

Universiteit Twente

CTW Mechanics Workshop

22 September 2008

Wouter Quak

Meshless Methods in Forming Processes

Wouter Quak

Applied Mechanics Mechanics of Forming Processes UTwente

Introduction

Theory

Results

Conclusion

Introduction

meshless...

- method for modeling continua
- started in the 1980's
- applied to large deformation problems:
 - forming
 - fracture/crack problems
 - fluid problems
 - explosive analysis

what is meshless?

classification of meshless

shape functions	PDE discretization	boundary conditions
$u_{\rm h}(x) = \sum_{i=1}^{n} \phi_i(x) u_i$	$\sigma_{ij,j} + f_i = 0$	$u_i - \tilde{u}_i = 0$ $\sigma_{ij}n_j - \tilde{t}_i = 0$
- convolution - MLS	 Galerkin Petrov-Galerkin collocation least-squares 	- penalty - multipliers - direct

Introducti

Theory

meshless methods

	FEM	meshless
 large deformations 	-	+
 ease of discretizing 	-	+
 computational time 	+	-

are currently available meshless methods suitable for simulating forming processes?

Numerical schemes

FEM

Finite Element Method

- implicit
- Eulerian
- semi-coupled convection
- steady-state

SPH

Smooth Particle Hydrodynamics

- explicit
- updated Lagrangian
- global mass scaling
- transient

EFG

Element-Free Galerkin

- explicit
- updated Lagrangian
- global mass scaling
- transient

LS-DYNA

Setup

Introduction

Theory

Results

Setup

Introductio

Theory

Results

SPH simulation

contour resultant displacement

VERY SIMPLE EXTRUSION EXAMPLE MODELED W Time = 0	Fringe Levels
Contours of Resultant Displacement	0.000e+00
max=0, at node# 1	0.000e+00 _
	0.000 c+ 00 _
Y IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	
×_x	

Theory

Introduction

Introduction

Theory

Results

Conclusions

- of the methods tested; SPH seems most interesting for extrusion process
- numerical artefacts in methods:
 - oscillations (SPH)
 - locking (EFG)

Outlook

- remove the numerical artefacts
 - stabilization methods

Questions?