φ = 1 the derivative can be expressed as

∂Aa
∂xa

=
∑
b

mb

ρb
Aba

∂Wab

∂xa
,, (6.4)

where Aba = Ab −Aa and Wab = W (r− r′, h).
The 2005 paper [3] also discusses second derivatives in one, two and three

dimensions.

6.3 Simple Equations of Motion

An inviscid fluid is described by equations expressing the conservation of
momentum, mass and energy. Furthermore, an equation of state is needed.

Next, in Section 6.3.1, SPH equations of motion derived from the con-
servation laws are given. In Section 6.3.2 the integration of the equations of
motion is discussed.

6.3.1 SPH equations of motion satisfying the conservation
laws

The equation expressing the change in particle velocity, va satisfying the
conservation of linear and angular momentum is given by

dva
dt

= −
∑
b

mb

(
Pb
ρ2
b

+
Pa
ρ2
a

)
∇aWab, (6.5)

http://iopscience.iop.org/0034-4885/68/8/R01
http://en.wikipedia.org/wiki/Equation_of_state

CHAPTER 6. SMOOTHED PARTICLE HYDRODYNAMICS 87

where Pa is the pressure of particle a and ∇a is the gradient at the position
of particle a.

To approximate the conservation of mass, one of two equations is typi-
cally used. They are

ρa =
∑
b

mbWab (6.6)

and
dρa
dt

=
∑
b

mbvab∇aWab, (6.7)

where vab = va − vb.
The second form has some advantages over the first form. See section

3.2 in [2].
An equation approximating the conservation of thermal energy is given

by
dua
dt

=
Pa
ρ2
a

∑
b

mbvab · ∇aWab (6.8)

The equation of state can be anything that applies to the problem under
consideration.

6.3.2 Integration of the equations of motion

Using numerical integration, the equations from Section 6.3.1 can be inte-
grated to simulate an inviscid fluid.

One of the advantages of SPH is that it it is easy to implement variable
spatial and temporal resolution, greatly improving the efficiency of simula-
tions. This means that time integration schemes requiring the time step to
remain constant, such as Verlet, cannot be used. Instead, schemes such as
Euler–Cromer (Section 2.3.2) or the midpoint method (Section 2.3.4) can
be used.

6.4 Viscosity

Artifical viscosity is a way to smooth out regions approximating discontinu-
ities to make them smooth enough to compute with relative ease.

Chapter 7

Finite Volume Method

The Finite Volume Method is a method for integrating partial differential
equations over a domain.

Like the finite element method (Chapter 4) and in contrast to smoothed
particle hydrodynamics (Chapter 6), the domain is discretized by represent-
ing it as a meshed grid.

The finite volume method is called that way because each point on the
grid can be thought of as being surrounded by a small volume. The solution
at each point is found by approximating the flux through the surfaces of the
volume surrounding it. This way of discretization gives the finite volume
method the important property of being conservative.

In Section 7.1 it is shown how to convert a problem stated in the form
of a partial differential equation to an equivalent integral form appropri-
ate for discretization. Section 7.2 discusses the total variation diminishing
property, a desirable property of integration schemes preventing unrealistic
oscillations in the solution. Section 7.3 discusses the CFL condition, a neces-
sary but not sufficient condition for an integration scheme to be convergent.
Section 7.4 discusses the Lax-Friedrichs method, a numerical method allow-
ing the solution of the finite volume equations. Section 7.5 discusses flux
limiters, mathematical terms that allow higher order schemes to be total
variation diminishing. Section 7.6 discusses the total variation diminish-
ing Lax-Friedrichs method, a higher order numerical method that is total
variation diminishing. Finally, Section 7.7 discusses initial and boundary
conditions for the finite volume method.

7.1 The FVM integral equation

In introducing the Finite Volume Method, we solve ω(x, t) for 0 ≤ x ≤ L
and 0 ≤ t ≤ tend, where ω satisfies the partial differential equation

∂ω

∂t
+ a(ω)

∂ω

∂x
= 0. (7.1)

88

http://en.wikipedia.org/wiki/Finite_volume_method

CHAPTER 7. FINITE VOLUME METHOD 89

Here, a(ω) is the ‘characteristic speed’. This equation can be rewritten to
the form

∂ω

∂t
+
∂f(ω)

∂x
= 0, (7.2)

where f is related to a by

a(ω) =
∂f(ω)

∂ω
. (7.3)

The variable f may be interpreted physically as the flux of the variable ω
in the x direction. The boundary conditions are given by u(0, t) = u0 and
u(L, t) = uL, the initial condition is u(x, 0) = u0.

