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and at small scales, e.g.
nano-composites and biological composites,
characterized by
e excellent mechanical properties;

e morphology tailored to enable wide range of
macroscopic level functions.

/ Mechanical characterization of their \

Macroscopic constitutive equations

\ and better understanding of the /
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My research goal:
The establishment of the relationships between , and

Material properties

Structure =) Performance

I"

It allows us to use the materials to “their full potentia

It allows us to design better materials.
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Research projects

Micromechanics-based development of macroscopic constitutive equations for
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Mechanics of Deformation-Triggered
Pattern Transformation in Periodic Elastomeric
Structures

The application of a simple load to a periodic structure can trigger an unexpected global
pattern switch above a critical point. The results of numerical investigations reveal that
the pattern switch is triggered by a reversible elastic instability

Possibility of creating prescribed complex patterns on currently available periodic
lattices

Possibility of switching certain properties on and off with deformation

&
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Experimental results ]
Compression tests of specimens with periodic lattice
microstructure !

Modeling
» Analyses of instabilities
- Eigen value analyses on finite sized specimens
- Refined Eigen analyses on periodic RVEs
- Bloch Wave analyses on primitive cell
- Loss of ellipticity analyses on primitive cell
* Post-transformation analyses
- Simulations of compression tests
» Transformations of Phononic Band Gaps

nllullin, Deschanel, Bertoldi, Boyce
“Pattern transformation triggered by deformation”, Physical Review Letters 99, 2007, 084301.

Bertoldi, Boyce, Deschanel, Prange, Mullin
“Mechanics of deformation-triggered pattern transformations and superelastic behavior in
periodic elastomeric structures”, JMPS 2008

Bertoldi, Boyce

“Mechanically-Triggered Transformations of Phononic Band Gaps in Periodic Elastomeric
Qtructures", Physical Review B 2008




N
<]
University of Twente

Lattice structures

Increasing interest for the creation and use of nhano- and micron-scale periodic structures to
achieve unique properties.

e propagation of electromagnetic waves. \

N Cam ) @) @) ) =)™

o' 00

\ Applications: LEDs, optical fibers, nanoscopic lasers, radio frequency antennas J

e )
Phononic crystals == effects of their periodic structure on wave propagation

L Applications: sound filters, transducer design and acoustic mirrors. )

é Super-hydrophobic surfaces == Micro-textures that modify the material wettability )

\_ J
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Periodic structures under investigation

We manufactured 2D lattice cellular structures (at the millimeter length-scale) from
elastomeric sheets

Finite sized specimens

Circular holes on a Elliptical holes on a Circular holes on

square lattice rectangular lattice ) an oblique lattice
D ¢
) cC D € Dy

Infinite periodic structures

e egs H
Primitive cell
(Bloch wave D D
analysis)

E; F E F
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Experimental results: Circular holes on a square lattice

Uniaxial Compression tests
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Experimental results: Circular holes on a square lattice

Compression tests

Specimen 1 (t=1.3 mm)
- b4 Ad - T
TS 999 A4 ARAR
w HSALL ASAL NS4S S
o r Y - / ~
% Specimen 2] J(,)(ji 4 ,)") 1 5d) A.)\ J( ﬁa\fﬁ)\.
171 | AKX X YOO 4L 1L ~dSrdbr
g '\/\-)\/' 160,02 ')\ R c,=)0.04 Y J\ (,=0),06 W(J :\(c,:()).{o
1)
§ Specimen 2 (t=2.3 mm)
£ 40
P4
20 Specimen 1
0 . . . .
0 0.02 0.04 0.06 0.08 0.1
Nominal Strain =0.08 €=0.10

« Initial linear elastic behavior with a sudden departure from linearity to a plateau stress
« Completely homogeneous pattern transformation =% corresponds to the plateau region
» The transformed pattern is accentuated with continuing deformation

 The critical triggering stress level scales consistently with ligament buckling
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Experimental results: Rectangular lattice of elliptical holes

Compression tests

ki

15

Nominal Stress [kPa]

3

Uniaxial compression in directions parallel and
Compression perpendicular . . .
to the major axis perpendicular to the major axis of the holes

¢ Initially linear stress-strain behavior

Compression parallel

to the major axis e Then the stress plateaus as a result of the
pattern transformation

