Introduction to Particle Systems and Modeling Methods

Stefan Luding MSM, TS, CTW, UTwente, NL

Stefan Luding, <u>s.luding@utwente.nl</u> MSM, TS, CTW, UTwente, NL

Granular Materials

Real:

- sand, soil, rock,
- grain, rice, lentils,
- powder, pills, granulate,
- micro- and nano-particles

Model Granular Materials

- steel/aluminum spheres
- spheres with dissipation/friction/adhesion

Why Granular Materials

Numberless applications:

- constructions, industry (silos), agriculture, ...
- everyday life (e.g. coffee powder, sugar, salt, ...)

Challenges for Physics, Mechanics, Materialsand Computational Science and Engineering

- many particle systems, non-linear, non-equilibrium
 - segregation (mixing), pattern formation
 - force chains (wide distributions)
 - localization (shearbands, fracture)

- vibrated (weak) box with compartments

Experiments: Twente, NL, D. Lohse et al. 2001, ...

Clustering

- (strongly) vibrated box with compartments

What is the problem ?

- Excluded volume effects ... crystallization
- · Granular medium with ALL densities realized
- Dissipation & Friction & Adhesion
- Out of equilibrium, chaotic
- Non-equipartition of energies
- Temperature and pressure dependence
- sintering, fracture, damage, ...
- etc.

How to approach?

Experiments ...

Continuum theory (materials, micropolar, ...) **Statistical Physics**

+ Kinetic theory + dissipation + friction

Numerical Modeling

- Monte Carlo (stochastic methods)
- Molecular dynamics-like simulations (MD++)
- Finite Element Method (FEM)

Numerical Modeling Overview

Scales and examples:

sub-particle (atomistic – molecular dynamics) particle & particle-contact modeling multi-particle modeling (discrete element method) system modeling (silo, reactor, ...) using e.g. FEM to solve continuum theory process and plant modeling

Methods discussed:

particle methods (stochastic-deterministic) finite element model (FEM)

Deterministic or Stochastic Models ?

Method	Abbrev.	Theory
Molecular dynamics (soft particles)	MD	
Event Driven (hard particles)	ED	(Kinetic Theory)
Monte Carlo (random motion)	MC	Stat. Phys.
Direct Simulation Monte Carlo	DSMC	Kinetic Theory
Lattice (Boltzmann) Models	LB	Navier Stokes

Deterministic or Stochastic Models ?

Method	Determ./	Discrete	Discrete	Discrete	Flexible	Fast
	Stochast.	Time	Space	Events		
MD (soft p.)	D	x			****	*
ED (hard p.)	D			x	*	***
МС	S	?			*	**
DSMC	S	х			***	****
LB	S	x	x		*	****

DCCSE – steps in simulation

pcse.tudelft.nl/index.php?page=introduction

- 1. Setting up a model
- 2. Analytical treatment
- 3. Numerical treatment
- 4. Implementation
- 5. Embedding
- 6. Visualisation
- 7. Validation

DCCSE – steps in simulation

pcse.tudelft.nl/index.php?page=introduction

- 1. Setting up a model
- 2. Analytical treatment 2. Kinetic theory
- 3. Numerical treatment 3. Algorithms for MD
- 4. Implementation
- 5. Embedding 6. Visualisation

7. Validation

4. FORTRAN or C++/MPI

1. Particle model

- 5. Linux research codes
 - 6. xballs X11 C-tool
 - 7. theory/experiment

Approach philosophy

- Introduction
- Single Particles
- Particle Contacts/Interactions
- Many particle cooperative behavior
- Applications/Examples
- Conclusion

Continuum Theory

Deterministic Models ...

Method	Abbrev.	Theory
Molecular dynamics (soft particles)	MD	
Event Driven (hard particles)	ED	(Kinetic Theory)
Monte Carlo (random motion)	MC	Stat. Phys.
Direct Simulation Monte Carlo	DSMC	Kinetic Theory
Lattice (Boltzmann) Models	LB	Navier Stokes

What is Molecular Dynamics ?

- 1. Specify interactions between bodies
- 2. Compute all forces

 $\mathbf{f}_{j \rightarrow i}$

3. Integrate the equations of motion for all particles

 $m \ddot{\mathbf{x}}_i = \sum_{j \neq i} \mathbf{f}_{j \to i}$

What is Molecular Dynamics ?

1. Specify interactions between bodies (for example: two spherical atoms)

- 2. Compute all forces $\mathbf{f}_{j \rightarrow i}$
- 3. Integrate the equations of motion for all particles (Verlet, Runge-Kutta, Predictor-Corrector, ...) with fixed time-step dt

Applications & Examples

- 1. Flow in porous media (fluids)
- 2. Granular Flow (pipe & hopper)
- 3. Vibration & Segregation
- 4. Granular Gases (Diffusion & Clustering)
- 5. Shear cells (slow, dense flow)
- 6. Membranes (topology & fluctuations)
- 7. Adhesion and Sintering (attractive forces)
- 8. Sound propagation (wave theory)
- 9. Electro-spray (charged particles = long-range forces)
- 10. Particle-Fluid coupling

Flow in porous media

Approach philosophy

- Introduction
- Single Particles
- Particle Contacts/Interactions
- <u>Many particle cooperative behavior</u>
- Applications/Examples
- Conclusion

Many particle simulation

7

by

B. Muth, P. Eberhard and S. Luding

Segregation – Mixing – Reverse segregation

P. V. Quinn, D. Hong, SL, PRL 2001

Cooling of a Dissipative System

(ED Simulation)

10⁵ Particles Restitution: 0.9 Volume Fraction: 0.25 Periodic Boundaries

end 1