In this section Eq. 7.2 is transformed to an equivalent integral form,
suitable for discretization.

We first divide the domain into ‘cells’. Each cell covers a region [xj−1/2, xj+1/2]×
[tn, tn+1] with area ∆x∆t. The indexes j and n satisfy j = 1..(L/∆x) and
n = 0..(tend/∆t), respectively. The jth position and nth time are given by
xj = (j − 1/2)∆x and tn = n∆t, respectively. See Fig. 7.1.

Figure 7.1: The domain of the problem from Section 7.1 partitioned into
cells

From Eq. 7.2 we know that for each cell

xj+1/2∫
xj−1/2

tn+1∫
tn

{
∂ω

∂t
+
∂f

∂x

}
dt dx = 0, (7.4)

by integrating Eq. 7.2 over the cell region.

http://en.wikipedia.org/wiki/Flux#Transport_phenomena

CHAPTER 7. FINITE VOLUME METHOD 90

Green’s theorem states that the relation between an integral over a region
and an integral over the boundary of the region satisfies∫ ∫

R

(
∂Q

∂y
− ∂P

∂z

)
dt dx =

∫
C

(Q dz + P dy) , (7.5)

where C is the boundary of the region R. By Green’s theorem with the
identifications Q → ω, P → −f , y → t and z → x we can therefore write
Eq. 7.4 as ∫

C

(ω dx− f dt) = 0, (7.6)

where C is given by the line surrounding the small square region of width
∆x and height ∆t in Fig. 7.1.

From Fig. 7.1 it is clear that the integral on the left hand side satisfies

∫
C

(ω dx− f dt) =

xj+1/2∫
xj−1/2

ω(x, tn) dx−
tn+1∫
tn

f(xj+1/2, t) dt

−

xj+1/2∫
xj−1/2

ω(x, tn+1) dx+

tn+1∫
tn

f(xj−1/2, t) dt,

(7.7)

where the integrals on the right hand side follow from integrating ω dx −
f dt along the four lines making up the boundary C in a counter-clockwise
direction.

Substituting Eq. 7.7 in Eq. 7.6, multiplying left and right with 1/∆x and
rearranging terms we obtain

Un+1
j = Unj − ν [F (U ; j + 1/2)− F (U ; j − 1/2)] , (7.8)

where

Unj =
1

∆x

xj+1/2∫
xj−1/2

ω(x, tn) dx,

is the mean value of ω over the cell width xj−1/2 ≤ x < xj+1/2 at time tn,

F (U ; j + 1/2) =
1

∆t

tn+1∫
tn

f(xj+1/2, t) dt,

is the mean value of f at the location xj+1/2 over cell height tn ≤ t < tn+1

and

ν =
∆t

∆x
.

http://en.wikipedia.org/wiki/Green's_theorem

CHAPTER 7. FINITE VOLUME METHOD 91

Since the necessary boundary and initial conditions are known, we can
compute the solution to the problem by computing F (U ; j + 1/2) for all j
at each time step. Rather than computing the exact value, giving the exact
solution, the Finite Volume Method works by computing an approximate
flux F from the values of U at locations xj .

Depending on whether we choose to compute the approximate flux from
values at the current time step or those at the next time step the integra-
tion scheme is called explicit or implicit, respectively. The steps in explicit
methods are cheap to compute but require a very small time step in order
for the solution to converge, whereas the steps in implicit methods are more
expensive to compute, but a larger time step is allowed. Depending on the
problem, an explicit or implicit scheme may require the least amount of
computation. In this chapter only explicit schemes are discussed.

7.2 Total variation diminishing schemes

Methods that approximate the flux terms with first order accuracy are
known to result in smeared solutions, causing shocks to be lost. Second
order methods, though more accurate, often produce unrealistic oscillations
in the solution.