The transformation is a result of a local instability:

o o oo 0% o reversible and repeatable pattern transformation
Nominal Strain

Compression perpendicular to the major axis

. : A " . . e
K X £ ( X X " ( 'y X & « e (‘, o S «
» ' - 3 h S 7
« ( ‘ < X i - K ity f
< X % < 't <

— N

V620020 VN 0035

Compression parallel to the major axis

: T I E e I
X X X S > ;\/;)" e | ) =
£=0.015 Y c=0.020 N 0025 T R 20035
1
)
University of 'lw:né . - . .
Wzzd Experimental results: Oblique lattice of circular holes
Compression tests

180

160
140 Specimen 5 Specimen 4
<
% 120
g 100 Specimen 4
T 80
g 60
=

40

£=0.02 £=0.10 €=0.13 £=0.18
20

o

002 004 006 008 01 012 014 016 018

Nominal Strain

* The pattern transformation is a result of a critical intervoid shear instability event.

e The pattern after transformation is one of sheared voids where the shear direction
alternates back and forth from row to row.

12
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Experimental results suggest that the pattern transformation is the result of an elastic
instability in the inter-hole ligaments

The finite sized specimens are influenced by boundary conditions = the deformation
behavior of infinite periodic structures is also modeled.

D

+ Finite Sized Specimen et SR
- Instability via Eigen Value Analyses Dﬁoﬁc )DC0>C>©C[
- Stress-Strain Behavior s ST AN
A B
»
g ( Enlarged pY cell
5 |+ Primitive Cells H G
2 - Microscopic Instability via
a Bloch Wave Analysis
L : o £ .
5 < - Macroscopic Instability via
2 Loss of ellipticity
Iy
o
2 | - Periodic Multicell RVEs
£ - Stress-Strain Behavior ~C
=\
13
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Elastomeric material behavior

Uniaxial compression stress-strain tests to characterize the material response of the
elastomeric matrix.

w— Experiments

Material exhibits a behavior typical for elastomers:
large strain elastic behavior with negligible rate
dependence and negligible hysteresis

e Neo-Hookean (c,=0)

—— Two-term Rivlin (c,=0.3 MPa)

True Stress [MPa]

o8 Strain energy density for an isotropic hyperelastic
0 material
o w=wl(l,1,1,)

0 005 01 015 02 025 03 035 04
True Strain

The PSM-4 stress-strain behavior is modeled using a two-term I1-based Rivlin model
(modified to include compressibility)

K C,=0.55 MP
W, 1)=e\(1=3)+ (I, =3)=2¢ logJ+=(J=1F S5 pe

Cauchy stress

2
0'27[014—202([1—3)]34-

K(J—l)—z%}l
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e L Boundary conditions

* Finite-sized periodic structure
D

Bottom edge AB is fixed in vertical direction

Top edge CD is uniformly compressed in vertical
direction

Periodic boundary conditions on the cell boundaries
ufp-ufs =(F -D[X]s -X[a]= H [X]s -X]a],
Macroscopic uniaxial comoression

H= H, e e (1-1)ez20 ez

e Components ofﬁ are viewed as generalized degrees of freedom (operationally applied
using a set of virtual nodes).

* The macroscopic first Piola-Kirchoff stress tensor and the corresponding
macroscopic Cauchy stress tensor are then extracted through virtual work considerations

Danielsson M., Boyce M.C., Parks D.M., JMPS 2002 and 2007
15
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masid  Analysis of instabilities: Eigen Analysis

A linear perturbation procedure is used

i
ABAQUS/Standard

* Finite-sized periodic structure: Square array of circular holes

Mode 1 Mode 2 Mode 3 Mode 4
Eigenmode
S,,=30.3 kPa S,,=32.9 kPa S,=37.9 kPa s,-a90kra <= Eigenvalue

Same pattern as in
the experimental

tests
Sl byl Pattern transformation
R‘()\/( A‘()\/( »
Dt et Result of
> e § ;
.\( J 3 lre=0.10

Experimehts
N——— 16




[
2 Analysis of instabilities: Bloch wave Analysis

Before bifurcation At bifurcation

£ Q-. Q : . - Bifurcation
A %% _,.Qq : i
N0 O 0f

Y-periodicity may break down
(enlarged primitive cell pY)

The primitive cell Y is considered together with velocities given by the Bloch type relation
V(X+/;a5)= v(X)explik, (/,a;)]. J=1.2

