Micro-Macro transition -

(from particles to continuum theory)

Stefan Luding MSM, TS, CTW, UTwente, NL

Stefan Luding, <u>s.luding@utwente.nl</u> MSM, TS, CTW, UTwente, NL

Granular Materials

Real:

- sand, soil, rock,
- grain, rice, lentils,
- powder, pills, granulate,
- micro- and nano-particles

Model Granular Materials

- steel/aluminum spheres
- spheres with dissipation/friction/adhesion

Approach philosophy

- Introduction
- Single Particles
- Particle Contacts/Interactions
- Many particle cooperative behavior
- Applications/Examples
- Conclusion

Ring shear cell experiment

2D shear cell – force chains

2D shear cell – shear band

2D shear cell – energy

 $Q = \left\langle Q^{p} \right\rangle = \frac{1}{V} \sum_{p \in V} w_{V}^{p} V^{p} Q^{p}$ Any quantity:

 Q^p

In averaging volume: V

Averaging Density

 $Q = \mathbf{v} = \frac{1}{V} \sum_{p \in V} w_V^p V^p$

Any quantity:

$$Q^p = 1$$

- Scalar: Density/volume fraction

Averaging Velocity $Q = v\vec{v} = \frac{1}{V} \sum_{p \in V} w_V^p V^p \vec{v}^p$ Any quantity:

$$Q^p = \vec{v}^p$$

- Scalar
- Vector velocity density

2D shear cell – shear band

Velocity distribution

2D shear cell – force chains

Stress tensor (static)

Local micro-macro transition

From virtual work ...

- For each single contact ...
- \Rightarrow Stress tensor σ
- \Rightarrow Stiffness matrix *C* (elastic)
 - Normal contacts
 Tangential springs
 - i angonnai opinige

Deformations (2D):

- $\Rightarrow \frac{\text{Stress changes}}{\text{-lsotropic } \delta\sigma_V}$
- Isotropic compression ϵ_V - Deviatoric strain (=shear) ϵ_D , ϕ_E
- Deviatoric $\delta\sigma_{\rm D}, \phi_{\sigma}$

Averaging Rotations $Q = v\omega = \frac{1}{V} \sum_{p \in V} \sum_{c} w_{v}^{p} V^{p} \omega^{p}$ Deformation: $Q^{p} = \omega^{p}$ - Scalar - Vector: Spin density - Tensor

Rotations – spin density

Velocity distribution

Spin distribution

Summary

Quantitative comparison between Experiments (2D Couette) & MD simulations (soft disks) Observations:

- shear band & dilation
- inhomogeneous (force-chains)
- (almost always) an-isotropic
- micro-polar (rotations)

Conclusion

Qualitative agreement 100% Subjective quant. agreement 50%-80%

Reasons for discrepancy:

- idealized 2D disks vs. real disks
- idealized 2D motion vs. out-of-plane
- background friction (powder on base)
- small differences in geometry

- ...

3D shear band center position

80% agreement ... up to now

80% agreement ... up to now

Constitutive relations: Mohr-Coulomb

Constitutive relations: shear softening viscosity $\frac{|\mathbf{r}|}{\dot{\gamma}}$ vs. shear rate I = $\dot{\gamma}d_0$ $\sqrt{p/\rho_0}$ 0.01 0.02 0.04 0.06 0.08 0.16 • 1000 ·슬 1000 ÷≦ 1000 0.01 0.02 0.04 0.06 0.08 0.16 100 100 10-4 10 10-3 10 no friction friction

3D Flow behavior – steady state shear

Obtain constitutive relations from one SINGLE simulation:

- Mohr Coulomb yield stress
- shear softening viscosity
- compression/dilatancy ...
- inhomogeneity (force-chains)
- (almost always) an-isotropy
- micro-polar effects (rotations) ...

The End

Anisotropy

21

Micro-macro for anisotropy – rheology

Micro informations: shear bands

Anisotropy \leftrightarrow Shear ?

• Simple shear

 $\boldsymbol{\varepsilon} = \begin{pmatrix} 0 & 2\boldsymbol{\varepsilon}_s \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & \boldsymbol{\varepsilon}_s \\ -\boldsymbol{\varepsilon}_s & 0 \end{pmatrix} + \begin{pmatrix} 0 & \boldsymbol{\varepsilon}_s \\ \boldsymbol{\varepsilon}_s & 0 \end{pmatrix}$

Rotation + symmetric shear

Anisotropy ↔ Shear ?