Second order accurate methods that are total variation diminishing (TVD)
have the property that they produce no unrealistic oscillations while being
second order accurate. A method is TVD if the total variation (TV) of the
solution satisfies a certain condition.

The total variation (TV) of a numerical solution at a given time step tn

is given by

TV (Un) =
N−1∑
j=0

∣∣Unj+1 − Unj
∣∣ , (7.9)

where N is the number of grid points.
When a solution shows oscillations the total variation will oscillate as

well. A way of ensuring a solution has no oscillations is therefore to require
a solution to satisfy that its TV monotonically decreases with time, or

TV (Un+1) ≤ TV (Un). (7.10)

Any method that results in solutions that all satisfy the condition of Eq. 7.10
is called a TVD method.

It has been shown that for the constant coefficients case, so when a given
by Eq. 7.3 does not depend on ω, the general form

Un+1
j = Unj − Cj−1/2(Unj − Unj−1) +Dj+1/2(Unj+1 − Unj) (7.11)

is a TVD method if it satisfies the conditions

0 ≤ Cj−1/2 ∀j,

http://en.wikipedia.org/wiki/Explicit_and_implicit_methods
http://en.wikipedia.org/wiki/Numerical_ordinary_differential_equations#Consistency_and_order
http://en.wikipedia.org/wiki/Total_variation_diminishing

CHAPTER 7. FINITE VOLUME METHOD 92

0 ≤ Dj+1/2 ∀j,

and
0 ≤ Cj+1/2 +Dj+1/2 ≤ 1 ∀j.

7.3 The CFL condition

The Courant-Friedrichs-Lewy condition (CFL condition) is a necessary but
not sufficient condition for any explicit finite volume or difference method
to be stable. It states that for an explicit scheme to be stable, the rate at
which information can travel across the gridpoints, which is ∆x/∆t, must
be larger or equal to the rate at which the physical information can travel,
given by the speed at which a shock travels, a.

The CFL condition is often stated as a condition on the Courant number
C, which is the dimensionless number resulting from dividing the speed at
which physical information travels, a, with ∆x/∆t, or

C = aν, (7.12)

where ν = ∆t/∆x.

7.4 The Lax-Friedrichs method

As discussed at the end of Section 7.1, the finite volume method works by
approximating the average flux at the boundaries of a cell, F(Uj+1/2). One
way to approximate this value would be to take the average of the flux at
xj+1 and xj given by f(Uj+1) and f(Uj), which can be computed directly.
I.e. define the approximate flux as

F(Unj+1/2) =
1

2

(
f(Unj+1) + f(Unj)

)
. (7.13)

The CFL condition for this case is ∆x ≥ a∆t, or expressed as a condition
on the Courant number given by Eq. 7.12,

C ≤ 1. (7.14)

The resulting method is, however, very unstable and cannot be used even
with a timestep satisfying the CFL condition, Eq. 7.14. To recover stability,
an addtional term is added to make the flux at time step n as approximated
by the Lax-Friedrichs method, FLF, satisfy

FLF =
1

2
(f(Uj+1) + f(Uj))−

1

2ν
(Uj+1 − Uj) . (7.15)

The additional term adds numerical diffusion, damping out instabilities
but also smearing out the solution. Satisfying the CFL condition it is stable.

http://en.wikipedia.org/wiki/Cfl_condition
http://en.wikipedia.org/wiki/Numerical_diffusion

CHAPTER 7. FINITE VOLUME METHOD 93

Substituting Eq. 7.15 for F in Eq. 7.8 results in

Un+1
j =

1

2

[
Unj+1 + Unj−1

]
− ν

2

[
f(Unj+1)− f(Unj−1)

]
. (7.16)

Considering the constant coefficient case, i.e. f(Uj+1) = a0Uj+1, the method
is reduced to

Un+1
j =

1

2

[
Unj+1 + Unj−1

]
− ν

2
a0

[
Unj+1 − Unj−1

]
. (7.17)

To check whether the Lax-Friedrichs method is a TVD method we rewrite
this equation to the form of Eq. 7.11 by adding and subtracting Unj and
(ν/2)a0U

n
j , resulting in

Un+1
j = Unj −

[
1

2
+
ν

2
a0

] (
Unj − Unj−1

)
+

[
1

2
− ν

2
a0

] (
Unj+1 − Unj

)
, (7.18)

which is of the form of Eq. 7.11 with the identifications

Cj−1/2 =
1

2
+
ν

2
a0 ∀j,

and

Dj+1/2 =
1

2
− ν

2
a0 ∀j.