Complex-valued function k, lying in the unit cell of the reciprocal lattice

Triantafyllidis N., Nestorovic, M.D., Schraad M.W., J. Applied Mech. 2006
17
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gatz2d Analysis of instabilities: Bloch wave Analysis
Aberg M., Gudmundson P., J. Acoust. Soc. Am. 1997
ABAQUS does not directly handle complex valued displacements

« All the fields are split into a real and imaginary parts

» Two uncoupled set of equilibrium equations (one for the real and one for the imaginary
part) are obtained

* The problem is solved using two identical finite element meshes for the primitive cell, one
for the real part and one for the imaginary part, coupled by the Bloch type displacement
boundary conditions
fRe
= flm ’

» Application of boundary conditions and static condensation of the degrees of freedom
belonging to the nodes on the edges HG and FG

K 0
0 K

The stiffness matrix K is
obtained from ABAQUS

* Finite element discretization

[ yRe Eigenvalue problem
P Kl 2 |= 0, Find the minimum load for which a vector k; exists such that the
L ~Im ; ;
K = K\ ko v, lowest eigenvalue is equal to zero




pae22d Analysis of instabilities: Bloch wave Analysis
« Infinite periodic structure: Square array of circular holes
During compression simulations

« a critical instability is detected at an engineering strain of - 0.03
with ko;=1/(2 1;) and kyp=1/(2 I,))

- Y-periodicity is broken and an enlarged cell pY with p=(2,2) is found P =
Enlarged pY cell

Primitive cell
H G
E F
Primitive cell

Eigen Mode of the microscopic bifurcation as
predicted by the Bloch wave analysis

- After the 15t Eigen mode at an engineering strain of -0.055 loss of ellipticity for the
homogenized tangent modulus is found, leading to a macroscopic instability
19
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ma222d  Results: Circular holes on a square lattice

140

Experi Model - Finite specimen
xperimental
120 Hodel - Tueterm Riin « Excellent quantitative agreement between
= 100 | f\ .’t"'°de'. N experiments and simulations
E‘; Specimen2 nfinite periodic . ] i . .
g e 1 « Infinite periodic solid earlier departure from
& linearity
™ 60
£
§ - Model - Finite specimen | * For the two-terms Rivlin and the Neo-
A — Hookean material models almost identical
20 . Model - Infinite periodic stress-strain behavior
Specimen 1
00 0.2)1 D.IDZ Ulﬂﬁ 0.‘04 0.‘05 0.‘06 U.lU7 068 0.‘09 0.1
Nominal Strain
Dtodots N dloh SrOed. Brphrd
- <> G040 viirdlr yindly
Experiments  JC JC JC )0 JC O JC L O A O Sl
Y Y Y YYYY ¢ £ & > b o> ] ol
{ e p. ) 2 & p |
'{,‘)\f)\cgo;oz \J\ ‘c=)o.o4 B ‘)\ ‘:=o)os I\(J)’\(('=(,J16

' . OO0
Simulations  (C I
DO OO

e aas
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Pattern transformation

Application of a simple load to a periodic structure can trigger an
above a critical point.

FREN! bILbL il
AAS A RE N RN R
PODOY 4
J(JQQ{\ D ¢ > B \( A
) Qf (\ - \: =y c=ofo‘20 Té\\_
NV 1e=002 =002 IR RN YYYY

fot IRERR INER

1 i 1 i . e

Syl el
JrpUrpl - Mibd
W()U 010 €=0.18 0 "/{X/L(?

el Yr y
Possibility of creating prescribed complex patterns on currently available periodic
lattices

Possibility of switching certain properties on and off with deformation
21
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Phononic crystals

Phononic crystals == periodic elastic structures with a range in frequency where elastic
wave propagation is barred (band gap)

Applications: sound filters, acoustic wave guides and acoustic mirrors.

