### Micro-Macro Behaviour of Granular Materials



Akke S.J. Suiker Delft University of Technology Faculty of Aerospace Engineering Chair of Engineering Mechanics

**T**UDelft

# Discrete Element Modelling (DEM)

- Research done in collaboration with Norman Fleck, Cambridge University, U.K.
- 3D DEM simulations of particle assemblies to

   obtain further insight into the *microscopic* and *macroscopic* mechanical behaviour
   relate material characteristics at micro- and macro levels
- Commercial package 'Particle Flow Code' (Itasca Consulting Group, Minneapolis, U.S.A.)
- Comparison of DEM results with triaxial tests on steel balls (Davy and Fleck)

<mark>ө</mark>т

**TU**Delft



Cuboidal volume of randomly packed, equi-sized, cohesionless spheres (initial porosity is 0.382).



#### **Model Characteristics**

 Particle interaction by Hertz contact law combined with Coulomb friction law:  $\left|f_d^c\right|=-f_a^c\tan\varphi^c$ 

- Dynamic response of particles: explicit time-stepping scheme
- Incremental step is chosen very small to minimise inertia forces (quasi-static analysis) and error accumulation (  $>10^5$  incremental steps for generating 5% deformation)
- The loading occurs either

$$\begin{array}{ll} \textit{strain-controlled} & \text{or} & \textit{stress-controlled} \\ \dot{u}_i^{wall} = \dot{E}_{ij} L_j & \dot{u}_i^{wall} = g_j(\Sigma_{ij} - \Sigma_{ij}^{des}) \end{array}$$

em

**T**UDelft

#### **Stress and Strain Parameters**

Assembly stress is computed as:

$$\Sigma_{ij} = \frac{1}{2V} \sum_{c=1}^{C} f_j^c l_i^c + f_i^c l_j^c$$

Hydrostatic and deviatoric stress invariants:

$$\Sigma^{hydr} = \frac{1}{3} \Sigma_{kk} \qquad \qquad \Sigma^{dev} = \sqrt{\frac{3}{2} \Sigma'_{ij} \Sigma'_{ij}} \qquad \text{with} \qquad \Sigma'_{ij} = \Sigma_{ij} - \Sigma^{hydr} \delta_{ij}$$

Volumetric and deviatoric strain rate invariants:

$$\dot{E}^{vol} = \dot{E}_{kk} \qquad \qquad \dot{E}^{dev} = \sqrt{\frac{2}{3}} \dot{E}^{*}_{ij} \dot{E}^{*}_{ij} \qquad \qquad \text{with} \qquad \dot{E}^{*}_{ij} = E_{ij} - \frac{1}{3} E^{vol} \delta_{ij}$$

<mark>ө</mark>т

# Effect of particle size



left: r/L =0.05 (1145 particles), right: r/L = 0.025 (9167 particles)







### **Deformation Characteristics**



Deviatoric strain versus volumetric strain (r/L=0.025)

<mark>ө</mark>т



### Stress-strain Response at various Contact Friction



Stress-strain response for various contact friction angles

em

**T**UDelft

# Deformation Characteristics at various Contact Friction











# **T**UDelft



The *minimal* average co-ordination number for obtaining d-dimensional static packings that are stable against external perturbations are • Frictionless particles  $\bar{m}_{\min} = 2d (=6)$ 

• Frictional particles  $\overline{n}_{min} = d+1$  (=4) (S. Alexander, Phys. Rep. **296**, 1998; S.F. Edwards, Physica A, **249**, 1998)

Co-ordination number versus contact friction angle

em

<mark>ө</mark>т

**fu**Delft







#### Comparison of DEM Results with Experiments (Davy & Fleck)

- Triaxial loading on cylindrical sample of equi-sized, steel spheres
- Sphere diameter: 4.5 mm
- Sample size: 50 mm diameter, 50 mm height (r/L = 0.045)
- Three states were considered:
  - spheres as received
  - spheres lubricated by PFTE spray
  - braze-coated spheres
- Porosity of test samples was between 0.388 and 0.402

өm

**T**UDelft

#### Effect of Contact Friction on Sample Strength



Macroscopic friction angle versus contact friction angle

em

**T**UDelft

### **Effect of Particle Redistribution**

Three different kinematic conditions:

- Particle sliding and particle rotation are allowed
- Particle sliding is allowed, particle rotation is prevented

• Particle sliding is allowed in correspondence with an *affine deformation field*, particle rotation is prevented.



#### Stress-strain Responses





#### **Continuum failure models**



### **Collapse Contour in the Deviatoric Plane**



Left: Collapse contour for unconstrained and constrained particle rotation (  $\phi^c$  =24 $^0$  ) Right: Collapse contour for DEM model (unconstrained particle rotation) and various continuum models

өm

# **Concluding Remarks**

Results presented were taken from:

 A.S.J. Suiker & N.A. Fleck, (2004), Frictional Collapse of Granular Assemblies, J. Appl. Mech. **71**, pp. 350-358.

The provision of triaxial test data by Dr. Catherine Davy is gratefully acknowledged

A.S.J.S. and N.A.F. gratefully acknowledge *EU financial support* in the form of *TMR* and *RTN grants* ERB-4061-PL-95-0988 and HPRN-CT-2002-00198 (DEFINO)