It can be easily verified that when the CFL condition is met all the conditions
for a method to be TVD from Section 7.2 are met.

7.5 Flux limiters

Flux limiters, also called slope limiters, are used to make the solutions ob-
tained with high-resolution schemes total variation diminishing. They work
by smoothing out the solution when it tends towards discontinuity.

A flux limiter comes in the form of a function δ(θ) of the so-called
‘smoothness’ θ. The smoothness at xj , θj , is given by

θj =
Uj − Uj−1

Uj+1 − Uj
, (7.19)

which is the ratio of successive differences around xj .
For a second-order scheme to be TVD the limiter must satisfy a few

conditions. These conditions can be represented in the Sweby diagram,
displayed in Fig. 7.2. For a limiter to be TVD it must lie entirely within the
area marked in the Sweby diagram.

There exist many limiters that satisfy these conditions. A list can be
found on Wikipedia1. The minmod limiter, satisfying

δ(θ) = max [0,min(1, θ)] ,

1See http://en.wikipedia.org/wiki/Flux limiter#Limiter functions

http://en.wikipedia.org/wiki/Flux_limiter
http://en.wikipedia.org/wiki/High_resolution_scheme
http://en.wikipedia.org/wiki/Flux_limiter#Limiter_functions

CHAPTER 7. FINITE VOLUME METHOD 94

Figure 7.2: The Sweby diagram. Any limiter lying entirely within the
marked region is a TVD limiter

sits along the bottom of the marked region in the Sweby diagram, giving
the most diffusive TVD limiter. The superbee limiter, satisfying

δ(θ) = max [0,min(1, 2θ),min(2, θ)] ,

sits along the top of the marked region in the Sweby diagram, giving the
least diffusive TVD limiter. The Woordward limiter, satsifying

δ(θ) = max

[
0,min

(
1 + θ

2
, 2, 2θ

)]
,

sits between the two and is continuous at (1, 1).

7.6 TVD Lax-Friedrichs

Applying flux limiters to the Lax-Friedrichs scheme the Lax-Friedrichs TVD
scheme (TVDLF) can be constructed. For this scheme the approximate flux
at xj+1/2, Fj+1/2, satisfies

Fj+1/2 =
1

2

(
f(UL

j+1/2) + f(UR
j+1/2)− Φ

)
, (7.20)

where UL
j+1/2 is given by

UL
j+1/2 = Uj +

1

2
∆xδj ,

UR
j+1/2 is given by

UR
j+1/2 = Uj+1 −

1

2
∆xδj+1,

CHAPTER 7. FINITE VOLUME METHOD 95

and Φ is given by

Φ =
∆x

∆t
∆URL

j+1/2.

Here δj is a flux limiter evaluated around xj and ∆URL
j+1/2 is given by

∆URL
j+1/2 = UR

j+1/2 − U
L
j+1/2.

7.7 Initial and boundary conditions

Simulation requires conditions at the boundary of the grid. To simulate
one needs to specify both initial conditions (Section 7.7.1) and boundary
conditions (Section 7.7.2).

7.7.1 Initial conditions

The initial conditions consist out of the set of cell averages of ω for each cell
at time t0, U0

j for all j.

7.7.2 Boundary conditions

Three types of boundary conditions are considered. Inflow conditions, out-
flow conditions and solid boundary conditions.

Inflow conditions

Inflow conditions hold when the cell average of ω in a boundary cell is known
as a function of time. It may be written as

Uni = φ(tn), ∀n, (7.21)

where the ith cell is a cell at the boundary and φ is known.

Outflow conditions

Outflow conditions hold when a boundary of the cellgrid doesn’t represent
a boundary of the simulated domain. The cellgrid merely represents the
boundary of the part of the simulated domain that is of interest. The flow
at an outflow boundary should therefore behave as if there is no boundary.