- b g GOO0S0D00
1 3 CcOoa0Do0a
3 o = JDoODODOD
= SO0 00 00
3 = JooCaDoo
== cagn
3 J=k SD0d 0D 0D
& Go030004
3 o= goooonog
[ 3 L -
8 d& cooooooo
wk doapaoa
v FE1 QD00 0D0s
Y oDaoaDa
17 i aooo0oas

[ Pattern transformation == Transformative Phononic band gaps materials ]
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Wave propagation in periodic materials

Propagation of harmonic waves in a periodic hyperelastic material
Governing equations

e 0’V . .
DivS = PO S=L:F
The solution will be in the form
V(X 1) = V(X)exp|—iwi], == Div8 + pw?V =0.

complex valued function
The velocities are given by the Bloch type relation
V(X +La;) = V(X) expliKy - (1a,)].
To work with the complex valued displacements of the Bloch wave calculation within ABAQUS
V(X) — v(X)R« + iv(X)Im

Two sets of uncoupled equations for the real and imaginary parts

Div8™ + ppw? V1 =0, | V(X + ay)fe = VI(X) cos[Ko - (a;)] — VI™(X) sin[Ks - (a,)]
.o Im
DivS " + pw?V™ = 0. V(X + La,)™ = VE(X) sin[Ko - (La,)] + V™ (X) cos[Ko - (1a;)]

Aberg M., Gudmundson P., J. Acoust. Soc. Am. 1997 23
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Wave propagation in periodic materials

Two identical finite element meshes for the RVE, one for the real part
and one for the imaginary part and coupling them by Bloch type
displacement boundary conditions

Finite element formulation

()~ (5 )] [ o ]

Boundary conditions yield

f‘Re
|: f‘] m :|

ot i
o Re N ;?e f’Re ffg
:;Im :| = [Ql] {\:?m |: f]m :| = [Qf] ﬁ]m
{,II m i ajm

[Q,1=Q\[ko] W =0k

@l [(5 ) BN sy )] v -0

Eigenfrequency

Eigenfrequencies o can be computed for any Bloch-vector k, 24

12
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Circular holes on a square array

x-y gap zgap [N complete gap
wa a4
25C,

H G 19
wa 1

Ty |

=
o
>

o ¢
'Y

Nominal
Stress [kPa]
8

0
0 001 002 003 004 005 006 007 008 009 0.1

Nominal Strain

O Initial linear response
Band gaps affected marginally by deformation,
evolving in an affine and monotonic way

Pattern transformation

The in-plane modes undergo a transformation
» a new band gap is opened

« the pre-existing band gap widens

The out-of-plane modes are marginally affected

Strain=0.1 o >
T d

G - M
X-y gap zgap I complete gap

n]
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Nanoscale materials

In collaboration with:
Prof. Edwin L. Thomas, Institute for Soldier Nanotechnologies, MIT
Prof. Vladimir Tsukruk, Georgia Institute of Technology

eoe0ev0 0 ¢
000 @ 155,m o =) [
eecsolLv0e¢
e000e0 0
"““1‘_’5"‘
ecacaaaaa
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Conclusions

Novel, homogeneus and reversible pattern transformations have been uncovered
The pattern transformation induces a non-affine change in the phononic band-gaps

The pattern can be switched on and off ™= phononic switch to allow or to prevent the
transmission of certain elastic waves

Imprinting complex pattern during fabrication process == elliptical patterns have a
marked effect on the transmission of polarized light

27
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Thanks for your attention

14



N
<]

University of Twente
The Netheriands

Experimental results

Homogeneous pattern transformation

Circular holes on a square lattice

r‘
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Strain=0.0

Strain=0.12

Strain=0.16

Strain=0.20

Circular hole on an oblique array

Xy gap zgap [ complete gap
22 —
wa S

271G, Y

Nominal
Stress [kPa]
g

o

002 004 006 008 01 012 014 016 018 0.2
Nominal Strain

The out-of-plane band gaps are marginally
affected by the pattern transformation

The in-plane band gaps

« the lowest band gap intersects the z-mode
yielding a complete band gap

*The 2"d and 3" band gaps close completely

T 0
x-y gap [0 zgap I complete gap 30
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Transformative phononic band gaps

¢ Propagation of elastic waves through each structure is analyzed at different levels of
macroscopic strain

¢ The finite element method (ABAQUS/Standard) is used to compute the band structure

' N
H G
e
L Y
M
A B
E F s

Circular holes on a  Reciprocal lattice
square array

Circular holes on an  Reciprocal lattice
oblique array

-G -

Undeformed Deformed EigenFrequency
analysis
31
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g4 Results: Circular holes on an oblique lattice
* Finite-sized periodic structure

First mode ™= same
pattern as in the
experimental test

S,,=70.8 kPa S,,=72.9 kPa

« Infinite periodic structure

0.1

1st buckling mode
0.095

Refined Eigen Analyses

« All the RVEs with 1x 2m
primitive cells have the same 15t
Eigen mode

- The 2nd Eigen mode decreases
increasing the RVE size,
suggesting a “global” mode

2nd buckling mode

o
3
8

0.085!