• Simple shear

•

 $\boldsymbol{\varepsilon} = \begin{pmatrix} 0 & 2\boldsymbol{\varepsilon}_s \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & \boldsymbol{\varepsilon}_s \\ -\boldsymbol{\varepsilon}_s & 0 \end{pmatrix} + \begin{pmatrix} 0 & \boldsymbol{\varepsilon}_s \\ \boldsymbol{\varepsilon}_s & 0 \end{pmatrix}$

Rotation + symmetric shear

$$R_{45} \cdot \begin{pmatrix} 0 & \varepsilon_s \\ \varepsilon_s & 0 \end{pmatrix} \cdot R_{45}^T = \begin{pmatrix} \varepsilon_s & 0 \\ 0 & -\varepsilon_s \end{pmatrix} \quad \blacktriangleleft$$

• Biaxial "shear": compression+extension

An-isotropy (Stress)

- Stress: Isotropic: ${\rm tr}\,\sigma$, and deviatoric: ${\rm dev}\,\sigma$ = $\sigma_{zz}\text{-}\sigma_{xx}$

An-isotropy (Stress)

$$\frac{\partial}{\partial \varepsilon_{D}} s_{D} = \beta_{s} \left(s_{\max} - s_{D} \right)$$

An-isotropy (Structure)

- Structure changes with deformation
- Different stiffness:
- More stiffness against shear C₂
- Less stiffness perpendicular C₁
- One (only?) shear modulus
- Anisotropy $A = C_2 C_1$ evolution

$$\frac{\partial}{\partial \varepsilon_D} A = \beta_F \left(A_{\max} - A \right)$$

• Exponential approach to maximal anisotropy

e Calvetti et al. 1997

An-isotropy (Stress & Structure)

$$\frac{\partial}{\partial \varepsilon_D} s_D = \beta_s \left(s_{\max} - s_D \right)$$
$$\frac{\partial}{\partial \varepsilon_D} A = \beta_F \left(A_{\max} - A \right)$$

An-isotropy (Stress & Structure)

Modulus

$$\frac{\partial}{\partial \varepsilon_{D}} s_{D} = \beta_{s} (s_{\max} - s_{D})$$

$$\frac{\partial}{\partial \varepsilon_{D}} A = \beta_{F} (A_{\max} - A)$$

Constitutive model – scalar

(in the biaxial box eigen-system)

 $\delta \sigma_{V} = E \varepsilon_{V} + A \varepsilon_{D}$ $\delta \sigma_{D} = A \varepsilon_{V} + B \varepsilon_{D}$

Constitutive model – scalar (in the biaxial box eigen-system) $\delta \sigma_v = E \varepsilon_v + A \varepsilon_D$ $\delta \sigma_D = A \varepsilon_v + B \varepsilon_D$ Constitutive model – tensorial (arbitrary eigen-system) $\delta \sigma_v = E \varepsilon_v + A \varepsilon_D \cos(2\phi_\varepsilon - 2\phi_C)$ $\delta \sigma_D = [A \varepsilon_v + (2B - E) \varepsilon_D \cos(2\phi_\varepsilon - 2\phi_C)] \hat{\mathbf{D}}(\phi_C)$ $+ (E - B) \varepsilon_D \hat{\mathbf{D}}(\phi_\varepsilon)$

Mechanical waves in sand, 3D simulations

O. Mouraille, S. Luding Particle Technology, NSMm TUDelft, NL

Thanks for discussions : E. Grekova, G. Herman, W. Mulder, A. Suiker, ...

Content

- Motivation
- The numerical method
- Some 3D-simulation results
- Conclusions and Perspectives

Why?

- Generally only 30% to 35% of the oil contained in a reservoir is extracted.

- How to take into account the complexity of granular material in the wave propagation theory ?

- What about rotations ?

Framework

- Assembly of grains (dense, frictional and non-cohesive)
 Compressional (P)-wave, shear (S)-wave, (R-wave ?)
- Forces transmission, friction, rotations
- 3D simulations (DEM)
 Micro-Macro theory

Model systems

Different boundary conditions: with walls / periodic

Stefan Luding, s.luding@tnw.tudelft.nl

Particle Technology, DelftChemTech, Julianalaan 136, 2628 BL Delft

P-wave animation

System 0: regular lattice $\Delta a=0$

P- and S-wave

Stiffness tensor

From the micro-macro transition theory we can derive "a" stiffness tensor:

$$C_{\alpha\beta\gamma\phi} = \frac{1}{V} \sum_{p \in V} a^2 \left(k \sum_{c=1}^C n_{\alpha}^c n_{\beta}^c n_{\gamma}^c n_{\phi}^c + k^T \sum_{c=1}^C n_{\alpha}^c t_{\beta}^c n_{\gamma}^c t_{\phi}^c \right)$$

 $\tilde{C}_{3333} = 2$

Stiffness tensor of the regular packing Dimensionless tensor (only structure dependent) $\tilde{C} = C \frac{V}{ka^2}$

Waves and stiffnesses

Compressive (P)-wave

How relevant is the damping coefficient in our model ?

Space-Time analysis

Signal Analysis

Space-Time analysis — space Fourier transform

Space-Time analysis – time Fourier transform 400 -

Conclusions

- The signal reveals structure- and state-changes in the packing
- Larger friction increases the velocity
- The wave gets broader and accelerates while propagating
- The wave velocity is directly related to the corresponding stiffness
- Rotational waves ?
- <u>The model captures the particle systems interesting</u> <u>features</u>

Perspectives

- Local (point) perturbation (Greens function): spherical waves
- Further study of rotations, and their possible propagation

Falling sandpile – dense to dilute