A way to approximate this is to imagine extending the grid outside of
the boundary and approximating the cell average of ω of the first cell outside
the boundary from known values inside of the boundary, such that the flux
at the boundary can still be computed.

Consider one dimensional flow. Adding the Taylor series for Ui−1 and
Ui+1 around Ui, we find that

Ui−1 + Ui+1 = 2Ui +O(∆x2). (7.22)

CHAPTER 7. FINITE VOLUME METHOD 96

If the outflow boundary is at the first cell, we can use the approximation

Ui−1 ≈ 2Ui − Ui+1, (7.23)

where the ith cell is at the left boundary. If the outflow boundary is at the
last cell, we can use the approximation

Ui+1 ≈ 2Ui − Ui−1, (7.24)

where the ith cell is at the right boundary. Now the fluxes at the left and
right boundary, Fi−1/2 and Fi+1/2, respectively, can be computed.

Solid boundaries

Solid boundaries can be implemented by making the flux at the boundary
0, i.e.

Fi−1/2 = 0 (7.25)

at the left boundary and
Fi+1/2 = 0 (7.26)

at the right boundary.

Bibliography

[1] Robert D. Cook, David S. Malkus, Michael E. Plesha, and Robert J.
Witt. Concepts and Applications of Finite Element Analysis. John Wiley
and Sons. Inc, fourth edition, 2002.

[2] J. J. Monaghan. Smoothed particle hydrodynamics. araa, 30:543–574,
1992.

[3] J J Monaghan. Smoothed particle hydrodynamics. Reports on Progress
in Physics, 68(8):1703, 2005.

97

	Numeral systems
	Representation of positive integers and real numbers
	Representation of negative numbers

	Ordinary differential equations
	The harmonic oscillator
	Analytic solution

	Nondimensionalization
	Numerical integration of ODE's
	Euler integration
	Euler-Cromer integration
	Verlet integration
	Runge-Kutta integration
	MATLAB ode45
	Other integration schemes

	Molecular Dynamics
	Particles in one dimension connected with springs
	Two particles connected with a spring
	Np particles connected with a spring
	Debugging using laws of physics

	Particles in two dimensions connected with springs
	Two particles in two dimensions connected with a spring
	Np particles in two dimensions connected with springs
	An algorithm for 2D molecular dynamics
	Modeling a solid

	Simulating fluids using molecular dynamics
	Potentials
	Efficiently simulating fluids

	Statistical mechanics, connecting microscopic and macroscopic properties
	Obtaining familiar macroscopic quantities from simulations
	Other important concepts in statistical mechanics
	Local instantaneous quantities
	Finding new microstates

	The Finite Element Method
	The finite element method in the quasistatic limit
	The quasistatic limit
	The bar element
	An example of solving a problem with FEM
	Elements in arbitrary orientation

	Formal procedure of deriving the stiffness matrix in FEM
	Derivation of the strong formulation
	Derivation of the weak formulation
	Discretization

	Dynamic formulation for FEM
	Discretization of the dynamic formulation; the mass matrix
	Modal analysis
	Transient analysis; the Newmark- method

	Finite Element Method for Nonlinear Systems
	A primer on nonlinearities
	Conjugate Gradient Method
	Newton-Raphson Method
	Nonlinear bar
	Newton's method for nonlinear finite elements

	Random numbers
	Random number generators
	The linear congruential generator
	The lagged Fibonacci generator
	Other random number generators
	Testing randomness

	Random walks
	The one dimensional random walk
	Random walks in 3D
	Continuous time random walks
	The probability distribution for the position of a particle in a random walk
	The random walk and diffusion

	Smoothed Particle Hydrodynamics
	Introduction
	Interpolation
	Integral and summation interpolants
	First derivatives

	Simple Equations of Motion
	SPH equations of motion satisfying the conservation laws
	Integration of the equations of motion

	Viscosity

	Finite Volume Method
	The FVM integral equation
	Total variation diminishing schemes
	The CFL condition
	The Lax-Friedrichs method
	Flux limiters
	TVD Lax-Friedrichs
	Initial and boundary conditions
	Initial conditions
	Boundary conditions