°
s
8

T
1
1
1
1
1
1
1
1
|
0.075! “

Nominal Stress at buckling [kPa]

X1 12 13 x4 x5 X6 X7 1x8 1x8 1x10
RVES size

primitive cell Enlarged pY cell Bloch wave Analyses

« At instability, enlarged primitive cell pY with p=(1,2)
O « After the 15t Eigen Mode, loss of ellipticity occurs

=> [ — l
E 4 “global” Eigen Mode

32
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gtz Results: Circular holes on an oblique lattice

Model - Finite |
specimen

Experimental
Model - Two terms Rivlin

+ Excellent quantitative agreement between

140 Model experiments and simulations
Infinite periodic

Specimen 5
Model -/Finite specimen

* For the two-terms Rivlin and the Neo-
Hookean material models almost identical
stress-strain behavior

@
S

>
60 Model - Infinite periodic

Nominal Stress [kPa]
2
8

Specimen 4

0 0.02 004 0.06 0.08 0.1 012 014 016 0.18

Nominal Strain

Experiments

Simulations

33
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iz  Analysis of instabilities: Eigen Analysis

« Infinite periodic structure: Square array of circular holes

* Refined Eigen analyses on RVEs of increasing size (pY cells with p=(p4,p,)) subjected to
periodic boundary conditions.

® Each cell pY is characterized by a critical value of the loading parameter AP. The critical value
of the load parameter A°" is defined as the infimum of AP on all possible cells pY

0.055
A P=p:=2 p:=p:=5
0.05 \\ @  1stbuckling mode N rY>—p
z 2nd buckling mode ) e le)d!
L 0045 3 A o [ ] . ) ‘\
S -} Mode 1 / o6obo
2 f \ ’ b~
£ 004 s ) ) [ X ‘ ‘
2 [ANEN ) |
2 , \ A | | 54 J
= 0.035 \ ~ \J
2 ! \ \I.\ |
8 003} s\ ~ T .
o f Voo \\ | r |
g 0.025 \ n- —A » WHLY ! ]
£ ] \ / \\ o0 ‘.: A Mode 2 ‘ B 1] {
S \N_ 7 4 ) 2 - | |
Z 00 J 2’ 0000066
ﬁ @ 54 ] C sol=dllecccee
2x2 3x3 4x4 5x5 6x6 7x7 8x8 9x9 10x10
RVEs size

- All the RVEs with “even” primitive cells have the same 1st Eigen value/ Eigen mode
« The 2" Eigen value decreases increasing the RVE size, suggesting a “global” mode

* Not rigorous results. Method easy to implement, helpful to get a first understanding.

Rigorous confirmation performing Bloch wave analyses i
Saiki I., Terada K. et al., CMAME 2002

17
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R Lattice structures

There are many examples of cellular materials in nature

Balsa wood Plant stem

N Gibson, L.J. J. of Biomechanics, 2005.
Trabecular bone

Cellular materials are mechanically efficient mm) high performance
Compression = nonlinear stress-strain behavior

(a)

o // * e |nitial instability (‘yielding’)

15x10cells o
(kPa

“2" N ’ + Elasto-plastic material

100

m =+ Localized deformation in bands
A at relatively constant stress
S en Papka, S.D., Kyriakides, S.Acta Mater., 1998.

35
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Post-transformation analysis

Load-displacement analyses for both the finite-sized and infinite periodic structures were
performed with ABAQUS/Standard thus capturing the post-transformation behavior.

¢ An imperfection in the form of the most critical Eigen mode is introduced into the mesh.
The mesh is perturbed by the first Eigen mode ¢,, scaled by the scale factor w

d, + db‘,
2

The perturbation Ax, introduced into the mesh is a fraction of the averaged center to-
center distance between the voids

Ax, = w ?,.

We used scale factors w of 0.05%, 0.1%, 0.5%, and 1%.

For all levels of imperfection the same transformed pattern was obtained.

36
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Results: Elliptical holes on a rectangular lattice

* Finite-sized periodic structure (compression perpendicular to the major axis)

First mode ™= same
pattern as in the
experimental test

$,,=21.7 kPa S,,=23.6 kPa S,,=23.9 kPa

« Infinite periodic structure (compression perpendicular to the major axis)

p=p=2 p=p=5 p.=p,=6
Mode 1 7 . A
Refined Eigen
Analyses

Mode 2 < =9

I R TR R R R R y Y B4
RVESs size - o -

Bloch wave Analyses
+ At instability, enlarged primitive cell pY with p=(2,2)
« After the 15t Eigen Mode, loss of ellipticity occurs

H, G

D “global” Eigen Mode

2x2 periodic RVE
Unit cell =

Results: Elliptical holes on a rectangular lattice

* Finite-sized periodic structure (compression parallel to the major axis)

Mode 3 M

Critical instability strongly
influenced by preloading

e A A

S,=16.5kPa 5kPa

« Infinite periodic structure (compression parallel to the major axis)

Refined Eigen Analyses
I * The first 2 Eigen modes

! - 3 are quite close
U4 3« They are independent of
— I - ¥~ the RVE size

——  1stbucking made -
20 bucking mode

P=p;=2 p=p.=5 p.=p;=6

0017)

oot 1

0016

00155

o0 |

Nominal Stress at buckling [kPa]

00us|

“global” Eigen Modes

N AL
Bloch wave Analyses

» No microscopic instability is detected prior to macroscopic instability (loss of
ellipticity)

“global” Eigen Modes

38
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Nominal Stress [kPa]

Results:

Elliptical holes on a rectangular lattice

Experimental
Model - Two-term Rivlin
Model - Neo-Hookean

Compression
parallel to the
major axis

Model -

Infinite

periodic

Compression

perpendicular to the

major axis

Model - Finite . .
specimen « Excellent quantitative agreement between

experiments and simulations
Model
Infinite periodic

N « Infinite periodic solid earlier departure from
Model - Finite specimen |inearity

* For the two-terms Rivlin and the Neo-
Hookean material models almost identical
stress-strain behavior

0 0.005 0.01 0015 002 0.025 0.03 0.035 0.04 0.045 0.05

Nominal Strain

compression parallel
to the major axis

Experiments :' : - ~ ‘

i D i’ o S 4
compression Sxporiments X33 343 > ® W O = @ < {Rf.\‘(/
perpendicular to the G oo o e
Simulations D) ;

<5<

)

- v-0015
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Eigen Analysis

J‘S - gradivdV - Jt' svdS = 0 Principle of virtual work in the updated

Q i)

1) JS:grad(S vaV =

Q
where §v=§F=§L
A )
2) t=—:F=—:L.
) JF JF

(sD:C:DaV - j(o
0 1]

Finite element discretization

K, is the

Lagrangian form
[[e:0D- v: (L'L-2DiD)aV.
Q

:%(L+ ). ;'= W+t W S=1F"

the change in intensities of the applied tractions arises
due to the change in geometry

]

-7 A0y (L'L-2DiD)dV - J'[W:L}-évd.s: 0,
a0

(K, +AK,)9=0,

which accounts for the effect of the existing

stresses and tractions. K, is the
perturbation stresses and tractions.

, generated by the
40
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Bloch wave Analysis

Investigation of bifurcations in infinite periodic solids
« Before bifurcation, one possible primitive cell Y is identified by the

parallelogram
eAt bifurcation, the initial Y-periodicity may be broken resulting in an enlarged

primitive cell pY
before bifurcation at bifurcation

7 7
’ ’ ) S e /
’
4 . ’ ‘ ’
. ’
L >~ Lo Sl P S AT . p.l.a,
’ ’ ’ ’ p
/ / / ’
/ / /
/H ‘G 4

/
’ 7
r-/ * /
7
l.a 4 7 , pila
,a, , , ,
, ,
E F / / /

enlarged
primitive
cell pY

Aberg M., Gudmundson P., J. Acoust. Soc. Am. 1997 a1

9]

. Bloch wave Analysis

To obtain the bifurcation modes of the infinite periodic solid

® The primitive Y cell is considered
e The velocities are given by the Bloch type relation

v(X+/;a5)= v(X)explik,: (/;a;)]. =1.2
where ko = ky, b+ ko b, is the wave vector lying in the primitive cell and v is in

general a complex-valued function

e The velocities and tractions evaluated along opposite sides of the primitive cell are
related through

V|FG:d1V‘EH9 V|HG:d2V|EF,
V|F:d1V|E, V|H:d2V|E, V|G: d1d2V|E,

t |FG:'dli |eH, t |HG:'d2'i: 53 d; = expli2nk,/;]

42
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Bloch wave Analysis

ABAQUS does not directly handle complex valued displacements
¢ All the all of the fields are split into a real and imaginary parts

eTwo uncoupled equilibrium equations (one for the real and one for the imaginary
part) are obtained

eThe problem is solved using two identical finite element meshes for the primitive
cell, one for the real part and one for the imaginary part.

eThe two meshes are coupled by the displacement boundary conditions given
before
fRe
= flm ?

e Application of boundary conditions and static condensation
of the degrees of freedom belonging to the nodes on the edges
HG and FG

K 0
0 K

\‘IRe

oFinite element discretization {
\‘/Im

~ Re Find the minimum load

R VT - 0, Eigenvalue problem ==) for which the lowest
~lm
Va zero

eigenvalue is equal to

-3

M Analysis of instabilities: Loss of ellipticity

Two different types of bifurcation eigenmodes are mapped in the neighborhood of the
origin K,=(0, 0) :

« for k,= 0 a periodic “local” mode is found with p=(1,1);

- for k, > 0 a “global” long wavelength mode is obtained with wavelength much larger
than the unit cell size ™= this corresponds to loss of ellipticity at the macroscopic scale

Loss of ellipticity - response of the macroscopic (homogenized) tangent moduli of the
solid

—_ H=
S- L'F,
Macroscopic instability when

det A(n)=0
where A(n) is the acoustic tensor
A(n)g=L"[g® n]n
The components of L" are identified by subjecting the unit cells to four independent linear

perturbations of the macroscopic deformation gradient, calculating the corresponding
averaged stress components
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M Wave propagation in periodic materials

Propagation of harmonic waves in a periodic hyperelastic material.

Governing equations

PV
e
The solution will be in the form

DivS = py S=L:F
V(X,t) = V(X) exp[—iwt], = DivS + pow’V = 0.
complex valued function

The velocities are given by the Bloch type relation
V(X + La;) = V(X) exp[iK, - (1;a,)].

Two sets of uncoupled equations for the real and imaginary parts

l DiVSRv + powgvh’e =0.

V(X + la;)fe = VF(X) cos[Ko - (1a;)] = VI (X) sin[Ko - (1a)]
.o Im )
DivS™" + pou?V'" = 0. V(X + La,)'™ = VF(X) sin[Ko - (I;a,)] + V™ (X) cos[Ko - (1,,)]
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M Wave propagation in periodic materials

The problem is solved using two identical finite element meshes for the RVE, one for
the real part and one for the imaginary part and coupling them by Bloch type
displacement boundary conditions

E F .
Finite element formulation
f‘Re

(5 8)-(% S [5]

Boundary conditions yield
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M Wave propagation in periodic materials

Step 1: Undeformed RVE

Step 2: Deformed RVE

Step 3: EigenFrequency analysis
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Vertical inclusions
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Cross inclusions

@
=}

o
=)

=]

Nominal Stress [kPa]
8 &

N
=]

=)

ulation
xperiments | |

0.02 0.04 0.06
Nominal strain

o
o

e numerical model shows symmetric pattern transformation
o the experimental results show pattern transformation in small localized area

einclusions act as a barrier

sthe system is not truly symmetric in the experimental setup (the very bottom of
the structure is not as free to deform )

Larger lattice will lessen the effects of the boundary conditions
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University of Twente Combining cases (ocr = 54.5 kPa)
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e The remains the same in all cases
e The is different for each case

e The order in which the load increases follows the order of the buckling
mode that each case is trying to mimic.

eBoth the show a

occurs that results from the ongoing stiffness contribution from the
compression of the inclusions.
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Constitutive model
Constitutive model for the overall response of
000 periodic porous elastomers
0000 ¢
%8888(0-0-4 e Use the constitutive model to capture the instabilities
000X
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§ Work in progress....
RVE Macroscopic deformation
X, X,
Rim ;\zxz . i _ )
X » X, F:A161®91+A292'§§'92.
1
Rext ;1X1
Deformation fields z; = Vi(R) X; Fy = ﬁ 0vi XiX;
0X; OR R
Ny ’ o

Incompressibility ﬁbz )

det J=1 1

2 =0,

o0 =
1P + Ry ORZ 1. a(R) = aU(R),
Constitutive model

Incompressible Neo-Hookean material
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